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GENERALIZATIONS OF PRIME SUBMODULES OVER
NON-COMMUTATIVE RINGS

EMEL ASLANKARAYIGIT UGURLU

ABSTRACT. Throughout this paper, R is an associative ring (not
necessarily commutative) with identity and M is a right R-module
with unitary. In this paper, we introduce a new concept of ¢-
prime submodule over an associative ring with identity. Thus we
define the concept as following: Assume that S(M) is the set of
all submodules of M and ¢ : S(M) — S(M) U {0} is a function.
For every Y € S(M) and ideal I of R, a proper submodule X of
M is called ¢-prime, if YI C X and YI ¢ ¢(X), then Y C X
or I C (X :g M). Then we examine the properties of ¢-prime
submodules and characterize it when M is a multiplication module.
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1. INTRODUCTION

Throughout this paper, R is an associative ring (unless otherwise
stated, not necessarily commutative) with identity and M is a right R-
module with unitary. Suppose that M is an R-module, S(M) and S(R)
are the set of all submodules of M, the set of all ideals of R, respectively.
For an ideal A of R, we denote the set {t € M : tA C X} as (X ) A).
One clearly proves that (X :py A) € S(M) and X C (X :py A). Also,
for two subsets X and Y of M, the subset {r € R: Xr C Y} of R is
denoted by (Y :g X). If Y is a submodule of M, then it is obviously
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proved that for any subset X of M, the set (Y :p X) is a right ideal
of R. It is obtained (Y :g X) is an ideal of R for XY € S(M), see
[15]. Thus, clearly one can see that (X :p M) is an ideal of R, for all

X e S(M).
A proper ideal A of a commutative ring R is prime if whenever a1, as €
R with ajas € A, then a; € A or ag € A, [7]. In 2003, the authors [3]

said that if whenever a1,a9 € R with Og # a1a2 € A, then a1 € A or
az € A, a proper ideal A of a commutative ring R is weakly prime. In
[9], Bhatwadekar and Sharma defined a proper ideal A of an integral
domain R as almost prime (resp. n-almost prime) if for aj,a; € R
with ajas € A — A2, (vesp. ajaz € A — A" n > 3) then a; € A or
az € A. This definition can be made for any commutative ring R.
Later, Anderson and Batanieh [2] introduced a concept which covers
all the previous definitions in a commutative ring R as following: Let
¢ : S(R) — S(R)U{0} be a function. A proper ideal A of a commutative
ring R is called ¢-prime if for aj,as € R with ajas € A — ¢(A), then
a1 € Aorag € A.

The notion of the prime ideal in a commutative ring R is extended
to modules by several studies, [10, 12, 13]. For a commutative ring R,
a proper X € S(M) is said to be prime [1], if ma € X, then m € X or

€ (X :g M), for a € R and m € M. In [(], the authors introduced
weakly prime submodules over a commutative ring R as following: A
proper submodule X of M is called weakly prime if forr € Rand m € M
with 0ps # mr € X, then m € X or r € (X :g M). Then, N. Zamani
[16] introduced the concept of ¢-prime submodules over a commutative
ring R as following: Let ¢ : S(M) — S(M) U {0} be a function. A
proper submodule X of an R-module M is said to be ¢-prime if r € R,
m € M with mr € X —¢(X), then m € X or r € (X :g M). He defined
the map ¢, : S(M) — S(M) U {0} as follows:

(1) ¢p : ¢(X) = 0 defines prime submodules.

(2) ¢0: ¢(X)={0n} defines weakly prime submodules.

(3) @2 : ¢(X) = X(X :g M) defines almost prime submodules.

(4) ¢n: ¢(X) = X(X :g M)"! defines n-almost prime submodules
(n>2)

(5) ¢w @ (X)) =N X (X :gp M)™ defines w-prime submodules.

(6) qbl : qS(X) X defines any submodule.

On the other hand, in [8], P. Karimi Beiranvand and R. Beyranvand
introduced the almost prime and weakly prime submodules over R (not
necessarily commutative) as following: A proper submodule X of an
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R-module M is called almost prime, for any ideal I of R and any sub-
module Y of M, if YI C X and YI ¢ X(X :g M), then Y C X or
I C (X :g M). Also, X is called weakly prime, for any ideal I of R and
any submodule X of M, if0p; # YI C X, thenY C X or I C (X :g M).
In the mentioned study, they obtain some important results on the two
submodules over R.

In any non-commutative ring, T. Y. Lam [I 1] proved that an ideal A
of R is a prime ideal (i.e., for two ideals I;, I of R, I;Io C A implies
I CAorly CA) <« for aj,as € R, ajaz € A implies a; € A or
az € A. Similarly, for any module over any mon-commutative ring, J.
Dauns [10] showed that for M over R, a proper X € S(M) is prime (i.e.,
if mRa C X, then m € X ora € (X :g M), for a € R and m € M)
<= for an ideal A of R and for a submodule Y of M, YA C X implies
YCXorAC (X :gM).

Moreover, note that in commutative ring theory, we know that there
is a relation between prime ideals and multiplicatively closed sets. Simi-
larly, in non-commutative ring theory, there is a relation between prime
ideals and m-system sets. In [11], one can see that if for all z,y € S, there
exists a € R with zay € S, then ) # S C R is called an m-system. Also,
T.Y. Lam [11] defined the radical of an ideal A of R as: VA= {s € R:
every m-system containing s meets A} C {s € R : s" € A for some
n > 1}. Then he proved that VA equals the intersection of all prime
ideals containing A and v/A is an ideal, see, (10.7) Theorem in [11].

