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STRONGLY S-DENSE MONOMORPHISMS

H. BARZEGAR

Abstract. Let M be a class of (mono)morphisms in a category A.

To study mathematical notions, such as injectivity, tensor products

and flatness, one needs to have some categorical and algebraic in-

formation about the pair (A,M). In this paper we take A to be the

category Act-S of S-acts, for a semigroup S, and Msd to be the

class of strongly s-dense monomorphisms and study the categorical

properties, such as limits and colimits, of this class.
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1. Introduction and Preliminaries

To study mathematical notions in a category A with respect to a class

M of its morphisms, one should know some of the categorical properties

of the pair (A, M). In this paper we take A to be the category Act-S

and Msd to be a particular interesting class of monomorphisms, to be

called strongly-s-dense(st-s-dense) monomorphisms, and investigate its

categorical properties.

Let us first recall the definition and some ingredients of the category

Act-S needed in the sequel. For more information and the notions not

mentioned here see, for example, [8].
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Recall that, for a semigroup S, a set A is a right S-act (or an S-set)

if there is, a so called, an action µ : A × S → A such that, denoting

µ(a, s) := as, a(st) = (as)t and, if S is a monoid with 1, a1 = a.

Each semigroup S can be considered as an S-act with the action given

by its multiplication. Notice that, adjoining an external left identity 1

to a semigroup S, an S-act S1 := S ∪ {1} is obtained.

The definitions of a subact B of A, written as B ⊆ A, an extension

of A, a congruence ρ on A, a quotient A/ρ of A, and a homomorphism

between S-acts are clear. The category of all (right) S-acts and homo-

morphisms between them is denoted by Act-S.

The class of all S-acts is an equational class, and so the category

Act-S is complete (has all products and equalizers). In fact, limits in

this category are computed as in the category Set of sets and equipped

with a natural action. In particular, the terminal object of Act-S is the

singleton {0}, with the obvious S-action. Also, for S-acts A,B, their

cartesian product A× B with the S-action defined by (a, b)s = (as, bs)

is the product of A and B in Act-S.

The pullback of a given diagram

A

↓ f
C

g→ B

in Act-S is the subact P = {(c, a) : c ∈ C, a ∈ A, g(c) = f(a)} of C×A,

and pullback maps pC : P → C, pA : P → A are restrictions of the

projection maps. Notice that for the case where g is an inclusion, P can

be taken as f−1(C).

All colimits in Act-S exist and are calculated as in Set with the

natural action of S on them. In particular, ∅ with the empty action of

S on it, is the initial object of Act-S. Also, the coproduct of S-acts A,B

is their disjoint union A t B = (A× {1}) ∪ (B × {2}) with the obvious

action, and coproduct injections are defined naturally.
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The pushout of a given diagram

A
g→ C

f ↓
B

in Act-S is the factor act Q = (B t C)/θ where θ is the congruence

relation on B tC generated by all pairs (uBf(a), uCg(a)), a ∈ A, where

uB : B → BtC, uC : C → BtC are the coproduct injections. Also, the

pushout maps are given as q1 = πuC : C → (B tC)/θ, q2 = πuB : B →
(B tC)/θ, where π : B tC → (B tC)/θ is the canonical epimorphism.

Multiple pushouts in Act-S are constructed analogously.

Recall that for a family {Ai : i ∈ I} of S-acts, each with a unique

fixed element 0, the direct sum
⊕

i∈I Ai is defined to be the subact of

the product
∏
i∈I Ai consisting of all (ai)i∈I such that ai = 0 for all i ∈ I

except a finite number of indices.

Let I be a small category and A : I→ Act-S be a diagram in Act-S

determining the acts Aα, for α ∈ I = ObjI, and S-maps gαβ : Aα → Aβ,

for α→ β in MorI. Recall that the limit of this diagram is lim←−αAα :=⋂
α∈I Eα, where Eα = {a = (aα)α∈I ∈

∏
αAα : gαβpα(a) = pβ(a)} and

pα, pβ are the α, βth projection maps of the product. The limit S-maps

are qα : lim←−αAα → Aα. Also the limit has the universal property which

is, if {fα : A → Aα} is a family of morphisms such that gαβfα(a) =

fβ(a), then there is a morphism f : A→ lim←−αAα such that qαf = fα.

