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ON L-FUZZY IDEALS OF MULTILATTICES

DAQUIN CEDRIC AWOUAFACK®, PIERRE CAROLE KENGNE
AND CLESTIN LELE

ABSTRACT. For a given multilattice M, the set Jpq of all ideals of
M is a complete lattice and for a given complete lattice £, the set
FI(M, L) of all L-fuzzy ideals of M is also a complete lattice. The
aim of this paper is to characterize L—fuzzy ideals of multilattice
and highlight some of their properties based on the Duality Prin-
ciple. We establish that FZ(M, £) is isomorphic to Hom(£%, 3 )
where £2 is the dual of £. Since multilattices generalize lattices,
the results remain true for £-fuzzy ideals of lattices.
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1. INTRODUCTION

Since the introduction of the notion of fuzzy sets in 1965 by L. A.
Zadeh [12], many works have been done on fuzzy structures. Most of
them deal with the original notion of fuzzy subset. The notion of £—
fuzzy ideal is not new. Following the works of Zadeh [12] several authors
have invested on its conceptualization including Lehmke [6], Malik [¢],
Swamy and Viswanadha Raju [11], Koguep et al. [5] who studied fuzzy
ideals of lattices and semilattices.

The concepts of ordered and algebraic multilattices were introduced
by Benado in [!]. A multilattice is an algebraic structure in which the
restrictions imposed on a lattice, namely the ”existence of least upper
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bounds and greatest lower bounds” are relaxed to the ”existence of min-
imal upper bounds and maximal lower bounds” [3, 9, 10]. Many authors
have investigated the notion of ideals of multilattice. In 2014, I.P. Cabr-
era et al. [3] proposed a definition of a multilattice ideal which is suitable
for homomorphisms and congruences. Then, they proved the set of all
ideals of a multilattice is a lattice with respect to inclusion.

We propose a description of L—fuzzy ideals of multilattices by lat-
tice homomorphisms and highlight some properties based on the duality
principle.

This paper is organized as follows: in Section 2, we recall some pre-
liminary results to understand the paper. Section 3, we study the main
properties of L—fuzzy ideals of multilattice. Section 4, we investigate
some characterizations of L—fuzzy ideals by lattice homorphisms. Let
us recall some definitions and results on lattices and multilattices.

2. PRELIMINARIES AND NOTATIONS

Let P = (P, <) be an ordered set and let () # S C P. An element
x € P is an upper bound of § if s < x for all s € §. A lower bound is
defined dually. The set of all upper bounds of S is denoted by S* and
the set of all lower bounds S*:

St={zreP|(VscS)s<z}and S'={zcP|(VscS)z<s}

A minimal element of S“ is called a multisupremum of S and we
denote by Multisup(S) the set of all multisuprema of S; a maximal
element of S! is a multinfimum of S and we denote by Multinf(S) the
set of all multinfima of S. If Multisup(S) (resp. Multinf(S)) has exactly
on element, it is called sup(S) (resp. inf(S)).

Definition 2.1. [1] A lattice is a triple £ = (L, vV, A) with the following
properties called axioms of lattices.
AL-1 Forallz e L,xVz =z, z ANz =z
AL-2 Forallz,y e L,xVy=yVax, c ANy =y Ax;
AL-3 For all z,y,z € L, (xVy)Vz =zV(yVz), (tAy) Az =xA(yAz);
AL4 Forallz,ye L,z V(x Ay) =z A (zVy) =ux;
AL-5 Forallz,ye Lx <y azVy=y<S Ay =x.
L is said to be a complete lattice if any non-empty subset S of £ has an
infimum and a supremum respectively denoted A S and \/ S.

Definition 2.2. [1] Let £ and K be two lattices. Amap f: L — Kisa
said to be a homomorphism if f is meet-preserving and join-preserving,
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that is :
for all z,y € L, f(x Ay) = f(x) A f(y) and f(zVy) = f(z)V f(y).

A bijective homomorphism is a lattice isomorphism.

