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STRONGLY S-DENSE MONOMORPHISMS

H. BARZEGAR

ABSTRACT. Let M be a class of (mono)morphisms in a category A.
To study mathematical notions, such as injectivity, tensor products
and flatness, one needs to have some categorical and algebraic in-
formation about the pair (A, M). In this paper we take A to be the
category Act-S of S-acts, for a semigroup S, and M4 to be the
class of strongly s-dense monomorphisms and study the categorical

properties, such as limits and colimits, of this class.
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1. INTRODUCTION AND PRELIMINARIES

To study mathematical notions in a category A with respect to a class
M of its morphisms, one should know some of the categorical properties
of the pair (A, M). In this paper we take A to be the category Act-S
and Mg to be a particular interesting class of monomorphisms, to be
called strongly-s-dense(st-s-dense) monomorphisms, and investigate its
categorical properties.

Let us first recall the definition and some ingredients of the category
Act-S needed in the sequel. For more information and the notions not

mentioned here see, for example, [3].
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Strongly s-dense Monomorphisms 15

Recall that, for a semigroup S, a set A is a right S-act (or an S-set)
if there is, a so called, an action p : A x S — A such that, denoting
w(a, s) = as, a(st) = (as)t and, if S is a monoid with 1, al = a.

Each semigroup S can be considered as an S-act with the action given
by its multiplication. Notice that, adjoining an external left identity 1
to a semigroup S, an S-act S := S U {1} is obtained.

The definitions of a subact B of A, written as B C A, an extension
of A, a congruence p on A, a quotient A/p of A, and a homomorphism
between S-acts are clear. The category of all (right) S-acts and homo-
morphisms between them is denoted by Act-S.

The class of all S-acts is an equational class, and so the category
Act-S is complete (has all products and equalizers). In fact, limits in
this category are computed as in the category Set of sets and equipped
with a natural action. In particular, the terminal object of Act-S is the
singleton {0}, with the obvious S-action. Also, for S-acts A, B, their
cartesian product A x B with the S-action defined by (a,b)s = (as, bs)
is the product of A and B in Act-S.

The pullback of a given diagram

A

L

c 4% B
in Act-S is the subact P = {(c,a) : c€ C,a € A,g(c) = f(a)} of C x A,
and pullback maps po : P — C, ps : P — A are restrictions of the

projection maps. Notice that for the case where g is an inclusion, P can
be taken as f~1(C).

All colimits in Act-S exist and are calculated as in Set with the
natural action of S on them. In particular, () with the empty action of
S on it, is the initial object of Act-S. Also, the coproduct of S-acts A, B
is their disjoint union AL B = (A x {1}) U (B x {2}) with the obvious

action, and coproduct injections are defined naturally.
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The pushout of a given diagram
A4 C

[l

B

in Act-S is the factor act Q@ = (B U C)/0 where 6 is the congruence
relation on B U C generated by all pairs (upf(a),ucg(a)), a € A, where
up : B— BUC,uc : C — BUC are the coproduct injections. Also, the
pushout maps are given as q; = muc : C — (BUC)/0, qo = tup : B —
(BUC)/0, where 7 : BLUC — (BUC)/0 is the canonical epimorphism.

Multiple pushouts in Act-S are constructed analogously.

Recall that for a family {A; : i € I} of S-acts, each with a unique
fixed element 0, the direct sum €, ; A; is defined to be the subact of
the product [[;.; A; consisting of all (a;);cr such that a; = 0 for alli € 1

except a finite number of indices.

Let I be a small category and A : I — Act-S be a diagram in Act-S
determining the acts A,, for o« € I = ObjI, and S-maps gop5 : Aa — Ag,
for « — B in Morl. Recall that the limit of this diagram is MQAQ =
ﬂael Eq, where Ey = {a = (aa)acr € [[, Aa i gappala) = ps(a)} and
Pa,Pp are the o, Bth projection maps of the product. The limit S-maps
are qq : @QAQ — Aq. Also the limit has the universal property which
is, if {fo : A = A,} is a family of morphisms such that g,sfa(a) =
fs(a), then there is a morphism f: A — MaAa such that ¢of = fa.