Remind that a directed system of S-acts and S-maps is a family

(Bα)α∈I of S-acts indexed by an updirected set I endowed by a family

(gαβ : Bα → Bβ)α≤β∈I of S-maps such that given α ≤ β ≤ γ ∈ I we

have gβγgαβ = gαγ , also gαα = id. Note that the direct limit (directed

colimit) of a directed system ((Bα)α∈I , (gαβ)α≤β∈I) in Act-S is given

as lim−→αBα =
∐
αBα/ρ where the congruence ρ is given by bαρbβ if and

only if there exists γ ≥ α, β such that uγgαγ(bα) = uγgβγ(bβ), in which

each uα : Bα →
∐
αBα is an injection map of the coproduct. Notice that

the family gα = πuα : Bα → lim−→αBα of S-maps satisfies gβgαβ = gα for
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α ≤ β, where π :
∐
αBα → lim−→αBα is the natural S-map. Also directed

colimit has a dual universal property of limit.

2. Csd-Closure operator

In this section, we introduce and briefly study a closure operator, so

called Csd-Closure operator. Let us denote the finite subset T of S by

T ⊂·S. First recall the following definition of Csd-closure operator.

Definition 2.1. A family Csd = (CsdB )B∈Act−S, with CsdB : sub(B) →
Sub(B), is defined as

CsdB (A) = {b ∈ B : bS ⊆ A and ∀T ⊂·S, ∃aT ∈ A, aT t = bt(t ∈ T )}.

It is easy to show that Csd is a closure operator on Act-S in the sense

of [5]. This means that CsdB (A) is a subact of B and,

(i) A ⊆ CsdB (A),

(ii) A1 ⊆ A2 ⊆ B implies CsdB (A1) ⊆ CsdB (A2),

(iii) for every homomorphism f : B → D and each subact A of B,

f(CsdB (A)) ⊆ CsdD (f(A)).

We just prove (iii). Let f : B → C be a homomorphism and b ∈
CsdB (A). For every s ∈ S, f(b)s = f(bs) ∈ f(A), then f(b)S ⊆ f(A). If

T is a finite subset of S, there is an element aT ∈ A such that aT t =

bt(t ∈ T ). Hence f(aT )t = f(b)t, which means that f(b) ∈ CsdB (f(A)).

Notice that in the case where S is a monoid, CsdB (A) = A for every

A ⊆ B. So, it is more interesting to consider the closure operator Csd

only for semigroups, or for semigroup part S of monoids of the form

T = S1.

Dikranjan and Tholen in [5] state some properties of a closure operator

in general. Here we are going to investigate those for the closure operator

Csd satisfy or not.

Definition 2.2. The closure operator Csd is said to be:

(1) idempotent, if for A ⊆ B, CsdB (A) = CsdB (CsdB (A)).

(2) hereditary, if for A1 ⊆ A2 ⊆ B, CsdA2
(A1) = CsdB (A1) ∩A2.
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(3) weakly hereditary, if for every A ⊆ B, Csd
CsdB (A)

(A) = CsdB (A).

(4) grounded, if CsdB (∅) = ∅.
(5) additive, if for subacts A,C of B, CsdB (A

⋃
C) = CsdB (A)

⋃
CsdB (C).

(6) productive, if for every family of subacts Ai of Bi, taking A =∏
iAi and B =

∏
iBi, C

sd
B (A) =

∏
iC

sd
Bi

(Ai).

(7) fully additive, if for Ai ⊆ B, CsdB (
⋃
i∈I Ai) =

⋃
i∈I C

sd
B (Ai).

(8) discrete, if CsdB (A) = A for every S-act B and A ⊆ B.

(9) trivial, if CsdB (A) = B for every B and A ⊆ B.

(10) minimal, if for C ⊆ A ⊆ B one has CsdB (A) = A ∪ CsdB (C).

Theorem 2.3. The closure operator Csd is hereditary, weakly heredi-

tary, grounded and productive.

Proof. It is easy to check that the closure operator Csd is hereditary,

weakly hereditary and grounded. We just prove productivity. Let b ∈
CsdB (A), b = {bi}. For every s ∈ S, bs ∈ A, then for each i ∈ I, bis ∈ Ai.
Let T be a finite subset of S. So there exists {ai} ∈

∏
Ai such that

{ai}t = {bi}t(t ∈ T ). Thus for every i ∈ I, ait = bit and hence for each

i ∈ I, bi ∈ CsdBi(Ai). It deduces that b ∈
∏
CsdBi(Ai). The converse is

done in a similar way. �

Theorem 2.4. The closure operator Csd is idempotent.