We denote by Hom(L, K) the set of all homomorphisms from £ to .
It is not difficult to see that if K is a complete lattice, so is Hom(L, K).

Proposition 2.3. [2] Let E be a non-empty set and let LY = {h :
E — L | hisamappingy. Then, LF is a complete lattice when the
operations are defined pointwise: (fVg)(z) = f(x)Vg(z) and (fAg)(z) =
fx) ng(z).

Proposition 2.4. The lattice LF satisfies exactly the same equations
as L.

Proposition 2.5. [/]

(1) £F is bounded iff L is bounded.
(2) LF is distributive iff L is distributive.

Given any ordered set P = (P,<) we can form a new ordered set
P9 = (P,<9) (the dual of P) by defining:

e Forall z, z € P? iff x € P;
o Forall z,y € P,z <y iff y <? z.

According to Davey [1], to each statement about P there corresponds a
statement about P?. In general, given any statement ® about ordered
sets, we obtain the dual statement ® by replacing each occurrence of
< by > and vice versa. Thus ordered set concepts and results hunt
in pairs. The formal basis of this observation is the Duality Principle
stated below.

Theorem 2.6. [1] Given a statement ® about ordered sets which is true
in all ordered sets, then the dual statement ®° is true in all ordered sets.

Definition 2.7. [3] Let M = (M, <) be a non-empty poset.

(i) M is said to be a multilattice if for all a,b,x € M with a < z
and b < z, there exists z € Multisup(a,b), such that z < z; and,
similarly, for all a,b,x € M with a > z and b > x, there exists
z € Multinf(a,b), such that z > z.

(ii) If Multisup(a,b) and Multinf(a,b) are non-empty for all a,b € M,
then M is said to be a full multilattice.
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Clearly every finite poset is a multilattice but the converse is not true.
When S = {a,b}, we denote respectively by aMb and a Ul b instead
of Multinf({a, b}) and Multisup({a, b}). This gives two hyperoperations
from M? to P*(M). Therefore a multilattice can also be defined as a
triple (M, U, M) with some required properties called axioms of multilat-
tices [9]. In [10] many characterizations are proposed.
AM-1 For all x € M, x Ux ={z}, x N = {z};
AM-2 Forall z,ye M, zUy=ylUzx, xNy=yMNuz;
AM-3 For all z,y,z e M,z <y = (xUy)Uz CzU(yUz), (xMy)Mz C
zM(ymz);
AM-4 For all z,y € M,z U (xNy) =z N (zUy) = {z};
AM-5 Forall z,ye M,z <y < zUy={y} < axNy={z}.
We simply write (M, L, M) instead of (M, L, M, <).
Thus we obtain the following result as a direct consequence of the
Duality Principle.

Proposition 2.8. M = (M,U,nN) iff M? = (M, 1, L).

Ezample 2.9. Consider the poset My = {a;,i = 1,2,...,8} U{L, T}
described by the following diagram.

T

N
==

NP

M

M = (My,U,M) is a full multilattice given by the following antichains:
{a;,1=1,2,3}, {aj: j =4,5,6} and {ax, k = 7,8}.

e a;Ua; ={ay | k=4,5,6}for all i,j € {1,2,3}, i # j;

e a;Ua; ={ay | k="7,8} for all 4,5 € {4,5,6}, i # j;

e a;Ma; ={a; | k=1,2,3} for all i, j € {4,5,6}, i # j;

e a7llag = {ak ‘ ]{7:4,5,6}.
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In the rest of this paper, M = (M, L, ) denotes any multilattce.
We will also use the following standard notations and definitions.
Forae M,la={xeM|zxz<a}and ta={x e M|a<z}
For ACM, | A=Uscalaand T A= Uy T a.
For A,BC M, AUB = U(gpeaxpallband AN B = Uy peaxpallb.
In the rest of this paper, we will refer to multilattices with bottom _L.
Lack of bottom can be easily remedied by adding one as usual. Given
a multilattice M (with or without bottom), we form M (called M
lifted) as follows: Take an element L ¢ M and define < on M U {1}
by z <y iff s = L or x <y in M (some basic operations on posets are
presented in [1]).

