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Abstract. We will show several common fixed point theorems for
contraction condition satisfying certain requirements in complex
valued intuitionistic fuzzy metric spaces in this study.
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1. Introduction

In 1965, Zadeh [12] proposed the concept of fuzzy sets. Fuzzy set
theory is a useful tool for describing situations involving imprecise or
ambiguous data. Fuzzy sets deal with situations like these by assigning
a degree of belonging to a set to each object. Since then, it has become a
burgeoning field of study in engineering, medicine, social science, graph
theory, metric space theory, and complex analysis, among other fields.
Kramosil and Michalek [6] introduced fuzzy metric spaces in a variety
of ways in 1975. With the help of continuous t-norms, George and
Veermani [4] improved the concept of fuzzy metric spaces in 1994.

Buckley [3] was the one who originally established the concept of
fuzzy complex numbers and fuzzy complex analysis. 1987. Some au-
thors were influenced by Buckley’s work. The re-examination of fuzzy
complex numbers continues. The year was 2002, and fuzzy sets were ex-
tended to complicated fuzzy sets by Ramot et al. [8]. as though it were
a blanket statement Ramot et al. claim that a membership function
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defines a sophisticated fuzzy set. The complicated plane’s unit circle has
a function with a range that extends beyond [0, 1]. Singh was born in
the year 2016. The concept of ”complex valued fuzzy” was introduced
by D. Singh, et al. [10].creating metric spaces t-norm and the concept
of convergent convergence using complex valued continuous.in a com-
plex valued fuzzy sequence, a Cauchy sequence in complex valued fuzzy
metric spaces. By introducing the concept of non-membership grade to
fuzzy set theory, Atanassov [1] created a stir in 1983. In this paper, we
generalise the results of Jeyaraman and Shakila [13].

In the complex valued intuitionistic fuzzy metric spaces, this work
gives some common fixed point theorems for pairs of occasionally weakly
compatible mappings satisfying various requirements.

2. Preliminaries

Definition 2.1. A binary operation ∗ : rs(cos θ+ i sin θ)× rs(cos θ+
i sin θ) → rs(cos θ+ i sin θ), where rs ∈ [0, 1] and a fix θ ∈

[
0, π2

]
, is

called complex valued continuous t-norm if it satisfies the followings:
(1) ∗ is associative and commutative,
(2) ∗ is continuous,
(3) a ∗ eiθ = a,∀a ∈ rs(cos θ + i sin θ)
(4) a∗ b ≤ c∗d whenever a ≤ c and b ≤ d,∀a,b, c,d ∈ rs(cos θ+i sin θ).
Definition 2.2. A binary operation : rs(cos θ + i sin θ) × rs(cos θ +

i sin θ)→ rs(cos θ+ i sin θ),where rs ∈ [0, 1] and a fix θ ∈
[
0, π2

]
, is called

complex valued continuous t-co norm if it satisfies the followings:
(1) is associative and commutative,
(2) is continuous,
(3) a � 0 = a,∀a ∈ rs(cos θ + i sin θ),
(4) a�b ≤ c�d whenever a ≤ c and b ≤ d,∀a, b, c, d ∈ rs(cos θ+ i sin θ

).
Definition 2.3. The following are examples for complex valued con-

tinuous t-norm:
(i) a ∗ b = min{a, b},∀a, b ∈ rs(cos θ + i sin θ) and a fix θ ∈

[
0, π2

]
(ii) a∗b = max(a+b−(cos θ+i sin θ), 0), for all a, b ∈ rs(cos θ+i sin θ)

and a fix θ ∈
[
0, π2

]
.

Definition 2.4. The following are examples for complex valued con-
tinuous t-conorm:

(i) a � b = max{a, b},∀a, b ∈ rs(cos θ + i sin θ) and a fix θ ∈
[
0, π2

]
(ii) a�b = min(a + b, 1), for all a, b ∈ rs(cos θ + i sin θ) and a fix

θ ∈
[
0, π2

]
.
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Definition 2.5: The 5-triplet ( X,M,N, ∗, �) is said to be Complex
Valued Intuitionistic Fuzzy Metric Space if X is an arbitrary non empty
set, ∗ is a complex valued continuous t-norm, � is a complex valued
continuous t-conorm and M,N : X × X × (0,∞) → rs(cos θ+ i sin θ)
are complex valued fuzzy sets, where rs ∈ [0, 1], rs(cos θ + i sin θ) are
complex valued fuzzy sets, where rs ∈ and θ ∈

[
0, π2

]
, satisfying the

following conditions:
for all x, y, z ∈ X; t, s ∈ (0,∞); rs ∈ [0, 1] and θ ∈

[
0, π2

]
.

( cf1) M(a, b, p) +M(a, b, p) ≤ (cos θ + i sin θ),
(cf2) M(a, b, p) > 0,
(cf3) M(a, b, p) = (cos θ + i sin θ), for all p ∈ (0,∞) if and only if

a = b,
(cf4) M(a, b, p) = M(b, a, p),
(cff) M(a, b, p+ s) ≥M(a, c, p) ∗M(c, b, s),
(cf6) M(a, b, p) : (0,∞)→ rs(cos θ + i sin θ) is continuous,
( cf7) N(a, b, p) < (cos θ + i sin θ),
(cf8) N(a, b, p) = 0, for all p ∈ (0,∞) if and only if a = b,
(cf9) N(a, b, p) = N(b, a, p),
( cf10) N(a, b, p+ s) ≤ N(a, c, p) �N(c, b, s),
(cf11) N(a, b, p) : (0,∞)→ rs(cos θ + i sin θ) is continuous,
The pair (M, N) is called a Complex Valued Intuitionistic Fuzzy Met-

ric Space. The functions M(a, b, p) and N(a, b, p) denotes the degree of
nearness and non-nearness between a and b with respect to t. It is noted
that if we take θ = 0, then complex valued intuitionistic fuzzy metric
simply goes to real valued intuitionistic fuzzy metric.

