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CONTRACTIVE MAPPINGS AND COMMON FIXED

POINT THEOREMS IN INTUITIONISTIC FUZZY

METRIC SPACES

B. DINDA∗ AND T. K. SAMANTA

Abstract. This paper deals with some issues of common fixed

point theory involving two different types of intuitionistic fuzzy

contractive mappings. Intuitionistic fuzzy Jungck’s common fixed

point theorem (see, [1]) with respect to contraction defined in [8]

and intuitionistic fuzzy Pant’s common fixed point theorem (see,

[2]) for ψ-φ weakly commuting mappings are proved.
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1. Introduction

The concept of intuitionistic fuzzy set as a generalization of fuzzy set

[13] was introduced by Atansov [12]. George and Veeramani [5] have

modified the definition of fuzzy metric which is introduced by Kramosil

and Michalek [10].

Sessa [3] introduce a generalization of commutativity called weak com-

mutativity. Further, Jungck [1] introduced more generalized commu-

tativity which is called compatibility in metric space. He also proved
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common fixed point theorems. Pant [2] proved common fixed point the-

orems for non-commuting mappings.

In this paper, we prove the intuitionistic fuzzy version of two common

fixed point theorems, namely; Jungck’s and Pant’s theorems for two

generalized contractive mappings.

2. Preliminaries

We quote some definitions and statements of a few theorems which

will be needed in the sequel.

Definition 2.1. [11] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is

continuous t-norm if ∗, satisfies the following conditions:

(i) ∗ is commutative and associative,

(ii) ∗ is continuous,

(iii) a ∗ 1 = a for every a ∈ [0, 1],

(Iiv) a ∗ b ≤ c ∗ d whenever a ≤ c, b ≤ d and a, b, c, d ∈ [0, 1].

A few examples of continuous t-norms are a ∗ b = ab, a ∗ b =

min{a, b}, a ∗ b = max{a+ b− 1, 0}.

Definition 2.2. [11]. A binary operation � : [0, 1] × [0, 1] → [0, 1], is

continuous t-conorm if � satisfies the following conditions:

(i) � is commutative and associative,

(ii) � is continuous,

(iii) a � 0 = a for every a ∈ [0, 1],

(iv) a � b ≤ c � d whenever a ≤ c, b ≤ d and a, b, c, d ∈ [0, 1].

A few examples of continuous t-conorms are a � b = a+ b− ab, a � b =

max{a, b}, a � b = min{a+ b, 1}.

Definition 2.3. [4] A 5-tuple (X,µ, ν, ∗, �) is said to be an intuitionistic

fuzzy metric space if X is an arbitrary set, ∗ is a continuous t-norm, �
is a continuous t-conorm, µ and ν are fuzzy sets on X2 × (0,∞) and

µ denotes the degree of nearness, ν denotes the degree of non-nearness

between x and y relative to t satisfying the following conditions: for all
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x, y, z ∈ X, s, t > 0,

( i ) µ(x, y, t) + ν(x, y, t) ≤ 1

( ii ) µ(x, y, t) > 0 ;

( iii ) µ(x, y, t) = 1 if and only if x = y ;

( iv ) µ(x, y, t) = µ(y, x, t);

( v ) µ(x, z, t+ s) ≥ µ(x, y, t) ∗ µ(y, z, s);

( vi ) µ(x, y, ·) : (0,∞) → (0, 1] is continuous;

( vii ) ν(x, y, t) > 0 ;

( viii ) ν(x, y, t) = 0 if and only if x = y ;

( ix ) ν(x, y, t) = ν(y, x, t);

(x ) ν(x, z, t+ s) ≤ ν(x, y, t) � ν(y, z, s);

(xi ) ν(x, y, ·) : (0,∞) → (0, 1] is continuous.

Definition 2.4. [7] Let Ψ be the class of all mappings ψ : [0, 1]→ [0, 1]

such that ψ is continuous, non-increasing and ψ(t) < t, ∀ t ∈ (0, 1).