Definition 2.10. [3] Let I be a subset of M. I is said to be an ideal of
M if it satisfies the following conditions:

I.1: Foralla € M and forallz € I, alxz C I;

1.2: Forall z,y e I,z Uy C I;

1.3: For all a,b € M, if (aMb)NI#( then afbCI.

The notions of filter and ideal are dual : F'is a filter of M iff F' is an
ideal of M?. Hence, from the properties of ideals given here, one could

deduce those of filters. We assume that the empty set is both an ideal
and a filter of M.

Remark 2.11. Every ideal of a finite multilattice is a downset but the
converse is not true.

In example 2.9, | a5 = {L, a1, a9, as3,as} is a downset but not an ideal.
One could observe that {a1,a2} C| as but a; Uas = {a4,as,a5} € as.

Definition 2.12. Let A be a non-empty subset of M. Then, the smallest
ideal of M containing A is called the ideal generated by A and is denoted
by (A). If A = {x} it is simply denoted by (z).

The set of all ideals of M will be denote by J .
Theorem 2.13. [3] (Taq, ©) is a complete lattice.

The meet of two ideals I and J is the intersection, I AJ = INJ, and
the join is the ideal generated by TU J, IV J = (I U.J).

Remark 2.14. Let x,y, 2,2’ € M. Then, the following assumptions hold:
(1) z € x Uy implies (z) = (z) V (y);
(2) z € My implies (z) C (z) A (y);
(3) 2,2/ € x My implies (z) = (2').
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The inclusion of (2) will be in general strict: in Example 2.9 we have
that a; Mag = {L} but (a1) = (a2) = M.

3. L—fuzzy ideals of a multilattice
We first review some definitions and properties of £L—fuzzy subsets.
Definition 3.1. [7] An L—fuzzy subset of E is a mapping p: F — L.

If £ = (I, max, min) where I is the unit interval [0; 1] of real numbers
then these are the usual fuzzy subsets of E (see [12]).

In the rest of this paper, £ = (L, V, A,0,1) stands for any complete
and bounded lattice.

Definition 3.2. Let u be an £L—fuzzy subset of E. Then, for any « € L,
the set
o ={z € E | p(x) = o}
is called the a—level subset of  or a—cut set of p and the set
Imp = {pu(z) | = € E}
is called the image of u.

In other words, o = u~([a, = [) where [a, = [={l € L |a <1} =1
a C L.

Proposition 3.3. [5] Let u be an L—fuzzy subset of E. Then, the

following assertions hold:
(1) For any x € E, the set [, ={a € L | x € uy} is an ideal of L.
(2) Forallz € E, p(x) =\/{a € L| x € un}
(3) o, B € Imp implies po = pg iff o = B.

Definition 3.4. An L—fuzzy subset p of M is said to be an L—fuzzy
ideal of M if u, is an ideal of M for all o € L.

Ezxzample 3.5. Consider the multilattice of Example 2.9. Then, the
L—fuzzy subset of M defined by u(L) = 1, u(T) = 0 and p(a;) = 0,
i=1,2,...,8 is a 2—fuzzy ideal of M, where 2 := ({0, 1}, max, min).

Remark 3.6. We will denote by FZ(M, L) (resp. FF(M, L)) the set of
all L—fuzzy ideals (resp. L—fuzzy filters) of M.

The set FZ(M, L) is ordered as follows :
p < v if and only if puy C v, forall o € L

It is a complete lattice where the following assumptions hold :
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(1) [p Av](z) > «aif and only if pu(z) > a and v(z) > «
(2) [pVr](z) < aifand only if pu(z) < a and v(z) < «
A charactrization of L—fuzzy ideals is given by Theorem 3.7.