Our aim in this paper, similar to [3], to introduce the concept of ¢-
prime submodule over an associative ring (not necessarily commutative)
with identity. For this purpose, we define a ¢-prime submodules over
R. In Section 2, after the introducing of ¢-prime submodules over R, in
Theorem 2.5, we characterize a ¢-prime submodule. Then with Theo-
rem 2.6, we give another equivalent definitions for ¢-prime submodule.
Also, in the section some properties of the submodules are examined.
In Theorem 2.17, another characterization of ¢-prime submodule is ob-
tained. In Section 3, after a reminder about multiplication module, it
is shown that X is ¢-prime <= Y1Y> C X and Y1Ys € ¢(X) implies
Y1 € X or Yy C X, for Y1, Yo € S(M), see Corollary 3.2. Moreover,
in Theorem 3.3, for a multiplication module, under some conditions we
prove that X is ¢-prime in M <= (X :g M) is a ¢-prime ideal in R. In
Section 4, with Definition 4.1, we introduce a new concept which is called
¢-m-system. Then we show that in Proposition 4.2, for X € S(M), X
is ¢-prime <= S = M — X is a ¢-m-system. Also, we examine some
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properties of the ¢-m-system. Finally, with Definition 4.6, we introduce
the radical of Y as VY := {x € M : every ¢-m-system S containing
x such that ¢(Y) = ¢(< S¢ >) meets Y}, otherwise Y := M, where
S¢ = M — S. As a final result, for the set Q := {X; € S(M) : X; is
¢-prime with Y C X; and ¢(Y) = ¢(Xj;), for i € A }, it is obtained that

VY = () X;, see Theorem 4.7.
X, eQ

2. PROPERTIES OF ¢—PRIME SUBMODULES

Throughout our study, assume that ¢ : S(M) — S(M) U {0} is a
function.

Definition 2.1. Forevery Y € S(M)and I € S(R), a proper X € S(M)
is said to be ¢-prime, if YI C X and YI ¢ ¢(X), then Y C X or
I C (X :g M). We defined the map ¢, : S(M) — S(M) U {0} as
follows:

(1) ¢y : ¢(X) = 0 defines prime submodules.

(2) ¢0: ¢(X)={0n} defines weakly prime submodules.

(3) @2 : ¢(X) = X(X :gr M) defines almost prime submodules.

(4) ¢n: ¢(X) = X (X :g M)"! defines n-almost prime submodules(n >

(5) ¢w @ (X)) =N, X (X :gp M)™ defines w-prime submodules.
(6) ¢1: ¢(X) = X defines any submodule.

In the above definition, if we consider ¢ : S(R) — S(R) U {0}, we
obtain the concept of ¢-prime ideal in an associative ring (not necessarily
commutative) with identity as following: For every I, J € S(R), a proper
A € S(R) is said to be ¢-prime, if IJ C A and IJ ¢ ¢(A), then I C A
or J C A. For commutative case, this definition is equivalent to the
definition of ¢-prime ideal in a commutative ring, see the Theorem 13
in [2].

Notice that since X — ¢(X) = X — (X N ¢(X)), for any submodule
X of M, without loss of generality, suppose ¢(X) C X. Let v, s :
S(M) — S(M) U {0} be two functions, if ¢1(X) C 1s(X) for each
X € S(M), we denote ¢ < 9. Thus clearly, we have the following
order: ¢p < o < ¢y < ooo < Ppg1 < O < oo < P2 < ¢p1. Whenever
1 < o, any Yp-prime submodule is io-prime.
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Ezample 2.2. Let p and ¢ be two prime numbers. Consider Z—module
Zipq- The zero submodule is ¢g—prime, but it is not ¢g—prime. Moreover,
in Z—module Z,2, the submodule q2qu2 is ¢po—prime. However, since
q2quz(q22pqz 7 Lipg2) = 7

Example 2.3. Let M be an R-module.

(1) The zero submodule of R is both ¢o—prime submodule and
¢2—prime submodule, on the other hand it may not be ¢y—prime.

(2) If M is a prime R-module and N be a proper submodule of M.
Then N is ¢p—prime if and only if ¢9—prime.

(3) Let M be a homogeneous semisimple R-module and N be a
proper submodule of M. Then since every proper submodule is
prime, hence N is prime, so is ¢—prime.

Ezample 2.4. (Example 2.2 (f) in [8])Let M = S16S2, which S1, Se are
simple R-module such that S; 2 S9 and N be a proper submodule of
M. Then since every non-zero proper submodule is prime, then N is
prime, so is ¢—prime. Indeed, assume that 0y # X € S(M) is proper
and YI C X where Y € S(M) and I € S(R). By Proposition 9.4 in [5],
we have M/X = S; or M/X = Sy. Then (Y + X)/X)I = 0pr and as
(Y +X)/X € S(M/X) and M/X is simple, we get (Y + X)/X = 0y
or Ann((Y + X)/X) = Ann(M/X). This means that Y + X = X or
(M/X)I = 0pr. Consequently, Y C X or MI C X.

pg?> 1b 1S not ¢g—prime.

Note that for an element a of R, the ideal generated by a in R is
denoted by RaR. Similarly, the right and left ideal generated by a in R
are denoted by aR, Ra, respectively. Also, we denote the ideal generated
by A as < A >, for a subset A of R. For an element z of M, the
submodule generated by = in M is denoted by zR. Finally, for a subset
X of M, we denote the submodule generated by X in M as < X >.

In the following Theorem, we obtain a characterization of a ¢-prime
submodule of M.

Theorem 2.5. For a proper submodule X of M, the followings are
equivalent:

(1) X is a ¢p-prime submodule of M.
(2) Forallme M — X,
(X :gmR)= (X :g M)U (¢(X) :r mR).
(3) Forallme M — X,
(X :gmR) = (X :g M) or (X :g mR) = (¢(X) :r mR).
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Proof. (1) = (2) : Let X be a ¢-prime submodule of M. For all m €
M — X, choose a € (X :g mR) — (¢(X) :g mR). Then (mR)(RaR) C X
and (mR)(RaR) ¢ ¢(X). As X is ¢-prime, one can see mR C X or
RaR C (X :p M). The first option gives us a contradiction. Thus
a € (X :g M). Moreover, as ¢(X) C X, we always have (¢(X) g
mR) C (X :g mR).