Let Φ be the class of all mappings φ : [0, 1] → [0, 1] such that φ is

continuous, non-decreasing and φ(t) > t, ∀ t ∈ (0, 1). Let (X,µ, ν, ∗, �)
be an intuitionistic fuzzy metric space and ψ ∈ Ψ and φ ∈ Φ. A mapping

f : X → X is called an intuitionistic fuzzy ψ-φ-contractive mapping if

the following implications hold:

µ(x, y, t) > 0 ⇒ ψ (µ (f(x), f(y), t)) ≥ µ(x, y, t)

ν(x, y, t) < 1 ⇒ φ (ν (f(x), f(y), t)) ≤ ν(x, y, t).

Definition 2.5. [8] Let (X,A) be an intuitionistic fuzzy metric space

and T : X → X. T is said to be TS-intuitionistic fuzzy contractive

mapping if the following conditions hold for k ∈ (0, 1)

k µ(T (x), T (y), t) ≥ µ(x, y, t)

and
1

k
ν(T (x), T (y), t) ≤ ν(x, y, t), t > 0 .

Definition 2.6. [9] Let f and g be two mappings from a metric space

(X, d) into itself. The mappings f and g are said to be weakly commuting
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if

d ( f(g(x)), g(f(x))) ≤ d (f(x) , g(x)) , ∀ x ∈ X .

3. Common fixed point theorems for commuting mappings

Theorem 3.1. Let (X,µ, ν, ∗, �) be a complete intuitionistic fuzzy met-

ric space and f, g : X → X be such that

(i) g(X) ⊆ f(X),

(ii) f is continuous on X,

(iii) there exists k ∈ (0, 1) such that for all x, y ∈ X and t > 0,

k µ(g(x), g(y), t) ≥ µ(f(x), f(y), t)

1

k
ν(g(x), g(y), t) ≤ ν(f(x), f(y), t), t > 0 .

Then f and g have a unique common fixed point in X provided f, g

commute on X.

Proof. Let x0 ∈ X. By (i), we can find x1 ∈ X such that f(x1) = g(x0).

So, we can define a sequence {xn}n in X such that f(xn) = g(xn−1).

Now,

kn µ (f(xn, f(xn+1), t)) = kn µ (g(xn−1, g(xn), t))

≥ kn−1 (k µ (g(xn−1, g(xn), t)))

= kn−1 µ (f(xn−1, f(xn), t))

= kn−2 ( kµ (g(xn−2, g(xn−1), t)))

≥ kn−2 µ (f(xn−2, f(xn−1), t))

≥ · · · ≥ µ (f(x0), f(x1), t)

and
1

kn
ν (f(xn), f(xn+1), t) ≤ ν (f(x0), f(x1), t) .

Therefore

µ (f(xn), f(xn+p), t)

≥ µ

(
f(xn), f(xn+1),

t

p

)
∗ µ

(
f(xn+1), f(xn+2),

t

p

)
∗
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· · · ∗ µ
(
f(xn+p−1), f(xn+p), t

p

)
= 1

kn kn µ
(
f(xn), f(xn+1), t

p

)
∗ 1

kn+1 k
n+1 µ

(
f(xn+1), f(xn+2), t

p

)
∗

· · · ∗ 1
kn+p−1 k

n+p−1 µ
(
f(xn+p−1), f(xn+p), t

p

)
= 1

kn µ (f(x0), f(x1), t1) ∗ 1
kn+1 µ (f(x0), f(x1), t1) ∗

· · · ∗ 1
kn+p−1 µ (f(x0), f(x1), t1), where t1 = t

p .

≥ 1
kn µ (f(x0), f(x1), t1) , since a ≥ c⇒ a ∗ c ≥ c ∗ c ≥ c.

Thus we have

µ (f(xn), f(xn+p), t) ≥
1

kn
µ (f(x0), f(x1), t1) .