Theorem 3.7. Let u be an L—fuzzy subset of M. Then, u € FL(M, L)
iff the following conditions hold:

FI1: For allx,y e M, z € x My = u(z) () V pu(y
FI2: For allxz,y e M, z € x Uy = u(z) () A p(y
FI3: For allx,y € M, 21,20 € x My = p(z1) = u(z2).

Proof. Let y: M — L and o € Im(u).

Suppose that z € p, and z € a M a such that FI1, FI2 and FI3 hold,
then p(z) > p(x) V p(a) > p(x). Hence, pu(z) > o implies z € pu, that is
alz C pg.

Also, if x,y € po and z € Uy then u(z) > p(z) Auly) > aha = «,
hence z Ly C piq-

Finally, if 2,2’ € x My and z € pq, then p(z) = p(2’) > «, hence
2" € pq. Therefore p, is an ideal of M.

Conversely, suppose that 1o € Jpq for all o € L. Let z,y € M.

For a = pu(y), we have po # (0. Therefore, for any z € x My, pu(z) >
w(@) vV p(y).-

For a = pu(x) A pu(y), we have {x,y} C p, which is an ideal of M.
Thus z Uy C po. This implies pu(z) > p(x) A p(y) for all z € z Uy. If
z,7 € x My, then for « = p(z) and = u(z’), we have z € (zMy) N pq
and 2/ € (zMy) N pg. It follows that x My C pe N pg since p1, and
pp are both ideals of M. Hence 2z’ € po and z € pg. This implies
u() > o = u(z) and pu(z) > B = (=) that is u(z) = (). O

Theorem 3.7 gains in interest if we realize the following remarks.

).
).

> 4
> 4

Lemma 3.8. (1) FI1 is equivalent to: Vx,y e M, x <y = pu(x) >

1(y).

(2) The inequality of FI2 can be replaced by the equality. In fact
z € x Uy implies x < z and y < z. Thus by FI1, we have
u(2) < p(@) A p(y).

(3) If x € M then, x € Al implies u(x) > \/{u(a) | a € A} and
x € A" implies p(z) < A{p(a) | a € A} for all non-empty
subset A of M.

Proof. For (1), let x,y € M such that x < y then z € My (Axiom
AM-5 of multilattices) hence, by FI1, u(x) > pu(x) V p(y) which means
p(x) > u(y). Conversely, let z € x My then z < x and z < y. Hence
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w(z) > p(z) and p(z) > p(y) which gives p(z) > p(x) V u(y) that is FI1
is satisfied.

For (2), it suffices to prove that u(z) < p(z) A u(y) for all z € x U y.
If z€ x Uy then z < z and y < z (Axiom AM-5), thus, by FI1 we have
u(2) < p(x) and pu(z) < p(y)- Tt follows that (=) < p(x) A p(y)

The inequalities of (3) are direct consequences of FI1.

U

Proposition 3.9. Let p be an L—fuzzy ideal of M. Then, the following
assertions hold
(1) If 0 is a filter of L then, 6, = {x € M | p(x) € 6} is an ideal of
M.
(2) If A is a subset of M then, A*¥ ={a € L| AC us} is an ideal
of L.

Proof. For (1), let z,y € M. If y € §, and < y then u(y) € 0 and
p(x) > p(y), since 6 is a filter of £, we have u(z) € §, thus x € 6.

If 2,y € 0, and z € xUy then pu(z) > p(z) Ap(y) and p(z) € 6, p(y) €
0 hence p(x) A p(y) € 6 and then pu(z) € § that is z € ;.

If {2,2'} C oMy with pu(z) € § then (') = p(z) € 6, thus 2’ € J,.
Therefore 9, is an ideal of M.

For (2),let a, 8 € L. If 3 € A* and o < 3 then A C pug and pg C fuq.
Thus, A C p, that is a € A*.