(2) = (3) : If an ideal is a union of two ideals, it equals to one of
them.

(3) = (1) : Choose Y € S(M) and an ideal I in R which YI C X
and I ¢ (X :g M), Y ¢ X. Let us prove YI C ¢(X). For all r € I and
m €Y, we have mr € YI C X.

Now, take m € Y — X. Then we have 2 cases:

Case 1: 7 ¢ (X :g M). Since mr € YI C X, one can see (mR)r C
YICX, ie,re (X :gmR). Thus (X :g mR) = (¢(X) :r mR) by our
hypothesis (3). This means r € (¢(X) :r mR), so, mr € ¢p(X).

Case2: 1€ (X:gM). Thusr € IN(X :g M). Choose s € [ — (X :p
M). Thus r +s € I — (X :gp M). Similar to Case 1, since s ¢ (X :g M),
one can see ms € ¢(X). By the same reason, as r + s ¢ (X :g M),
m(r+s) € ¢(X). Since ms € ¢(X), we obtain mr € ¢(X).

Now, let m € Y N X. Since Y ¢ X, there exists m* € Y — X. By
the above observations, m*r € ¢(X) and (m + m*)r € ¢(X) (since
m+m* € Y — X). This implies that mr € ¢(X).

Consequently, for every case we get YI C ¢(X). O

Theorem 2.6. For X € S(M), the items are equivalent:
(1) X is ¢p-prime.
(2) ForV right ideal I in R andY € S(M),

YICX andYI € ¢(X) implies that Y C X or I C (X :g M).
(3) ForV left ideal I of R and Y € S(M),
YICX and YI € ¢(X) implies that Y C X or I C (X :g M).
(4) ForVa € R andY € S(M),

Y(RaR) C X and Y (RaR) ¢ ¢(X) implies that Y C X ora € (X :g M).
(5) ForVYa € R andY € S(M),

Y(aR) C X and Y(aR) € ¢(X) implies that Y C X ora € (X :g M).
(6) ForYa e R andY € S(M),

Y(Ra) C X and Y (Ra) € ¢(X) implies that Y C X ora € (X :g M).
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Proof. (1) = (2) : Suppose that X is ¢-prime. Choose a right ideal I and
YeS(M)withYI C X, YI ¢ ¢(X).Let < I >:={> ria;s;:ri,si € R
and a; € I} be the ideal generated by I. Then as I is a right ideal, one
easily has that Y < I >C YT C X. Moreover, Y < I >¢ ¢(X). Indeed,
ifY <I>C¢(X),thenYI CY <1 >C ¢(X), a contradiction. Thus,
since X is ¢-prime, Y < I >C X and Y < I >¢ ¢(X), we have Y C X
or <I>C(X:gM),s0l C(X:gM).

(2) = (3) : Choose a left ideal I and Y € S(M) with YI C X,
YT ¢ ¢(X). Let consider again the ideal < I > of R. Then since YT C
X and [ is a left ideal, one can see that Y < I >C X. Moreover,
let us prove Y < I >¢Z ¢(X). Asumme that ¥ < I >C ¢(X), then
YICY <1 >C ¢(X), a contradiction. Thus, since < I > is an ideal
(so right ideal) by (2), we obtain ¥ C X or < I >C (X :g M), so
1C (X g M)

(3) = (4) : Let a € R and Y be a submodule of M such that
Y(RaR) C X and Y(RaR) ¢ ¢(X).SinceY =YR,Y(RaR) = YR(aR) =
Y(Ra) C X and Y(Ra) ¢ ¢(X). Since Ra is a left ideal, by (3), one
cansee Y C X or RaC (X :g M). ThusY C X ora € (X :g M).

(4) = (5) : Assume a € R and Y € S(M) with Y(aR) C X and
Y(aR) ¢ #(X). Then we see Y(aR) = YR(aR) C X and YR(aR) ¢
#(X). By (4), one obtains Y C X or a € (X :g M).

(5) = (6) : Let a € Rand Y € S(M) with Y(Ra) C X, Y(Ra) ¢
¢(X). Thus Ya C X and Ya € ¢(X). Then we see Y(aR) C X and
Y(aR) ¢ ¢(X). Thus by (5), Y C X or a € (X :g M).

(6) = (1) : Suppose that (6) satisfies. By the help of (1) < (2) in
Theorem 2.5, let us prove that for all m € M — X, one has (X :g mR) =
(X :g M)U(¢(X) :r mR). Let a € (X :g mR). Then we see mRa C X.
If mRa C ¢(X), one gets a € (¢(X) :r mR). If mRa ¢ ¢(X), this
implies that (mR)(Ra) € ¢(X). Thus we have mRa = (mR)(Ra) C X
and (mR)(Ra) ¢ ¢#(X). Then by (6), mR C X or a € (X g M).
The first option gives us a contradiction with m € M — X. Then a €
(X :p M). Thus (X :zp mR) C (X :zp M) U (¢(X) :r mR). Since
the other containment always satisfies, we have (X :g mR) = (X g
M) U (¢(X) :g mR). Therefore, X is a ¢-prime submodule of M. O

Theorem 2.7. If X is a ¢-prime submodule such that X(X :g M) ¢
d(X), then X is prime.

Proof. Assume that I is an ideal of R and Y is a submodule of M such
that YI C X. Then we have 2 cases:
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Case1: YI € ¢(X). As X is ¢-prime, we get Y C X or I C (X :p M).
So, it is done.