Similarly we have

ν (f(xn), f(xn+p), t) ≥ kn ν (f(x0), f(x1), t1) .

Now

lim
n→∞

µ (f(xn), f(xn+p), t) ≥ lim
n→∞

1

kn
µ (f(x0), f(x1), t1) ≥ 1.

lim
n→∞

ν (f(xn), f(xn+p), t) ≤ lim
n→∞

kn ν (f(x0), f(x1), t1) ≤ 0.

Therefore

lim
n→∞

µ (f(xn), f(xn+p), t) = 1, lim
n→∞

ν (f(xn), f(xn+p), t) = 0.

⇒ {f(xn)}n is a sequence in (X,µ, ν, ∗, �).

⇒ ∃ y ∈ X such that f(xn)→ y as n→ ∞ in (X,µ, ν, ∗, �).

Since g(xn+1) = f(xn), it follows that g(xn) → y as n → ∞ in

(X,µ, ν, ∗, �).
The continuity of f implies the continuity of g by (iii). Therefore,

{g(f(xn))}n converges to g(y) in (X,µ, ν, ∗, �). However, since f and g

commute on X, g(f(xn)) and f(g(xn)) are so and f(g(xn)) → f(y) as

n → ∞. Since the limits are unique, f(y) = g(y), which implies that

f(f(y)) = f(g(y)).

Now µ(g(y), g(g(y)), t) = 1
k k µ(g(y), g(g(y)), t) ≥ 1

k µ(f(y), f(g(y)), t) =
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1
k µ(f(y), g(f(y)), t) = 1

k µ(g(y), g(g(y)), t) ≥ · · · ≥ 1
kn µ(g(y), g(g(y)), t).

Similarly, µ(g(y), g(g(y)), t) ≤ kn µ(g(y), g(g(y)), t).

Therefore, g(y) = g(g(y)) and hence g(y) = g(g(y)) = g(f(y)) =

f(g(y)) ⇒ g(y) is a common fixed point of f and g.

If y and z are two common fixed points of f and g then

1 ≥ µ(y, z, t) = µ(g(y), g(z), t) = 1
k k µ(g(y), g(z), t) ≥ 1

k µ(f(y), f(z), t) =

µ(y, z, t) = 1
k2
k µ(g(y), g(z), t) ≥ 1

k2
µ(f(y), f(z), t) = · · · ≥ 1

knµ(y, z, t) ≥
1.

Similarly, 0 ≤ ν(y, z, t) ≤ 0. Therefore, µ(y, z, t) = 1, ν(y, z, t) = 0.

Hence y = z. This completes the proof. �

4. Common fixed point theorems for Ψ-Φ-weakly

commuting mappings

Definition 4.1. Let f and g be self mappings of an intuitionistic fuzzy

metric space (X,µ, ν, ∗, �). The mappings f and g are said to be Ψ-Φ-

weakly commuting if

ψ (µ(f(g(x)), g(f(x)), t)) ≥ µ(f(x), g(x), t),

φ (ν(f(g(x)), g(f(x)), t)) ≤ ν(f(x), g(x), t).

Theorem 4.2. Let (X,µ, ν, ∗, �) be a complete intuitionistic fuzzy met-

ric space and f, g be intuitionistic fuzzy Ψ-Φ-weakly commuting self

mappings of X satisfying the following conditions

(i) f(X) ⊂ g(x),

(ii) f or g is continuous,

(iii) for all x, y ∈ X and 0 < t < 1

µ(f(x), f(y), t) ≥ φ (µ(g(x), g(y), t)) ,

ν(f(x), f(y), t) ≤ ψ (ν(g(x), g(y), t)) .