If « € A*, B € A¥ then for all x € A, we have p(z) > « and p(z) > S
that is p(x) > aV 5. Thus A C payvg. Therefore A* is an ideal of £. O

For every subset A C M, set
A" :=U{aNb: (anb)N (L A) #0, a,be M}.
define the sequence A, n € N, recursively as follows:

A=A AW =A* and Vn>1, ACTD =AM A
Lemma 3.10. Let p be an L—fuzzy subset of M. Then, u is an L—fuzzy
ideal of M iff for all finte subset A, = {a;}1'y C M, n € N and for all
keN*, ze AP = p(z) > N{plai), 1 <i<n}.

Proof. Firstly, we assume that u is an £L—fuzzy ideal of M. We proceed

by inference. Let = € A = A’ then there is (a,b) € M? such that z €
(amb) N (J A). Therefore, there exists p € {1,2,..,n} such that u(xz) >

p(ap), but play) > A{p(ai), 1 <i < n}. Hence pu(x) > A{p(ai), 1 <
i < n}forall z e A,(ll). Suppose that it is true for all x € A%k). Let
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Yy € A%’““) = (A;’“) L A;k))*, then there exists ¢ € A%k), d € A%k) and
(a,b) € M? such that y € aMband (aMb) N[} (cUd)] # 0. Let
y € (anb)N[{ (cUd)] then pu(y) = p(y') > p(c) A pu(d) but p(c), p(d) >
N{u(ai), 1 <i<mn}. Hence u(y) > A{u(a;), 1 <i<n}. It follows that
foralln € Nand forall k € N*, z € AP = p(x) > N{p(a;), 1 <i<n}.

Conversely, suppose that u(x) > A{wu(a;), 1 <i<n}forallz € Ag,,k),
neN*and k€ N*. Let x € M and y € M. If z € x My then we have
z € {x}W N {y}V. Thus pu(z) > p(x) v p(y).

If z € Uy, then z € {z,y}® which implies u(z) > p(z) A u(y).

If 2,2/ € aMb for some a,b € M, then 2z € {}(V) and z € {z/}(V).
Hence p(z) > p(z') and p(2') > p(z) that is u(z) = p(z’). Therefore u
is an L—fuzzy ideal of M. O

Since L is a complete lattice, Lemma 3.10 can be extended to any
non-empty subset of M.

Theorem 3.11. Let p be an L—fuzzy ideal of M and let « € L. If
A={x e M| p(z)=a} then, po = (A4).

Proof. As pg is an ideal of M containing A we claim that (A) C puq.
The reverse inclusion holds from Lemma 3.10. g

Let x4 be the characteristic function of a subset A of M.

Corollary 3.12. Let I be a non-empty subset of M. Then, I is an ideal
of M iff x1 is a 2—fuzzy ideal of M.

Theorem 3.13. T,y is isomorphic to the lattice of 2—fuzzy ideals of
M.

Proof. Consider the following mapping x : I — x7. It is not difficult to
observe that xp(z) = 0 and xy(x) = 1 for all x € M. The Corollary
3.12 proves that it is well defined.

xrvs(z) = 1 implies * € IV J. Thus there exists (n,k) € N*2 and
A, = {a1,...,ap} € I'UJ such that z € A%k). We have that (x V
xJ)(a;) =1foralli=1,...,n. According to Lemma 3.10, (x;Vx.J)(z) =
1. Hence xrvg < xr1V xJ; the reverse inequality is natural. It is obvious
that xing = xr Axg and I = J iff x;y = xj. If pis a 2—fuzzy ideal of
M, 1 # 0 then I = p~1(1) is an ideal of M satisfying x; = p. Hence ¢
is bijective and the proof is completed. O

The following is the construction of L—fuzzy ideals from a chain of
ideals of M.
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Theorem 3.14. Let (2,<,0,1) be a bounded totally ordered set. If
{Ia}acq is a chain of ideals of M such that « < 8 = 1, C Ig,
Iy ={L} and Iy = M. Then, for all antitone mapping ¢ : Q@ — L, the
function p: M — L defined by induction as follows:

©(0) if v = 1;

#) =3 p(a) ifw e o\ BL<J Ig.

is an L—fuzzy ideal of M.