Case 2: YI C ¢(X). In this case, we may assume XI C ¢(X)------ (1).
Indeed, if XT ¢ ¢(X), then there is an m € X such that mI ¢ ¢(X
Then we obtain (Y+mR)I C X —¢(X). As X is ¢-prime, Y+mR C X or
IC(X:gpM).So,Y CXorlIC(X:gpM).Moreover, we may suppose
Y (X :g M) CH(X)---- (2). Indeed, if Y(X :g M) € ¢(X), there exists
ana € (X :p M) with Ya ¢ ¢(X). Then we have Y (I + RaR) C X and
Y(I+RaR) ¢ ¢(X). Since X is ¢-prime, Y C X or I+ RaR C (X :p M).
Therefore, Y C X or I C (X :g M).

As X(X :g M) ¢ ¢(X), one can see that there are b € (X :g M)
and x € X such that b ¢ ¢(X). Then by (1) and (2), we obtain
(Y+aR)(I+RbR) C X and (Y +aR)(I+ RbR) € ¢(X). By the help of
the hypothesis, Y+ 2R C X or I + RbR C (X :g M). Then one obtains
YCXorlC(X:gM). O

Corollary 2.8. If X is a weakly prime submodule with X(X :g M) #
Opr, then X is prime.

Proof. In Theorem 2.7, set ¢ = ¢y. O

Corollary 2.9. If X is a ¢-prime submodule such that $(X) C X(X :r
M)?, then X is ¢o-prime.

Proof. Assume that YI C X and YI € N2, X (X :g M)?, for some Y €
S(M) and ideal I of R. If X is prime, we are done. So, suppose X is not
prime. Then Theorem 2.7 implies X (X :g M) C ¢(X) C X(X g M)?
C X(X g M), ie., X(X :p M) = ¢(X) = X(X :g M) Thus, we
obtain ¢(X) = NX, X (X :g M)", for every i > 1. As X is ¢ -prime,
Y C X orIC(X:gM). Consequently, we obtain X is ¢,-prime. [

Note that a submodule X of M is called radical if /(X :g M) =
(X :g M).
Corollary 2.10. Let X be a ¢p-prime submodule of M. Then
(1) Either (X :r M) C \/(¢(X) :r M) or \/(¢(X) :r M) C (X g
M).
(2) If (X RM V(o(X) :r M), X is not prime.
) If /(& RM X :r M), X is prime.

( ) Ifo(X ) is a radical . submodule then either (X :p M) = (¢(X) :r
M) or X is prime.
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Proof. Suppose X is ¢-prime.

(1) Assume that X is prime. Then (X :p M) is a prime ideal of
R, see [10]. As ¢(X) C X, we see (¢(X) :r M) C (X :r M),
s0 \/(¢(X):r M) C \/(X:g M) = (X :g M). Now assume
that X is not prime. By Theorem 2.7, one see X (X :p M) C
¢(X). This implies that /(X :g M)2 C /(X(X :r M) :g M) C
V(¢(X) :r M). Hence (X :p M) C /(X :g M) = /(X :r M)2 C

(¢(X) :r M).

(2) Suppose (X :g M) C /(¢p(X) :r M).If X is prime, 1/ (¢(X) :r M) C
V(X g M) = (X :g M), ie., a contradiction. So, X is not
prime.

(3) Let /(¢(X):r M) € (X :g M). If X is not prime, by the
help of Theorem 2.7, we get X (X :g M) C ¢(X). Then one see
\/(X ‘R M)2 - \/(X(X ‘R M) ‘R M) - \/((Z)(X) ‘R M) Hence,
since /(X :r M)2 = /(X :rg M), (X :g M) C \/(¢(X) :r M),
i.e., a contradiction.

(4) Let ¢(X) be a radical submodule. Suppose that X is not prime.
By the argument in the proof of (1), (X :g M) C \/(¢(X) :r M).
Then since ¢(X) is a radical submodule, we see that (X :g M) C

(¢(X) :r M) = (¢(X) :r M). As the other containment is al-
ways hold, (X :r M) = (¢(X) :r M).

O
Remark 2.11. Assume that X € S(M).
(1) If X is ¢-prime but not prime such that ¢(X) C X(X :p M),
then ¢(X) = X(X :g M). In particular, if X is not prime and
X is weakly prime, then X (X :p M) = 0py.
(2) If X is ¢-prime but not prime such that ¢(X) C X(X :g M)?,
then ¢(X) = X (X :g M)2. In particular, if X is not prime and
X is ¢o-prime, then X (X :g M) = X (X :g M)2.

Now, for Y € S(M), let us define ¢y : S(M/Y) — S(M/Y) U {0}
by ¢y (X/Y) = (¢(X) +Y)/Y, for every X € S(M) with Y C X (and
Py (X/Y) =0 if ¢(X) = 0).

Theorem 2.12. Let X,Y € S(M) be proper with Y C X. Then we have

(1) If X is a ¢-prime submodule of M, then X/Y is a ¢y-prime
submodule of MY .
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(2) If Y C ¢(X) and X/Y is a ¢y-prime submodule of MY, then
X is a ¢-prime submodule of M.

(3) If (X) CY and X is ¢-prime, then X/Y is weakly prime.

(4) If p(Y) C ¢(X), Y is ¢p-prime and X/Y is weakly prime, then
X is ¢-prime.

Proof. Let X,Y € S(M) be proper with Y C X.

(1) : Assume I € S(R) and Z/Y is a submodule of M/Y with
(Z/)Y)I C X)Y and (Z/Y)I € ¢y(X/Y). Then clearly, (Z/Y)I =
ZI+Y/Y and ZI C ZI +Y C X. Moreover ZI ¢ ¢(X). Indeed, if
ZI C ¢(X), then one can see (ZI+Y)/Y C (¢(X)+Y)/Y = ¢y (X/Y),
so (Z/Y)I C ¢y (X/Y), i.e., a contradiction. Since X is ¢-prime, we see
I C (X :gM)or Z C X. Then one obtains I C (X :g M) = (X/Y :p
MJ/Y)or Z)Y C X)Y.