Remind that a directed system of S-acts and S-maps is a family
(Ba)acr of S-acts indexed by an updirected set I endowed by a family
(9ap : Ba — Bg)a<per of S-maps such that given a < 8 < v € I we
have g39a8 = Yoy, 8ls0 gaa = id. Note that the direct limit (directed
colimit) of a directed system ((Ba)aer; (9ag)a<per) in Act-S is given
as limaBa = 1., Ba/p where the congruence p is given by bypbg if and
only if there exists v > «, 8 such that u,ga(ba) = uy95(bg), in which
each ug : By — ] o Ba 1s an injection map of the coproduct. Notice that
the family g, = muq : Bq — lzl}aBa of S-maps satisfies gggng = go for
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a < B3, where 7 : [[,, Ba — lzl;LQBa is the natural S-map. Also directed

colimit has a dual universal property of limit.

2. C**_CLOSURE OPERATOR

In this section, we introduce and briefly study a closure operator, so
called C*?-Closure operator. Let us denote the finite subset T of S by
T GS. First recall the following definition of C*?-closure operator.

Definition 2.1. A family C%¢ = (Cf;d)BeAct—S, with ng : sub(B) —
Sub(B), is defined as
Csl(A) ={be B:bS C Aand VT CS, 3a, € A, a,t =bt(t € T)}.

It is easy to show that C*? is a closure operator on Act-S in the sense
of [3]. This means that C3(A) is a subact of B and,

() A C C3(4),

(ii) A; C Ay C B implies C3(A;) C C3(Ay),

(iii) for every homomorphism f : B — D and each subact A of B,
F(CE(A)) € CR(F(A)).

We just prove (iii). Let f : B — C be a homomorphism and b €
C#l(A). For every s € S, f(b)s = f(bs) € f(A), then f(b)S C f(A). If
T is a finite subset of S, there is an element a, € A such that a,t =
bt(t € T). Hence f(a,)t = f(b)t, which means that f(b) € C3(f(A)).

Notice that in the case where S is a monoid, C3(A) = A for every
A C B. So, it is more interesting to consider the closure operator C'*¢
only for semigroups, or for semigroup part S of monoids of the form
T =25

Dikranjan and Tholen in [5] state some properties of a closure operator
in general. Here we are going to investigate those for the closure operator

C*¢ satisfy or not.

Definition 2.2. The closure operator C*? is said to be:
(1) idempotent, if for A C B, C3i(A) = C3(C5(A)).
(2) hereditary, if for Ay C Ay C B, C’jg (A1) = C(A1) N As.
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3) weakly hereditary, if for every A C B, C’éféd(A) (A) = CH(A).

4) grounded, if C3H(0) = 0.

5) additive, if for subacts A, C of B, C5{(A|JC) = C(A) U C(0).
6) productive, if for every family of subacts A; of B;, taking A =
[T 4i and B = [, Bi. C5(4) = T, C¥(4)).

(
(
(
(

(7) fully additive, if for A; C B, C5{(U;e; 4i) = U Ci(Ay).
(8) discrete, if C3(A) = A for every S-act B and A C B.

(9) trivial, if C5!(A) = B for every B and A C B.

(10) minimal, if for C C A C B one has C3(A) = AU C${(0).

Theorem 2.3. The closure operator C*¢ is hereditary, weakly heredi-

tary, grounded and productive.