Proof. By definition of the closure operator for each A ⊆ B we see

that CsdB (A) ⊆ CsdB (CsdB (A)). Conversly, let b ∈ CsdB (CsdB (A)). For

each t ∈ S, there exists a1 ∈ CsdB (A) such that bt = a1t, and since

a1 ∈ CsdB (A), there exists a ∈ A such that a1t = at, which implies

bt ∈ A. Thus bS ⊆ A. Now let T be a finite subset of S. There is an

element aT ∈ CsdB (A) such that aT t = bt(t ∈ T ). Since aT ∈ CsdB (A),

there exists an element a′
T
∈ A such that a′

T
t = aT t and hence a′

T
t = bt.

Therefore b ∈ CsdB (A). �

Theorem 2.5. Let A and C be two subacts of B such that A
⋂
C = ∅.

Then CsdB (A
⋃
C) = CsdB (A)

⋃
CsdB (C).
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Proof. By definition of the closure operator, CsdB (A)
⋃
CsdB (C)

⊆ CsdB (A
⋃
C). Consider x ∈ CsdB (A

⋃
C). So xS ⊆ A

⋃
C. Let

xS
⋂
A 6= ∅ and xS

⋂
C 6= ∅. Then there exist elements t1, t2 ∈ S

such that xt1 ∈ A \ C and xt2 ∈ C \ A. Set T1 = {t1, t2}. There is an

element y ∈ A ∪ C such that xt1 = yt1 and xt2 = yt2. If y ∈ A, then

xt2 ∈ A and if y ∈ C, then xt1 ∈ C which are contradictions. Suppose

that xS ∩C = ∅, so xS ⊆ A. For every finite subset T ⊆ S, there exists

xT ∈ A ∪ C such that xt = xT t. It is clear that xT /∈ C, thus xT ∈ A
and hence x ∈ CsdB (A). �

Now we show that some of the properties of closure operator do not

satisfy in general. But first recall another closure operator Cd defined

by

CdB(A) = {b ∈ B | bS ⊆ A}.

A subact A is, by definition, s-dense in B if CdB(A) = B.

Lemma 2.6. The closure operator Csd is not necessary fully additive.

Proof. Let S = (N,min) be a semigroup, B = N∞ and A = N. Set

An = {m ∈ N | m ≤ n} for each n ∈ N. It is easy to check that

CsdN∞(An) = An and hence
⋃
CsdN∞(An) =

⋃
(An) = N, but CsdN∞(∪An) =

CsdN∞(N) = N∞. �

Lemma 2.7. (i) Let {Ai | i ∈ I} be a family of subacts of A. If

CsdA (
⋂
Ai) = CdA(

⋂
Ai), then C

sd
A (

⋂
Ai) =

⋂
CsdA (Ai).

(ii) If for every i ∈ I, CsdA (Ai) = CdA(Ai) and C
sd
A (

⋂
Ai) =

⋂
CsdA (Ai),

then CsdA (
⋂
Ai) = CdA(

⋂
Ai).

Proof. (i) By the hypothesis we see that
⋂
CsdA (Ai) ⊆

⋂
CdA(Ai) =

CdA(
⋂
Ai) = CsdA (

⋂
Ai). Thus CsdA (

⋂
Ai) =

⋂
CsdA (Ai).

(ii) CdA(
⋂
Ai) =

⋂
CdA(Ai) =

⋂
CsdA (Ai) = CsdA (

⋂
Ai). �

Lemma 2.8. For every semigroup S, the closure operator Csd is not

discrete nor trivial and minimal.

Proof. Let 0 ∈ A be a fixed element of a nonempty S-act A. Adjoin

two elements θ, ω to A with actions ωs = ω and θs = 0. Consider
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B = A ∪ {θ, ω}. It is clear that CsdB (A) = A ∪ {θ}. This shows that

Csd is neither discrete nor trivial. Also, it is not minimal. Because,

adjoining two elements θ, ω to a nonempty S-act C with actions ωs = θ

and θs = θ, and taking A = C∪{θ}, B = C∪{θ, ω}, we get C ⊂ A ⊂ B,

and CsdB (A) = B while CsdB (C) = C. �

Theorem 2.9. (i) The closure Csd is discrete if and only if S has a left

identity element.