(2) : Suppose that [ is an ideal of R and Z is a submodule of M
such that ZI C X and ZI ¢ ¢(X). Then ZI + Y)Y = (Z/Y)I C
X/Y. Moreover, (Z/Y)I € ¢y(X/Y). Indeed, if (Z/Y)I C ¢y (X/Y) =
(Pp(X)+Y)/Y,as Y C ¢(X) we have ZI +Y/Y C ¢(X)/Y, ie.,, ZI C
#(X), a contradiction. Since X/Y is a ¢y-prime submodule of M/Y,
one can see I C (X/Y :g M/Y) or Z/Y C X/Y. This implies that
IC(X:gM)or Z CX.

(3) : Assume that I € S(R) and Z/Y is a submodule of M/Y with
Onyy # (Z/Y)I € X/Y. Clearly, we have Y C ZI C X. Then since
H(X) CY, wesee ZI & $(X). As X is ¢-prime, I C (X :g M) or
Z C X. This implies I C (X/Y :g M/Y)or Z/Y C X/Y.

(4) : Suppose that ¢(Y) C ¢(X), Y is ¢-prime and X/Y is weakly
prime. Choose Z € S(M) and an ideal I of R which ZI C X, ZI ¢
#(X). Then since ¢(Y) C ¢(X) and ZI € ¢(X), we have ZI ¢ ¢(Y).
Then one can see 2 cases :

Case 1: ZI CY. AsY is ¢-prime, I C (Y :g M) or Z C Y. Since
Y C X, we have I C (X :g M) or Z C X, so it is done.

Case 2: ZI €Y. Then 0yy)y # ZI+Y/Y = (Z/Y)I C X/Y. Since
X/Y is weakly prime, I C (X/Y :g M/Y) or Z/Y C X/Y. Thus, we
obtain I C (X :g M) or Z C X. O

Corollary 2.13. For a proper X € S(M), X is ¢-prime in M <~
X/p(X) is weakly prime in M/p(X).

Proof. =>: By (3) of Theorem 2.12.
<=: By (2) of Theorem 2.12. O
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Note that we say M is a torsion-free module if (0p; :g m) = Og, for
all 0py £ m € M.

Theorem 2.14. Let M be torsion-free and 0py = m € M. Then mR s
prime <= mR is almost prime.

Proof. =: Obvious.

<=: Assume that mR is not prime. Then there are a € R, x €
M with a ¢ (mR :gp M), x ¢ mR, also tRa C mR. Then we have
(xR)(RaR) € mR and the following 2 cases:

Case 1 : (zR)(RaR) € mR(mR :p M) = ¢2(mR). Since a ¢ (mR :g
M), x ¢ mR, one gets (RaR) ¢ (mR :g M) and (zR) € mR. Thus we
obtain that mR is not almost prime.

Case 2 : (zR)(RaR) C mR(mR :p M) = ¢a(mR). Then we have
za € mR(mR :p M). Moreover, as xtRa C mR, we have (x+m)a € mR
and z+m ¢ mR. Then (tR+mR)(RaR) C mR. If (tR+mR)(RaR) ¢
mR(mR g M), as a ¢ (mR :g M) and z + m ¢ mR, one can see
mR is not almost prime. If (zR + mR)(RaR) C mR(mR :r M), then
(x4+m)a € mR(mR :gr M). Then, by the assumption in Case 2, we have
za € mR(mR :g M), so, ma € mR(mR :p M). Hence there exist an
element b € (mR :gp M) and r € R such that ma = (mr)b. This implies
that a —rb € (Ops :g m) = Og, i.e., a =7rb € (mR :g M). So, we obtain
a contradiction with a ¢ (mR :gr M). Consequently, in every case mR
is not almost prime. O

Theorem 2.15. Let Op # a € R such that (Opr :pr a) € Ma and
a(Ma :p M) = (Ma :g M)a. Thus Ma is prime <= Ma is almost
prime.

Proof. =: It is obvious.

<=: Suppose that Ma is almost prime. Let b € R, m € M with
mRb C Ma. We prove that m € Ma or b € (Ma :g M). Then one can
see clearly, (mR)(RbR) C Ma. Now, we get 2 cases:

Case 1 : (mR)(RbR) € Ma(Ma :g M) = ¢2(Ma). Since Ma is
almost prime, we have mR C Ma or RbR C (Ma :gr M). So, m € Ma
orbe (Ma:gp M).

Case 2 : (mR)(RbR) C Ma(Ma :r M) = ¢2(Ma). As mb € Ma, one
gets m(b+a) € Ma. Then (mR)(RbR + RaR) C Ma. If (mR)(RbR +
RaR) ¢ Ma(Ma :gr M), as Ma is almost prime, mR C Ma or RbR +
RaR C (Ma :p M). Thus, one can see mR C Ma or RbR C (Ma :g
M). Therefore, it is done. If (mR)(RbR + RaR) C Ma(Ma :r M),
then (mR)(RaR) C Ma(Ma :r M) = M(Ma :g M)a. Thus ma €
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M(Ma :g M)a. Then, one has n € M(Ma :g M) with ma = na. Hence
m—n € (Op a7 a) € Ma. This implies m € M(Ma :g M) + (Op :ps
a) € Ma. O

Corollary 2.16. Let M be torsion-free and a € R such that a(Ma :g
M) = (Ma:g M)a. Thus Ma is prime <= Ma is almost prime.

Proof. By Theorem 2.15, it is clear. U

Theorem 2.17. Let X be a proper submodule of M. Then the followings
are equivalent:

(1) X is a ¢-prime submodule of M.

(2) For all ideal I of R with I ¢ (X :g M), then
(X i I) =X U(H(X) s I).

(3) For all ideal I of R with I ¢ (X :g M), then
Xy =X or (X i I)=(¢(X) :p I).

Proof. Choose X € S(M).