(iv) lim
n→∞

xn = x and lim
n→∞

yn = y implies lim
n→∞

µ(xn, yn, t) = µ(x, y, t)

and lim
n→∞

ν(xn, yn, t) = µ(x, y, t) then f and g have unique common

fixed point in X.
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Proof. Let x0 ∈ X. Choose a point x1 in X such that f(x0) = g(x1). In

general, we can choose xn+1 such that f(xn) = g(xn+1) for all n ≥ 0.

Then for all t > 0 :

µ (f(xn), f(xn+1, t)) ≥ φ(µ (g(xn), g(xn+1, t))) = φ(µ (f(xn−1), f(xn, t)))

> µ (f(xn), f(xn+1, t)) ,

ν (f(xn), f(xn+1, t)) ≤ ψ(ν (g(xn), g(xn+1, t))) = ψ(ν (f(xn−1), f(xn, t)))

< ν (f(xn), f(xn+1, t)) .

Thus {µ (f(xn), f(xn+1, t))}n is an increasing sequence and

{ν (f(xn), f(xn+1, t))}n is a decreasing sequence of positive real num-

bers in [0,1]. Therefore they converges to the limits l ≤ 1 and l′ ≥ 0

respectively.

Now we claim that l = 1 and l′ = 0. For l < 1, we have l ≥ φ(l) > l, a

contradiction. So, l = 1. Similarly, for l′ > 0 we have l′ ≤ ψ(l′) < l′, a

contradiction. So, l′ = 0.

Now for any positive integer p and t > 0, we have

µ (f(xn), f(xn+p), t)

≥ µ
(
f(xn), f(xn+1), tp

)
∗µ
(
f(xn+1), f(xn+2), tp

)
∗

· · · ∗ µ
(
f(xn+p−1), f(xn+p),

t
p

)
≥ µ

(
f(xn), f(xn+1), tp

)
∗ µ
(
f(xn), f(xn+1), tp

)
∗

· · ·∗ µ
(
f(xn), f(xn+1), tp

)
and

ν (f(xn), f(xn+p), t)

≤ ν
(
f(xn), f(xn+1), tp

)
� ν
(
f(xn+1), f(xn+2), tp

)
�

· · · � ν
(
f(xn+p−1), f(xn+p),

t
p

)
≤ ν

(
f(xn), f(xn+1), tp

)
� ν

(
f(xn), f(xn+1), tp

)
�

· · · � ν
(
f(xn), f(xn+1), tp

)
.
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Since we have

lim
n→∞

µ

(
f(xn), f(xn+1),

t

p

)
= 1 , lim

n→∞
ν

(
f(xn), f(xn+1),

t

p

)
= 0.

It follows that

lim
n→∞

µ (f(xn), f(xn+p), t) ≥ 1 ∗ 1 ∗ · · · · · · ∗ 1 ≥ 1 ,

lim
n→∞

ν (f(xn), f(xn+p), t) ≤ 0 � 0 � · · · · · · � 0 ≤ 0 .

Therefore, lim
n→∞

µ (f(xn), f(xn+p), t) = 1 and lim
n→∞

ν (f(xn), f(xn+p), t) =

0. Thus, {f(xn)}n is a Cauchy sequence and sinceX is complete, {f(xn)}n
converges to a point z ∈ X . Also, {g(xn)}n converges to z.

Suppose that, by (ii), f is uniformly intuitionistic fuzzy continuous.

Then lim
n→∞

f(f(xn)) = f(z) and lim
n→∞

f(g(xn)) = f(z). Further,

since f and g are ψ-φ weakly commuting, we have

ψ (µ(f(g(x)), g(f(x)), t)) ≥ µ(f(x), g(x), t),

φ (ν(f(g(x)), g(f(x)), t)) ≤ ν(f(x), g(x), t).

Letting n→ ∞ in the inequality and by (iv), we have lim
n→∞

g(f(xn)) =

f(z).