Proof. Tt is easy to check that the closure operator C*¢ is hereditary,
weakly hereditary and grounded. We just prove productivity. Let b €
C#(A), b= {b;}. For every s € S,bs € A, then for each i € I, b;s € A;.
Let T be a finite subset of S. So there exists {a;} € []A; such that
{a;}t = {b;}t(t € T'). Thus for every i € I,a;t = b;t and hence for each
i€ 1,b; € Cf;‘f(Ai). It deduces that b € HCf;‘f(Ai). The converse is

done in a similar way. d
Theorem 2.4. The closure operator C*% is idempotent.

Proof. By definition of the closure operator for each A C B we see
that C&l(A) C C(C3(A)). Conversly, let b € C3(Cs(A)). For
each t € S, there exists a; € C3(A) such that bt = ait, and since
a; € C’Z,d(A), there exists a € A such that ait = at, which implies
bt € A. Thus bS C A. Now let T be a finite subset of S. There is an
element a, € C3(A) such that a,t = bt(t € T). Since a, € C3(A),
there exists an element a/. € A such that a/.t = a,t and hence a’.t = bt.
Therefore b € C5(A). O

Theorem 2.5. Let A and C be two subacts of B such that A C = (.
Then C (AU C) = CE(A) U CH(C).
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Proof. By definition of the closure operator, C3(A)|JCE(0O)
C C#(AUC). Consider z € C3(AJC). So 28 C AJC. Let
xSNA # 0 and zS(C # 0. Then there exist elements t1,t3 € S
such that xt; € A\ C and zty € C'\ A. Set T1 = {t1,t2}. There is an
element y € AU C such that xt; = yt; and xty = yty. If y € A, then
xto € A and if y € C, then xt; € C which are contradictions. Suppose
that zSNC =0, so xS C A. For every finite subset T' C S, there exists
z, € AUC such that at = x,t. It is clear that z, ¢ C, thus z, € A
and hence x € C§(A). O

Now we show that some of the properties of closure operator do not
satisfy in general. But first recall another closure operator C% defined
by

C4(A)={bec B|bS C A}.
A subact A is, by definition, s-dense in B if C$(A) = B.

Lemma 2.6. The closure operator C°% is not necessary fully additive.

Proof. Let S = (N,min) be a semigroup, B = N*° and A = N. Set
A, = {m € N | m < n} for each n € N. It is easy to check that
Cgl.(A,) = Ay, and hence |J Cgk (4,) = U(A,) = N, but C§L (UA,) =
C3d. (N) = N*°, O
Lemma 2.7. (i) Let {A; | i € I} be a family of subacts of A. If
(N Ai) = CUN Ai), then CH (N Ai) = N CF(Ay).

(ii) If for every i € I, C5(A;) = C4(A;) and C5E(N Ai) = N CE(Ay),
Proof. (i) By the hypothesis we see that (C3¢(A4;) € NC4(4;) =
CiNA) = CF(NAi). Thus CF(NAi) = N CF(Ai).

(i) CE(NAi) = NCE(A) = NCH(A) = CF(N A 0
Lemma 2.8. For every semigroup S, the closure operator C*¢ is not

discrete nor trivial and minimal.

Proof. Let 0 € A be a fixed element of a nonempty S-act A. Adjoin

two elements 6,w to A with actions ws = w and fs = 0. Consider
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B = AU {f,w}. Tt is clear that C&!(A) = A U {#}. This shows that
Cs? is neither discrete nor trivial. Also, it is not minimal. Because,
adjoining two elements 6, w to a nonempty S-act C' with actions ws = 0
and 0s = 0, and taking A = CU{0}, B=CU{0,w}, we get C C A C B,
and C(A) = B while C${(C) = C. O

Theorem 2.9. (i) The closure C*¢ is discrete if and only if S has a left
identity element.
(ii) The closure C*% is trivial if and only if S is the empty set.

Proof. (i) Let C*? be a discrete closure operator and S do not have a
left identity. Consider ty € S and adjoin an element x to S defined
by xs = tgs for each s € S. Tt is clear that C3¢(S) = S* and by the
hypothesis we have C$2(S) = S. So S* = S which is a contradiction.