(1) = (2) : Assume X is ¢-prime. Choose an ideal I which I ¢ (X :g
M). Then one can see X C (X :p I) and (¢(X) :pr I) C (X :p 1),
so X U (¢(X) :pmr I) € (X :ar I). For the other containment, since
(X :p I)I C X, and one gets 2 cases:

Case 1: (X :p I)I € ¢(X). Then since (X :pr I)I € X and X is
¢-prime, I C (X :g M) or (X :pr I) € X. As the first option gives us a
contradiction, it must be (X :py I) C X.

Case 2: (X a7 I)I C ¢(X). Then we obtain (X :pr I) C (¢(X) :ar 1),
so it is done.

(2) = (3) : If a submodule is a union of two submodules, it equals
to one of them.

(3) = (1) : Choose an ideal I in R, Y € S(M) with YI C X,
YI ¢ ¢(X). If I C (X :g M), it is done. Suppose I ¢ (X :p M).
Then by (3), one can see (X :py I) = X or (X ) = (¢(X) i I).
If (X ;i I) = X, since YI C X, we have Y C (X :py I) = X. So,
we are done. If (X 0y I) = (¢(X) :m 1), as YI € ¢(X), we have
Y & (¢(X) :p I) = (X i I), a contradiction with YT C X. O

Proposition 2.18. Let X be a proper submodule of M and I be an
ideal of R such that MI # XI and XI # X. Then Y = XI is a ¢-
prime submodule of M if and only if Y = ¢(Y).

Proof. <=: Let Y = ¢(Y'). Then obviously Y is ¢-prime.
—: Suppose that Y = X[ is a ¢-prime submodule. Let us consider
Theorem 2.17. Now, we have 2 cases:
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Case1: I ¢ (Y :g M). By Theorem 2.17, one obtains (Y :ps I) =
or (Y I)=(p(Y):pms I). If (Y ipr I) =Y, we have X C (Y i I) =
(XI:pqI) =Y = XI,ie, X = XI, a contradiction. If (Y :ps I)
(p(Y):pp I),as X C (Y iy I), weseeY =XIC (Y iy DI = (oY) :ps
NIC¢(Y),s0Y C¢(Y). Then one obtains ¢(Y) =Y. So it is done.

Case 2 : I C (Y :g M). Then MI C Y = XI, so MI = XI, a
contradiction. O

>.<

Corollary 2.19. Let X be a proper submodule of M and I be an ideal
of R such that MI™ # MI"! for somen > 1. Then Y = MI" is a
¢-prime submodule of M if and only if Y = ¢(Y).

Proof. Let consider X = MI"!. Then XI = MI" C MI" ' C MI,
i.e., XI # MI. Moreover,Y = XI = MI" # MI" ' = X,ie, XI # X.
Thus, by Proposition 2.18, it is done. O

Proposition 2.20. Let I be a maximal ideal in R. Then MI = M or
MI is ¢p-prime in M.

Proof. Let MI # M. By the proof of Proposition 2.12 in [3], one can
see that M1 is a prime submodule of M. Thus, M1 is ¢-prime. O

Theorem 2.21. Let X be a proper submodule of M. Suppose that i :
S(R) — S(R)U{0} be a function. If X is ¢-prime, then (X :gY) is a
Y-prime ideal of R, for allY € S(M) withY € X and (¢(X) :rY) C
V(X rY)).

Proof. Suppose that X is a ¢-prime submodule of M and Y is a sub-
module of M such that Y ¢ X and (¢(X) :r Y) C ¢((X :g Y)). Let
IJ C(X:gY)and IJ € ¢((X :g Y)) for two ideals I, J of R. Then
(YI)J € X and (YI)J € ¢(X), since (¢(X) :r V) C ¢((X :g Y)).
By our hypothesis, J C (X :g M) or YI C X. If YI C X, ie,
IC(X:pY),itisdone. If J C (X :g M), since (X :g M) C (X :gY),
we see J C (X :g Y). Consequently, (X :gY) is a ¢-prime ideal of
R. O

Corollary 2.22. Let X be a proper submodule of M. Suppose that 1 :
S(R) — S(R) U{0} be a function with (¢(X):g M) C (X :g M)). If
X is a ¢-prime submodule of M, then (X :r M) is a ¥-prime ideal of
R.

Proof. Set Y = M in Theorem 2.21. O
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3. gb—PRIME SUBMODULES IN MULTIPLICATION MODULES

Note that, an R-module M is called a multiplication module if there is
an ideal I of R such that X = M1, for all X € S(M), see [15]. Also, in a
multiplication module, one can see X = M (X :g M), for all X € S(M),
see [15].

Let X and Y be two submodules of a multiplication R-module M
with X = M(X :g M) and Y = M(Y :g M). The product of X and Y
is denoted by XY and it is defined by XY = M (X :g M)(Y :g M). It
is clear that the product is well-defined.

Proposition 3.1. Let M be multiplication and X € S(M). Then if X
is ¢-prime, then for Y1, Yo € S(M), Y1Ys C X and Y1Ys € ¢(X) implies
that Y1 C X or Yy C X.

Proof. Let Y1, Ys be any submodule in M with Y1Ys C X and Y1Y5 SZ
¢(X). As M is multiplication, we know that Y7 = M(Y; :g M) and
Y2 = M<Y2 ‘R M) Then Y1Y2 = M(Y1 ‘R M)(YQ ‘R M) g X and
Y1Ys € ¢(X). Since X is ¢-prime, one can see M(Y; :p M) C X or
(Yo :g M) C (X :g M). This implies that Y1 C X or Yo = M(Ys :r
M) C M(X :p M) = X. 0

Note that we say M is a cancellation module if MI = M.J implies
that I = J for two ideals I, J of R. For the definition of a cancellation
module over commutative ring, see [1].