(ii) The closure Csd is trivial if and only if S is the empty set.

Proof. (i) Let Csd be a discrete closure operator and S do not have a

left identity. Consider t0 ∈ S and adjoin an element x to S defined

by xs = t0s for each s ∈ S. It is clear that CsdSx(S) = Sx and by the

hypothesis we have CsdSx(S) = S. So Sx = S which is a contradiction.

(ii) Let the closure Csd be trivial and S 6= ∅. If B is an S-act such that

all of its elements are fixed and A is a subact of B, then CsdB (A) = A 6= B

which is a contradiction. Thus S is the empty set.

Conversly, let S = ∅. Then it is clear that CsdB (A) = B. �

3. Categorical properties of st-s-dense monomorphisms

In this section we investigate the categorical and algebraic properties

of the class Msd of st-s-dense monomorphisms in the following three

subsections.

3.1. Composition Property.

In this subsection we investigate some properties of the class Msd of

strongly-s-dense monomorphisms which are mostly related to the com-

position of st-s-dense monomorphisms. These properties and the ones

given in the next two subsections are what normally used to study in-

jectivity with respect to a class of monomorphisms (see [1]). The class

Msd is clearly isomorphism closed; that is, contains all isomorphisms

and is closed under composition with isomorphisms.
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Definition 3.1. An S-act A is strongly-s-dense (or simply st-s-dense)

subact of B, if for every b ∈ B, bS ⊆ A and for every finite subset T of

S there is an element aT ∈ A such that aT t = bt(t ∈ T ). In other word

CsdB (A) = B. A monomorphism A
f→ B is an st-s-dense monomorphism,

if f(A) is an st-s-dense subact of B.

Lemma 3.2. Let A
f→ B

g→ C be two monomorphisms. The monomor-

phism gf is an st-s-dense monomorphism if and only if f and g are

st-s-dense monomorphisms too.

Proof. Suppose that gf is an st-s-dense monomorphism. It is clear that

f and g are s-dense monomorphisms. Now let b ∈ B, c ∈ C and T be

a finite subset of S. Since gf is st-s-dense, then there exist aT1 and aT2
in A such that aT1 t = bt and aT2 t = ct for each t ∈ T . Thus f and g are

st-s-dense monomorphisms.

Conversely, assume each f and g is st-s-dense monomorphism. Let T

be a finite subset of S and c ∈ C. By the hypothesis there exist b ∈ B
and a ∈ A such that for every t ∈ T , ct = bt and bt = at. If T is a one

element subset of S, the above equations show that A is s-dense in C.

Therefore A is st-s-dense in C. �

Definition 3.3. The semigroup S locally has left identity element if

every finitely generated right ideal of S has a left identity element in S.

In the following lemma we have the characterization of a semigroup S

over which all s-dense extensions are st-s-dense. First recall that every

st-s-dense monomorphism is an s-dense monomorphism.

Lemma 3.4. For a semigroup S, the following are equivalent:

(i) Every s-dense extension is st-s-dense extension.

(ii) The semigroup S is st-s-dense in S1.

(iii) The semigroup S locally has left identity element.

Proof. (i)⇒(ii) is obvious.
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(ii)⇒(iii) Let I =

n⋃
i=1

tiS
1 be a finitely generated right ideal of S.

Since S is st-s-dense in S1, then there exists s0 ∈ S such that s0ti =

1ti = ti(1 ≤ i ≤ n). So S locally has left identity.

(iii)⇒(i) Let B be an s-dense extension of A, T be a finite subset of S

and b ∈ B. Then A∪ bS1 = A∪ {b} and since S locally has left identity

element, there exists t0 ∈ S such that t0t = t(t ∈ T ). Thus (bt0)t = bt

and so A is st-s-dense in B. �

3.2. Limits of st-s-dense monomorphisms.

In this subsection we will investigate the behaviour of st-s-dense

monomorphisms with respect to limits. First recall that, we say the

class Msd is closed under products (coproduct, direct sum), if for ev-

ery family of st-s-dense monomorphisms {fi : Ai → Bi},
∏
fi :

∏
Ai →∏

Bi(
∐
fi,⊕fi) is st-s-dense monomorphism. The proof of the following

is straightforward.

Proposition 3.5. (i) The classMsd is closed under products.