(ii) Let the closure C*? be trivial and S # . If B is an S-act such that
all of its elements are fixed and A is a subact of B, then C&!(A) = A # B
which is a contradiction. Thus S is the empty set.

Conversly, let S = (. Then it is clear that C3(A) = B. O

3. CATEGORICAL PROPERTIES OF ST-S-DENSE MONOMORPHISMS

In this section we investigate the categorical and algebraic properties
of the class Mgy, of st-s-dense monomorphisms in the following three

subsections.
3.1. Composition Property.

In this subsection we investigate some properties of the class M4 of
strongly-s-dense monomorphisms which are mostly related to the com-
position of st-s-dense monomorphisms. These properties and the ones
given in the next two subsections are what normally used to study in-
jectivity with respect to a class of monomorphisms (see [1]). The class
Mg is clearly isomorphism closed; that is, contains all isomorphisms
and is closed under composition with isomorphisms.
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Definition 3.1. An S-act A is strongly-s-dense (or simply st-s-dense)
subact of B, if for every b € B,;bS C A and for every finite subset T' of
S there is an element a, € A such that a,.t = bt(t € T'). In other word
C3l(A) = B. A monomorphism A 4, Bis an st-s-dense monomorphism,
if f(A) is an st-s-dense subact of B.

Lemma 3.2. Let A i) B % C be two monomorphisms. The monomor-
phism gf is an st-s-dense monomorphism if and only if f and g are

st-s-dense monomorphisms too.

Proof. Suppose that gf is an st-s-dense monomorphism. It is clear that
f and g are s-dense monomorphisms. Now let b € B, ¢ € C and T be
a finite subset of 5. Since gf is st-s-dense, then there exist a,, and a,,
in A such that a,, t = bt and a,, ¢ = ct for each ¢t € T'. Thus f and g are
st-s-dense monomorphisms.

Conversely, assume each f and g is st-s-dense monomorphism. Let T’
be a finite subset of S and ¢ € C. By the hypothesis there exist b € B
and a € A such that for every t € T', ¢t = bt and bt = at. If T is a one
element subset of S, the above equations show that A is s-dense in C.
Therefore A is st-s-dense in C. O

Definition 3.3. The semigroup S locally has left identity element if
every finitely generated right ideal of S has a left identity element in S.

In the following lemma we have the characterization of a semigroup S
over which all s-dense extensions are st-s-dense. First recall that every

st-s-dense monomorphism is an s-dense monomorphism.

Lemma 3.4. For a semigroup S, the following are equivalent:
(i) Every s-dense extension is st-s-dense extension.
(ii) The semigroup S is st-s-dense in S*.

(iii) The semigroup S locally has left identity element.

Proof. (i)=(ii) is obvious.
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n

(il)=(iii) Let I = UtiSl be a finitely generated right ideal of S.
i=1

Since S is st-s-dense in S!, then there exists sy € S such that sot; =

1t; = t;(1 < i <mn). So S locally has left identity.

(iii)=-(i) Let B be an s-dense extension of A, T be a finite subset of S
and b € B. Then AUbS! = AU{b} and since S locally has left identity
element, there exists ¢ty € S such that tot = t(t € T'). Thus (btg)t = bt
and so A is st-s-dense in B. O

3.2. Limits of st-s-dense monomorphisms.

In this subsection we will investigate the behaviour of st-s-dense
monomorphisms with respect to limits. First recall that, we say the
class Mgy is closed under products (coproduct, direct sum), if for ev-
ery family of st-s-dense monomorphisms {f; : 4, — B;}, [[ fi: [[ 4 —
1 B:(I1 fi, ®fi) is st-s-dense monomorphism. The proof of the following
is straightforward.

Proposition 3.5. (i) The class Mgq is closed under products.
(ii) Let {fa : A — Byla € I} be a family of st-s-dense monomor-
phisms. Then their product homomorphism h: A — [],c; Ba is also an

st-s-dense monomorphism.
Proposition 3.6. The class My, is closed under direct sums.