Corollary 3.2. Let M be multiplication and cancellation. For X €
S(M), the statements are equivalent:
(1) X is ¢-prime.
(2) ForYy, Yo € S(M), if V1Yo C X and V1Ys € ¢(X), thenY; C X
or Yy C X.

Proof. (1) = (2) : By Proposition 3.1.

(2) = (1) : Choose an ideal I € S(R), Y € S(M) with Y1 C X and
YI & ¢(X). Since M is multiplication, Y = M (Y :g M). Then we have
MY g M)I=YIC X and YI € ¢(X). Also, as M is multiplication,
MI = M(MI :g M). Then this implies that I = (MI :gr M), since M
is cancellation. Hence Y/(MI) = M(Y :g M)(MI :p M) = M(Y :gr
M)I =Y. So, we have Y(MI) C X and Y (MI) € ¢(X). Then by (2),
one see Y C X or MI C X. This means that Y C X or I C (X :p
M). O
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Theorem 3.3. Let M be a multiplication R-module and X be a proper
submodule of M. Suppose that 1) : S(R) — S(R)U{0} be a function with
(¢(X) :r M) =¢((X :g M)). Then the followings are equivalent:

(1) X is ¢-prime in M.

(2) (X :g M) is a Y-prime ideal in R.

Proof. (1) = (2) : By Corollary 2.22.

(2) = (1) : Assume that (X :g M) is ¢-prime. Choose an ideal
I of R and a submodule Y of M with YI C X and YT ¢ ¢(X). As
M is multiplication, Y MY :g M). Hence M(Y :g M)I C X and
MY :g M)I ¢ ¢(X). Then one gets (Y :g M)I C (X :gp M) and
(¥ 0 A0 & (G0 1m M). Sinee (0) o M) = (X o 300, (F o

I ¢ ¢((X :g M)). By our hypothesis, I C (X :r M) or (Y :g M) C
(X:pM). If I C (X :g M), it is done. If (Y :g M) C (X :g M), as
M is multiplication, one can see Y = M(Y :p M) CMX:gM)=X.
Therefore, X is ¢-prime. O

Recall that if there exists an element s € R with r = rsr, for all r € R,
R is called von-Neumann regular, see [15]. Also, the center of a ring R
is denoted by Center(R).

Lemma 3.4. [3] Assume that M is multiplication, R is a von-Neumann
reqular ring and J C Center(R) is an ideal in R. Then XNMJ = (X :u
J)J, for any submodule X of M.

Lemma 3.5. [3] Assume that M is multiplication, R is a von-Neumann
reqular ring and J C Center(R) is an ideal in R. If for allY,Z € S(M),
YJ C ZJ implies that Y C Z, then (XI :pp J) = (X 0 J)I for
X € S(MJ) and any ideal I of R.

Theorem 3.6. Let M be a multiplication R-module and R be a von-
Neumann reqular ring. Let I C Center(R) be an ideal of R such that
Y1 C ZI implies that Y C Z for all Y, Z € S(M). Let ¢((X :ps I)) =
(p(X) :ar I). Then X € S(MI) is ¢-prime < (X :pp I) € S(M) is
p-prime.

Proof. =>: Assume that X € S(MI) is ¢-prime. Choose an ideal J
of R, Y € S(M) with YJ C (X :py I) and YJ € ¢((X :ps I)). Then
clearly YJI C X. We show that YJI ¢ ¢(X). If YJI C ¢(X), then
YJC(P(X):mr I) = (X :am I)), a contradiction. By I C Center(R),
one can see YJI = YIJ. Hence, YIJ C X and YIJ ¢ ¢(X) implies
YI C X or J C (X :g MI), since X is ¢-prime submodule of MI.
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Moreover, as I C Center(R), we see (X :g MI) = ((X :pr I) :r M). So,
YICXorJC(X:gMI)impliesY C (X :pyI)or JC (X i I) R

<=: Let (X :ps I) be ¢-prime in M for X € S(MI). Choose an ideal
Jof R,Y € S(MI) withYJ C X,YJ ¢ ¢(X). Then we see that (Y :p
NJ=YJ:pmI)C (X :pI) by Lemma 3.5. Now, let us prove (Y :/
INJ € ¢((X :p I)). Indeed, if (Y :pr 1)J C ¢((X :ar 1)) = (¢(X) i 1),
then (Y iy INJI = (Y iy 1)IJ C (¢(X) 1 1)1, as I C Center(R). By
Lemma 3.4, we get Y.J = (Y N MI)J = (Y 2y I)IJ C (6(X) :ag DI =
d(X)NMI = ¢(X), a contradiction. Hence, as (X :p I) is ¢-prime,
one can see (Y 1 I) C (X :pp I) or J € ((X :ar I) :rp M). The first
option gives us Y =Y N MI = (Y =y I)I C (X 1y 1) = XNMI = X,
by Lemma 3.4. The second option means that J C ((X :ps I) :g M) =
(X :p MI), as I C Center(R). Thus we are done. O

4. THE RADICAL OF A SUBMODULE

In the following definition, we shall introduce the concept of ¢-m-
system.

Definition 4.1. () £ .S C M is called a ¢-m-system if (Y1 +Y2) NS # (),
(Yi+MI)NS # 0 and Yol € ¢(< S¢ >), then (Y1 +Y2I)N S # 0 for
VY1,Ys € S(M) and any ideal I of R, where S¢= M — S.

Proposition 4.2. For X € S(M), X is ¢p-prime <= S =M — X is a
¢-m-system.

Proof. =>: Suppose that X is ¢-prime. Choose an ideal I of R and two
submodules Y7, Y2 of M with (Y1 +Y2)NS #0, (Y1 +MI)NS # () and
Yol ¢ ¢(< 5S¢ >), where S¢ = X. We show that (Y7 + Y2I) NS # 0. If
(Y14+Y2I)NS =0, then (Y1+Y2I) C X, since S = M — X. Then one can
see oI C X and Y7 C X. Also, by our hypothesis, YaI € ¢(< S¢>) =
¢(X). Then as X is ¢-prime, we get Yo C X or I C (X :g M). If Yo C X
wesee Y1 +Y, C X, e, (Y1+Y2)NS =0, a contradiction. If I C (X :p
M), then MI C X, sowe get Y1+ MI C X,ie, Y1+ MI)NS=10,a
contradiction. Thus (Y7 + Y2I) NS # 0.