Now we prove that z = f(z). If possible let z 6= f(z). Then there exists

t > 0 such that µ(z, f(z), t) < 1 and ν(z, f(z), t) > 0. From (iii) we

have

µ(f(xn), f(f(xn)), t) ≥ φ(µ(g(xn), g(f(xn)), t)),

ν(f(xn), f(f(xn)), t) ≥ ψ(ν(g(xn), g(f(xn)), t)).

Taking limit as n→ ∞ we have

µ(z, f(z), t) ≥ φ(µ(z, f(z), t)) > µ(z, f(z), t),

ν(z, f(z), t) ≤ ψ(ν(z, f(z), t)) < ν(z, f(z), t),

which are contradictions. Therefore z = f(z) .

By (i), we can find a point z1 ∈ X such that z = f(z) = g(z1). Now, it

follows that

µ(f(f(xn)), f(z1), t) ≥ φ(µ(g(f(xn)), g(z1), t)),
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ν(f(f(xn)), f(z1), t) ≤ ψ(ν(g(f(xn)), g(z1), t)).

Taking limit as n→∞ we have

µ(f(z), f(z1), t) ≥ φ(µ(f(z), g(z1), t)) = 1,

ν(f(z), f(z1), t) ≤ ψ(ν(f(z), g(z1), t)) = 0,

since φ(1) = 1 and ψ(0) = 0. This implies that f(z) = f(z1) i.e.,

z = f(z) = f(z1) = g(z1). Also for any t > 0

ψ(µ(f(z), g(z), t)) = ψ(µ(f(g(z1)), g(f(z1)), t)) ≥ µ(f(z1), g(z1), t) = 1.

Therefore, ψ(µ(f(z), g(z), t)) = 1 and hence µ(f(z), g(z), t) = 1.

φ(ν(f(z), g(z), t)) = φ(ν(f(g(z1)), g(f(z1)), t)) ≤ µ(f(z1), g(z1), t) = 0.

Therefore, φ(ν(f(z), g(z), t)) = 0 and hence ν(f(z), g(z), t) = 0.

Which again implies that f(z) = g(z). Therefore z is a common fixed

point of f and g.

If x, y are fixed points of f then

µ(f(x), f(y), t) = µ(x, y, t) ≤ ψ(µ(f(x), f(y), t))

and

ν(f(x), f(y), t) = ν(x, y, t) ≥ φ(ν(f(x), f(y), t)), ∀ t > 0.

If x 6= y then µ(x, y, s) < 1 and ν(x, y, s) > 0 for some s > 0 i.e.,

0 < µ(x, y, s) < 1 and 0 < ν(x, y, s) < 1 hold, implying

µ (f(x), f(y), s) ≤ ψ(µ (f(x), f(y), s)) < µ(f(x), f(y), s)

and

ν (f(x), f(y), s) ≥ φ(ν (f(x), f(y), s)) > ν(f(x), f(y), s)

which are contradictions. Thus x = y. This completes the proof. �

Example 4.3. Let (X, ‖ · ‖) be a normed linear space and consider

a ∗ b = ab and a � b = min{a+b, 1}. Define µ, ν : V × V × R→ [0, 1]

by
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µ(x, y, t) =
t

t+ ‖x− y‖
, ν(x, y, t) =

‖x− y‖
t+ ‖x− y‖

Then clearly (V, µ, ν, ∗, �) is an intuitionistic fuzzy metric space.

Define two self mappings f and g on X by

f(x) = 1 and g(x) =

1, if x is a rational number

0, if x is an irrational number.

Then f(X) ⊂ g(X), f is continuous and g is discontinuous.

Define ψ(t) = t2 and φ(t) =
√
t, for t ∈ (0, 1). Then ψ(t) < t and

φ(t) > t and for all x, y ∈ X

µ (f(x), f(y), t) ≥ φ ( µ (g(x), g(y), t) ) ,

ν (f(x), f(y), t) ≤ ψ ( ν (g(x), g(y), t) ) .

Also, f and g are ψ-φ weakly commuting. Hence 1 is a common fixed

point of f and g.
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