Theorem 3.7. In the category Act-S, the following are equivalent:
(i) pullbacks transfer st-s-dense monomorphisms.

(ii) The semigroup S locally has left identity element.

Proof. (i)=(ii) By Lemma 3.4, it is enough to show that S is st-s-dense
in S'. Let E be an injective S-act and 0 be a fixed element of E which
exists by [1]. Adjoin an element 6 to E by action s = 0 for all s € S.
Then, E is clearly st-s-dense in EY = EU{#}. Taking a homomorphism
f: 8" — E? given by f(s) = 0s (s € S'), one gets the pullback
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diagram:
s I st
T/ 9
EFE — FE

where 7, 7/ are inclusion maps. By the hypothesis, Since 7/ is st-s-dense;

so is 7.
rp % B
(ii)=(i) Consider the pullback diagram: p | 1 g where P =
A Loc

{(a,b)|f(a) = g(b)} and f is an st-s-dense monomorphism. We show
that ¢ is a monomorphism. Let ¢(ai,b1) = q(az,b2). So by = bo
and fp(ai,b1) = fp(az,bz) which implies a; = ag by using that f is
a monomorphism. Thus ¢ is a monomorphism. Now one should show
that ¢ is an s-dense monomorphism. Let b € B and s € S. Since f is
s-dense, g(bs) = g(b)s € f(A). So there exist elements a; € A(s € 5),
such that g(bs) = f(as). Hence (as,bs) € P and bs = q(as, bs) which
implies that ¢ is s-dense. Now by using Lemma 3.4 the proof is com-
plete. O

3.3. Colimits of st-s-dense monomorphisms.

This subsection is devoted to the study of the behaviour of st-s-dense

monomorphisms with respect to colimits.
Proposition 3.8. M, is closed under coproducts.
Proof. Consider the diagram
4 L B
u; 4 \ u;
f
[Lic; A = Iier Bi

in which {f; : A; — B; :i € I} is a family of st-s-dense monomorphisms.
We want to show that f: [[;c; Ai — [[,c; Bi is an st-s-dense monomor-

phism. It is not difficult to show that f is an s-dense monomorphism.
Now let b € [[;c; Bi, and T be a finite subset of S. Then there exists
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i € I and b; € B; such that b = w(b;). Since f; is st-s-dense, there exists
a; € A; such that f;(a;)t = bit for t € T. Thus fu,(a;)t =} fi(a;)t = bt
which means that f is an st-s-dense monomorphism. 0

Theorem 3.9. Pushouts transfer st-s-dense monomorphisms. That is,

for the following pushout diagram

A L B
gl Lh
c o0

i Act-S, If f is st-s-dense, then h is st-s-dense too.

Proof. Recall that Q@ = (B U C)/0 where § = p(H) and H consists of
all pairs (upf(a),ucg(a)), a € A, where up : B — BUC, uc : C —
B I C are coproduct injections. And h = muc : C — (BUC)/6, h' =
mug : B — (BUC)/0, where 7 : BUC — (BUC)/0 is the canonical
epimorphism. By [0], pushout transfers s-dense monomorphism. So h is
an s-dense monomorphism.