3. Main Result

Theorem 3.1. Let ( X,M,N, ∗, � ) be a Complex Valued Intuition-
istic Fuzzy Metric Space with limt→∞M(a, b, p) = (cos θ + i sin θ) and
limt→∞N(a, b, p) = 0, for all a, b ∈ X, p > 0 and let A and B be self
mappings on X. If there exists d ∈ (0, 1) such tha M(Aa,Bb, dp) ≥
M(a, b, p) and N(Aa,Bb, dp) ≤ N(a, b, p) for all a, b ∈ X and for all
p > 0, . . . . . . ..(3.1) then A and B have a unique common fixed point in
X.

Proof. Let a0 ∈ X be an arbitrary point and we define the sequence
{an} by a2n+1 = Aa2n and a2n+2 = Ba2n+1;n = 0, 1, 2, . . . Now, for
d ∈ (0, 1) and for all p > 0, then from (3.1) we have

M (a2n+1, a2n+2, dp) = M (Aa2n, Ba2n+1, dp) ≥M (a2n, a2n+1, p),
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M (a2n, a2n+1, dp) = M (Aa2n−1, Ba2n, dp) ≥M (a2n−1, a2n, p),
and
N (a2n+1, a2n+2, dp) = N (Aa2n, Ba2n+1, dp) ≤ N (a2n, a2n+1, p),
N (a2n, a2n+1, dp) = N (Aa2n−1, Ba2n, dp) ≤ N (a2n−1, a2n, p).

In general, we have M (an+1, an+2, dp) ≥M (an, an+1, p) and
N (an+1, an+2, dp) ≤ N (an, an+1, p) for for all p > 0 and d ∈ (0, 1);n =

0, 1, 2, . . ...but {an} be a sequence in a complex valued intuitionistic
fuzzy metric space ( X,M,N, ∗, �), with limp→∞M(a, b, p) = cos θ +
i sin θ and limp→∞N(a, b, p) = 0,∀a, b ∈ X. If limp→0N(a, b, p) = 0,
there exists d ∈ (0, 1) such that M (an+1, an+2, dp) > M (an, an+1, p)
and N (an+1, an+2, dp) 6 (an, an+1p), for all p > 0 , then {an} is a
cauchy sequence in X.Since X is Complete then there exist V ∈ X such
that an → v as n → ∞ and {a2n} and 〈a2n+1} are subsequences of the
same point v ∈ X, i.e. a2n → v, a2n+1 → v, as n → ∞. Now from eq

(1) we have, M(Av, v, dp) = M
(
Av, v, dp2 + dp

2

)
>M

(
Au, a2n+2

dp

2

)
∗M

(
a2n+2, v,

dp

2

)
= M

(
Au,Ba2n+1,

dp

2

)
∗M

(
a2n+2, v,

dp

2

)
>M

(
v, a2n+1,

p

2

)
∗M

(
a2n+2, v,

dp

2

)

N(Av, v, dp) = N

(
Av, v,

dp

2
+
dp

2

)
≤ N

(
Av, a2n+2,

dp

2

)
�N

(
a2n+2, v,

dp

2

)
= N

(
Av,Ba2n+1,

dp

2

)
�N

(
q2n+2, v,

dp

2

)
≤ N

(
v, a2n+1,

p

2

)
�
(
a2n+2, v,

dp

2

)
On taking limit n→∞

M(Av, v, dp) > (cos θ + i sin θ) ∗ (cos θ + i sin θ)

= cos θ + i sin θ
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N(Av, v, dp) 6 0 � 0 = 0

so Av = v; Again,

M(Av, v, dp) = M

(
v, Bv,

dp

2
+
dp

2

)
>M

(
v, a2n+1,

dp

2

)
∗M

(
a2n+1, Bv,

dp

2

)
= M

(
v, a2n+1,

dp

2

)
∗M

(
Aa2n, Bv,

dp

2

)
>M

(
v, a2n+1,

p

2

)
∗M

(
a2n, v,

p

2

)
N(Av, v, dp) = N

(
v, Bv,

dp

2
+
dp

2

)
≤ N

(
v, a2n+1,

dp

2

)
�N

(
a2n+1, Bv,

dp

2

)
= N

(
v, a2n+1,

dp

2

)
�N

(
Aa2n, Bv,

dp

2

)
≤ N

(
v, a2n+1,

p

2

)
�N

(
a2n, v,

p

2

)
On taking limit n→∞

M(Av, v, dp) > (cos θ + i sin θ) ∗ (cos θ + i sin θ)

= cos θ + i sin θ

N(Av, v, dp) 6 0 � 0 = 0

so Bv = v, and Av = Bv = v. Hence v is a common fixed point of A
and B. For uniqueness let c be any another fixed point of A and B. Now
from (1),
M(v, c, dp) = M(Av,Bc, dp) ≥M(v, c, p) andN(v, c, dp) = N(Av,Bc, dp) ≤

N(v, c, p).
we know that when (X,M,N, ∗, �) be a complex valued intuition-

istic fuzzy metric space such that limp→∞M(a, b, p) = cos θ + i sin θ
and limp→∞N(a, b, p) = 0,∀a, b ∈ X. If M(a, b, dp) ≥ M(a, b, p) and
N(a, b, dp) ≤ N(a, b, p) for some 0 < d < 1, for all a, b ∈ X, p ∈ (0,∞),
then a = b. Hence v = c
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