(ii) Let {fα : A → Bα|α ∈ I} be a family of st-s-dense monomor-

phisms. Then their product homomorphism h : A→
∏
α∈I Bα is also an

st-s-dense monomorphism.

Proposition 3.6. The classMsd is closed under direct sums.

Theorem 3.7. In the category Act-S, the following are equivalent:

(i) pullbacks transfer st-s-dense monomorphisms.

(ii) The semigroup S locally has left identity element.

Proof. (i)⇒(ii) By Lemma 3.4, it is enough to show that S is st-s-dense

in S1. Let E be an injective S-act and 0 be a fixed element of E which

exists by [4]. Adjoin an element θ to E by action θs = 0 for all s ∈ S.

Then, E is clearly st-s-dense in Eθ = E ∪{θ}. Taking a homomorphism

f : S1 −→ Eθ given by f(s) = θs (s ∈ S1), one gets the pullback
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diagram:

S
τ−→ S1

f ↓ ↓ f
E

τ ′−→ Eθ

where τ , τ ′ are inclusion maps. By the hypothesis, Since τ ′ is st-s-dense;

so is τ .

(ii)⇒(i) Consider the pullback diagram:

P
q−→ B

p ↓ ↓ g
A

f−→ C

where P =

{(a, b)|f(a) = g(b)} and f is an st-s-dense monomorphism. We show

that q is a monomorphism. Let q(a1, b1) = q(a2, b2). So b1 = b2

and fp(a1, b1) = fp(a2, b2) which implies a1 = a2 by using that f is

a monomorphism. Thus q is a monomorphism. Now one should show

that q is an s-dense monomorphism. Let b ∈ B and s ∈ S. Since f is

s-dense, g(bs) = g(b)s ∈ f(A). So there exist elements as ∈ A(s ∈ S),

such that g(bs) = f(as). Hence (as, bs) ∈ P and bs = q(as, bs) which

implies that q is s-dense. Now by using Lemma 3.4 the proof is com-

plete. �

3.3. Colimits of st-s-dense monomorphisms.

This subsection is devoted to the study of the behaviour of st-s-dense

monomorphisms with respect to colimits.

Proposition 3.8. Msd is closed under coproducts.

Proof. Consider the diagram

Ai
fi→ Bi

ui ↓ ↓ u′i∐
i∈I Ai

f→
∐
i∈I Bi

in which {fi : Ai → Bi : i ∈ I} is a family of st-s-dense monomorphisms.

We want to show that f :
∐
i∈I Ai →

∐
i∈I Bi is an st-s-dense monomor-

phism. It is not difficult to show that f is an s-dense monomorphism.

Now let b ∈
∐
i∈I Bi, and T be a finite subset of S. Then there exists
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i ∈ I and bi ∈ Bi such that b = u′i(bi). Since fi is st-s-dense, there exists

ai ∈ Ai such that fi(ai)t = bit for t ∈ T . Thus fui(ai)t = u′ifi(ai)t = bt

which means that f is an st-s-dense monomorphism. �

Theorem 3.9. Pushouts transfer st-s-dense monomorphisms. That is,

for the following pushout diagram

A
f→ B

g ↓ ↓ h′

C
h→ Q

in Act-S, If f is st-s-dense, then h is st-s-dense too.

Proof. Recall that Q = (B t C)/θ where θ = ρ(H) and H consists of

all pairs (uBf(a), uCg(a)), a ∈ A, where uB : B → B t C, uC : C →
B t C are coproduct injections. And h = πuC : C → (B t C)/θ, h′ =

πuB : B → (B t C)/θ, where π : B t C → (B t C)/θ is the canonical

epimorphism. By [6], pushout transfers s-dense monomorphism. So h is

an s-dense monomorphism.

Let T be a finite subset of S and q ∈ Q be a solution for Σ =

{xt1 = h(c1), xt2 = h(c2), ..., xtm = h(cm)}. Two cases may be occur:

(i) there exists c ∈ C such that q = [uC(c)]ρ(H).Then for all 1 ≤ i ≤ m,

h(c)ti = h(ci). (ii) There exists b ∈ B such that q = [uB(b)]ρ(H).