Proof. Define J, = I, \ | I then {J,}acq is a partition of M. Let
B<a
x,y € M then there is (o, a’) € Q2 such that x € J, and y € J,.

If # < y then o < . Hence, p(a) > ¢(¢/) and it follows that
p(x) > p(y). If z € x Uy then for f = max(«o, ') we have z,y € Iz and
s0 z € Jg. Thus, pu(z) = ¢(8) > p(a) Ap(a’) = u(x) A u(y).

If z, 2/ € zMy thenforalla € Q, z € 1, iff 2’ € 1,,. Hence pu(z) = p(2').
Therefore p is an L—fuzzy ideal of M. O

From Theorem 3.14 we have the following corollary:
Corollary 3.15. Let {I;}}_, be a family of (n+1) ideals of M such that

{J_}:Iogfl g ...gIn,1 g[ =M. Leta0§a1 S...San,1 §an be
a finite sequence of L. Then, the mapping p defined by :

u(z) = {an ifx=1;

Ap—; fo eI, \ Iz'_l,i > 1.

is an L—fuzzy ideal of M.

Proof. By taking Q = {0, 1, ...,n} with respect to the natural order and
(i) = an—; we apply Theorem 3.14. O
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Ezample 3.16. Let us consider the posets My = {1, x1,...,29, T} and
L =1{0,a4,...,a¢, 1} depicted in the following diagrams.

ANV
/\/\ 1]

NS

M,
The multilattice M = (Ma, 1, M) has five ideals Iy = {L}, I; = {L, 21},
IQ = {J_,xg}, I7 = {J_,xl,x7}, Ig = {J_,371,$2,$3,J}4,.%'5,x6,x9} and M.
With In C 1) €Iy C M and Iy € Iz € Ig C M. The following mappings
are L—fuzzy ideals of M.
(1) ILL(J_) =1, M(xl) = as, /l(l’?) = a1, and IU(JZ‘) =0 for all z €
M\ I.
(2) v(L) =1, v(z2) = ag, v(z;) = az, i = 3,4,5,6,9 and v(z) =0
for all x € M \ Iy.

From Corollary 3.15, we deduce the following result:

Corollary 3.17. The following assertions are equivalent
(1) I is an ideal of M.
(2) For all o, 8 € L such that a < 3, the L—fuzzy subset 12 defined

by
s,.\_ Jaifzel
La(@) = {5 ifrél.

is an L—fuzzy ideal of M.
Proof. We apply Corollary 3.15 to the chain {I, M} with Q = {a, 8}. O
From Corollary 3.17, it follows that:

Corollary 3.18. Let I be a proper subset of M and let o, 5 € L. Then,
I is an ideal iff 18 is an L—fuzzy ideal of M.
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Proof. 1t suffices to observe that I = (15 Y711 ). O

From Corollary 3.18, we obtain the following characterization:

Corollary 3.19. For any fized o, 8 € L, the set {Ig | I € Jm}isa
sublattice of FZ(M, L) which is isomorphic to Ja.

Proof. We observe that I2 = (a A xr)V (B A xr). Hence, we use the
arguments of Theorem 3.13. U

4. Charaterization of £-fuzzy ideals by lattice homomorphisms

This section investigates the connection between the lattice FZ(M, L)
of all L—fuzzy ideals of M and the lattice T of all ideals of M.

Lemma 4.1. Let p be an L—fuzzy ideal of M and let o, 8 € L. Then,
the following conditions hold.

(1) Hanpg = <,ua UNB> = fha V Ug-
(2) pavg = ta N pg = fa N 13-

Proof. For (1), we have a > oA and 8 > a A . Thus pio C papg and
g S pang- It follows that pa Vg € pasg. For the reverse inclusion, we
assume that «, 5 € Imy that is there exists z,y € M such that u(z) = «
and p(y) = B. Hence, for any z € x Uy, we have that z € p V pg with
p(z) = p(z) A p(y) = a A B. Therefore pigpg C pa V pg. If i = 0 or
pg = 0 then there is nothing to prove.