<—=: Let S = M — X be a ¢-m-system. Let Y be a submodule of
M and I be an ideal of R such that YI C X and YI € ¢(X). Suppose
that Y ¢ X and I ¢ (X :g M). Then one can see Y NS # ( and
MINS # (. In the definition of ¢-m-system, consider as Y; = 0, and
Yo =Y. Thensince YNS # 0, MINS # P and YI Z ¢(X) = ¢(5°), we
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obtain YINS = (0 + YI)NS # (), by S is a ¢-m-system. Therefore,
YINS #(, but this contradicts with YI C X. O

Proposition 4.3. For a proper X € S(M), let S == M — X. The
followings are equivalent:

(1) X is a ¢p-prime submodule.

@) F (i +Y2)NS £ 0, MINS # 0 and YaI ¢ $(S°), for all
Y1,Ys € S(M) and any ideal I of R, then (Y1 + Y2I) N S # 0.

(3) [Y2NS#0, MINS # 0 and YaI ¢ 6(S°), for all Ya € S(M)
and any ideal I of R, then YoI NS # ().

Proof. (1) = (2) : Assume that (Y1 +Y2)NS # 0, MINS # 0 and
Yol ¢ ¢(S¢) for all Y1,Ys € S(M) and any ideal I of R. Since X is
a ¢-prime submodule, by Proposition 4.2, we know S = M — X is a
¢-m-system. Also, since MI NS # 0, (Y1 + MI)NS # (). Thus, by the
definition of ¢-m-system, (Y7 + YoI) NS # ().

(2) = (3) : Set Y1 = 0ypy.

(3) = (1) : Suppose that Y € S(M) and I is an ideal of R with
YICX, YIZ HX) Let Y € X and I € (X :g M). Since Y ¢ X,
we have Y NS # 0. Also, as [ € (X :g M), i.e., MI ¢ X, one can see
MINS # 0. Thus, since YNS # 0, MINS # @ and YI € $(X) = ¢(S°),
we obtain YI N S # () by (3). This contradicts with YT C X. Hence we
are done. O

Definition 4.4. For ¢ : S(M) — S(M) U {0},
(1) The function ¢ is called containment preserving, if for any two
submodules X1, X2 € S(M), X1 C X implies ¢(X1) C ¢(X2).
(2) The function ¢ is called sum preserving, if (>  X;) = > ¢(X;),
for all X; € S(M).

Lemma 4.5. Let ¢ be containment preserving. Assume that S C M s
a ¢-m-system and X € S(M) mazimal with respect to X NS =0 and
d(X) = (< S¢>). Then X is a ¢-prime submodule of M.

Proof. Let I be any ideal of R and Y € S(M) such that YI C X
and YI ¢ ¢(X). Let Y € X and I ¢ (X :g M). Then as Y ¢ X,
one can see X C X + Y. We show that (X +Y) NS # 0. Indeed, if
(X4+Y)NS =0, then X +Y C 5% s0o X +Y C< S >. Thus,
B(< §°>) = 6(X) C 6(X + V) C o(< 5 >), Lo H(X + V) = (<
S¢ >). This doesn’t happen because of the properties of X. Also, as
I ¢ (X :g M), ie, MI ¢ X, we have X C X + MI. We show that
(X + MI)N S # 0. Indeed, if (X + MI)N S = 0, then similar the
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above, we obtain ¢(X + M1T) = ¢(< S¢ >), a contradiction. Thus, since
YIZ (X)) =0¢(<S5>),(X+Y)NS#0and (X +MI)NS #0, one
obtains (X +YI)NS # (), by S is a ¢-m-system. Then as YI C X, one
gets X NS # (). This gives us a contradiction. Consequently, one can
seethat Y C X or I C (X :gp M) O

Definition 4.6. Let Y € S(M). If there is a ¢-prime submodule X
contains Y such that ¢(Y) = ¢(X), then we define the radical of Y as :

VY :={x € M : every ¢-m-system S containing x such that ¢(Y) =
$(< S¢ >) meets Y}, otherwise VY := M.

Theorem 4.7. Let ¢ be containment and sum preserving. For Y €
S(M), let Q :={X; € S(M) : X; is ¢p-prime with Y C X; and ¢(Y) =
&(X;), fori e A }. Then we have

X, eQ

Proof. Assume that /Y # M. Choose z € VY and X; € Q. By Propo-
sition 4.2, we know S = M — X; is a ¢-m-system. As SNY = ) and

T € \/}7, we have x ¢ S. Thus =z € X; and so VY C (| X;. For the
X, eQ

other containment, choose y ¢ v/Y. Thus, there is a ¢ -m-system S in
M withy € S, ¢(Y) = ¢(< S¢>) and SNY = (. Let us consider, the
following set :

A = {XZ S 5’(]\4)}/72)(17 SNX; = () and gf)(Xl) :¢(< S >)}

One can see clearly, Y € A,so A # (. Let X1 C X, C---C X, C---bea
chain in A. Then it is easy to see that Y C [JX; and SN(|JX;) = 0. Also,

since ¢ is containment and sum preserving with ¢(X;) = ¢(< S¢ >),
one can see ¢(|JX;) = ¢(< S¢ >). Thus JX; € A. Hence, by Zorn‘s

Lemma, A has a maximal element, say X;,. Then y ¢ X, ,since y € S

and SN X, =0. Thusy ¢ () Xj, so we obtain () X; CVY. O
X, eQ X;€Q
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