For every 1 ≤ i ≤ m, [uB(bti)]ρ(H) = h(ci) = [uC(ci)]ρ(H), and so

there exist ai1, ai2, ...ain ∈ A, si1, si2, ..., sin ∈ S1 such that uB(b)t1 =

uBf(ai1)si1, uCg(ai1)si1 = uCg(ai2)si2, uBf(ai2)si2 = uBf(ai3)si3, ...,

uBf(ai(n−1))si(n−1) = uBf(ain)sin, uCg(ain)sin = uC(ci). Since f is

a monomorphism, ai2si2 = ai3si3, ai4si4 = ai5si5, · · · , ai(n−1)si(n−1) =

ainsin, and hence uCg(ai1si1) = uCg(ai2si2) = uCg(ai3si3) = · · · =

uCg(ainsin) = uC(ci). Thus g(ai1si1) = ci. Now, for all 1 ≤ i ≤ m,

bti = f(ai1si1) ∈ f(A), and hence Σ1 = {xt1 = f(a11s11), · · ·xtm =

f(am1sm1)} has a solution b ∈ B. So Σ1 has a solution f(a) for some

a ∈ A. Then for every 1 ≤ i ≤ m, hg(a)ti = h′f(a)ti = h′f(ai1si1) =

hg(ai1si1) = h(ci) which yields hg(a) is a solution for Σ. �



Strongly s-dense Monomorphisms 25

Theorem 3.10. The category Act-S hasMsd-directed colimits.

Proof. Let gαβ : Bα → Bβ (α ≤ β) be a directed system of homo-

morphisms and h : A → lim−→αBα be a directed colimit in Act-S of

st-s-dense monomorphisms hα : A → Bα, α ∈ I, with the colimit maps

gα : Bα → lim−→αBα. Since h = lim−→αhα = gαhα for each α ∈ I, then

h is an s-dense monomorphism because of each hα. Now we show that

h is st-s-dense. Let b ∈ lim−→αBα and T be a finite subset of S. Since

b ∈ lim−→αBα, there exists xα ∈ Bα such that b = [xα]ρ and since hα is st-

s-dense, there exists an element aT ∈ A with hα(aT )t = xαt for all t ∈ T .

Then bt = [xα]ρt = gα(xα)t = gα(xαt) = gαhα(aT )t = h(aT )t. �

We say that multiple pushouts transfer st-s-dense monomorphisms

if in multiple pushout (P,Aα
hα→ P ) of a family of st-s-dense monomor-

phisms {fα : A→ Aα|α ∈ I}, every hα, α ∈ I, is an st-s-dense monomor-

phism. In multiple pushout diagram for every α, β ∈ I, hαfα = hβfβ,

which calls diagonal map.

Theorem 3.11. Multiple pushouts transfer st-s-dense monomorphisms.

Proof. Let (P,Aα
hα→ P ) be a multiple pushout of the family {fα :

A → Aα|α ∈ I} of st-s-dense monomorphisms. We know that P =∐
Aα/ρ(H) where H = {(fα(a), fβ(a)) | a ∈ A,α, β ∈ I} (we have taken

the image of each element of Aα under coproduct morphisms equal to

itself). Let hα(a) = hα(a′), a, a′ ∈ Aα. So there exist p1, p2, ..., pn, q1,

q2, ..., qn ∈ A, s1, s2, ..., sn ∈ S1 where for i = 1, ..., n, (pi, qi) ∈ H ∪H−1

and such that a = p1s1, q1s1 = p2s2, q2s2 = p3s3, ..., qnsn = a′. Then,

a = fα(a1)s1 and there exists β ∈ I such that fβ(a1)s1 = fβ(a2)s2. Since

fβ is a monomorphism, a1s1 = a2s2. Continuing this process, we get

that a1s1 = a2s2 = ... = ansn, and therefore a = a′. Now let q ∈ P and

s ∈ S. There exist β ∈ I and p ∈ Aβ such that q = hβ(p). Since fβ is s-

dense then ps = fβ(as) and so qs = hβ(ps) = hβ(fβ(as)) = hα(fα(as)).

Thus hα is s-dense. Let x ∈ P , x = [p]ρ(H) and T be a finite subset

of S. If p ∈ Aα, the result is true. If p ∈ Aβ, β 6= α, then for every
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t ∈ T , [pt]ρ(H) = [fβ(aT )t]ρ(H) = hβfβ(aT t) = hαfα(aT t) and thus hα is

an st-s-dense monomorphism. �

Corollary 3.12. In every multiple pushout diagram of st-s-dense

monomorphisms the diagonal map is an st-s-dense monomorphism.

Proof. Apply Lemma 3.2 and Theorem 3.11. �
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