Let T be a finite subset of S and ¢ € @ be a solution for ¥ =
{zt1 = h(c1),xta = h(ca), ..., xtym = h(cm)}. Two cases may be occur:
(i) there exists ¢ € C' such that ¢ = [uc(c)]y(m)-Then for all 1 <i < m,
h(c)ti = h(c;). (ii) There exists b € B such that ¢ = [up(b)],m)-
For every 1 < i < m, [up(bt;)] ) = h(ci) = [uc(ei)lp), and so
there exist a;1, 2, ...ain € A, 5i1, 82, ..., Sin € ST such that ug(b)t; =
upflai1)si, ucg(ain)sin = ucg(ai)sio, upf(ai)sip = upf(as)sis, ...,
up f(itn—1))Sim—1) = uBf(@in)sin, ucg(an)sim = uc(c;). Since f is
a monomorphism, a;2si2 = @i38i3,AiaSia = Ai55i5," ", Ai(n—1)Si(n—1) =
ainSin, and hence ucg(a;1s:i1) = ucg(aizsiz) = ucg(aizsiz) = -+ =
ucg(ainsin) = uc(c;). Thus g(aj1si1) = ¢;. Now, for all 1 < i < m,
bt; = f(apnsin) € f(A), and hence ¥ = {zt1 = f(a11811), - @ty =
f(amism1)} has a solution b € B. So ¥ has a solution f(a) for some
a € A. Then for every 1 < i < m, hg(a)t; = b'f(a)t; = W f(ai1si1) =
hg(ai1si1) = h(c;) which yields hg(a) is a solution for X. O
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Theorem 3.10. The category Act-S has Mq-directed colimits.

Proof. Let gop : Bo — B (o < ) be a directed system of homo-
morphisms and A : A — maBa be a directed colimit in Act-S of
st-s-dense monomorphisms h,, : A — B,, a € I, with the colimit maps
Jo @ Ba — lzl}aBa. Since h = li_>maha = goha for each a € I, then
h is an s-dense monomorphism because of each h,. Now we show that
h is st-s-dense. Let b € li_r@aBa and T be a finite subset of S. Since
be MQBQ, there exists x, € B, such that b = [z,], and since hy is st-
s-dense, there exists an element a,, € A with hq(a,.)t = x4t forallt € T.
Then bt = [24]pt = ga(Ta)t = ga(zat) = gaha(a, )t = h(a,)t. O

We say that multiple pushouts transfer st-s-dense monomorphisms
if in multiple pushout (P, 4, hy P) of a family of st-s-dense monomor-
phisms {f, : A = An|a € I}, every hy, a € 1, is an st-s-dense monomor-
phism. In multiple pushout diagram for every «, 8 € I, hafo = hgfs,
which calls diagonal map.

Theorem 3.11. Multiple pushouts transfer st-s-dense monomorphisms.

Proof. Let (P, A, by P) be a multiple pushout of the family {f, :
A — Aula € I} of st-s-dense monomorphisms. We know that P =
[[Ao/p(H) where H = {(fa(a), fa(a)) | a € A,a, 5 € I} (we have taken
the image of each element of A, under coproduct morphisms equal to
itself). Let ho(a) = ho(d'), a,a’ € A,. So there exist p1,pa, ..., Pn, q1,
q2, ..y Gn € A, 51,82, ...,5, € S' where for i = 1,...,n, (p;,¢;) € HU H™1
and such that a = p1s1,q151 = p2s2, @252 = P3S3, ..., @nsn = a’. Then,
a = fa(a1)s1 and there exists 8 € I such that fg(a1)s1 = fg(az)s2. Since
fs is a monomorphism, a;s; = azsz. Continuing this process, we get
that a1s; = asse = ... = ay,sy,, and therefore a = a’. Now let ¢ € P and
s € S. There exist § € I and p € Ag such that ¢ = hg(p). Since f3 is s-
dense then ps = fg(as) and so gs = hg(ps) = hg(fs(as)) = ha(falas)).
Thus hg is s-dense. Let z € P, x = [p] ) and T be a finite subset
of S. If p € A,, the result is true. If p € Ag, B # «, then for every
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teT, [pt]p(H) = [fﬁ(aT)t]p(H) = hgfg(a,t) = hafa(a,t) and thus hg is
an st-s-dense monomorphism. ]

Corollary 3.12. In every multiple pushout diagram of st-s-dense

monomorphisms the diagonal map is an st-s-dense monomorphism.
Proof. Apply Lemma 3.2 and Theorem 3.11. O
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