For (2), we have @« < aV g and 8 < aV . Thus puy 2 povs and
Mg 2 Havs, hence o A pg 2 piavg. Let © € po A pg then x € po and
x € pg. Thus p(zr) > o and p(zr) > B which imply p(z) > oV g,
that is € pavg. Therefore p, A pg C povg and we obtain the desired
equality. ]

Corollary 4.2. Let p be an L—fuzzy ideal of M. Then, Imy is sublat-
tice of L.
Lemma 4.3. Let p, p/ be two L—fuzzy ideals of M. Then, for all a € L,
(1) (kA H)a = pa N pig = fa A pe-
(2) (1VH)a = (ta U tig) = pia V iy
Proof. For (1), let x € M, x € (u A p')q means that p(z) A p/(z) > «a
which is equivalent to p(z) > a and p/(x) > « that is x € pg N pl,.
Thus, (1A p')a C pa N ). The reverse inclusion is straightforward.
For (2), on one hand, we have u < pV p/ and p/ < p Vv p’ which give
fta © (V' )o and pig, C (Vi) Thus pe V pig C (1 V 1)a.
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On the other hand, let z € (uV ') then p(z) V p/(z) > a. Fix
f1 = p'(z) and B2 = p(x). Then, the previous inequality becomes
(61 V P2) > a which induces the following inequalities: 81 > 82 A @ and
B2 > (1 Aa. That is pu(z) > S Aa and p/(z) > B2 A a. Thus, according
to Lemma 4.1 we have @ € pgna = pg, V o and @ € piig, \, = g, V fig.
It follows that @ € (ug, V pta) N (1, V fa) € Ha V Hg O

According to Lemma 4.1 and Lemma 4.3 we have the following de-
scription:

Corollary 4.4. The following assertions hold:
FI(M, L) = Tm
gy 2

£8—>3M
(2) For any u € FL(M,L), O fig

Lemma 4.5. Let p and p' be two L—fuzzy ideals of M. Then, the
following conditions hold

(1) If po = pil, for all « € L then, p = .
(2) If po = pg for all p € FI(M, L) then, a = f.

Proof. For (1), let x € M, let a = p(x) and S = p/(x). Then x € pq
and x € py. Since pg, = o and pg = i, we have z € pg, and x € pg.
Hence p/(z) > p(z) and p(x) > p/(x). Therefore p(z) = p/(z) for all
reM.

For (2), we use the notations of Corollary 3.18. Suppose that o # 3
and let I be an ideal of M, I # M.

If @ and S are incomparable, then (Ig)*l([a, — [) = Mbut (Ig)*l([ﬂ, —
h=1

If a < A then (I3) " (o, = [) = M but (I§)"([8,— ) = I.

If @ > B then (I2) " ([a,— [) = I but (I5)"1([8, = [) = M. Therefore
a # [ implies that there exists a p € FZ(M, L) such that p # pg. O

(1) For any o € L, s a lattice epimorphism.

18 a lattice homomorphism.

Given p an L—fuzzy subset of M, we define the mappings p?, £L—fuzzy
subset of M? and pg, £2—fuzzy subset of M as follows:

. MO = o e - M — L9
S pf(x) = () RO g s po(e) = p(x)

The following results follows.

W

Proposition 4.6. Let u and p' be two L—fuzzy ideals of M. Then, the
following assertions hold:
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(1) (M\/M:)a_u vu
(2) (/Mu,)a—u A
(3) (v u)o = pa Ay
(4)

4) (WA p)o = pa V g
(3) and (4) of Proposition 4.6 induce the following corollary.
Corollary 4.7. (£LM)? is cononically isomorphic to (L7)M

L—fuzzy ideals and L—fuzzy filters are related as given by Theorem
4.8

Theorem 4.8. The following assertions are equivalent:
(i) p: M — L is an L—fuzzy ideal of M.
(ii) p? : MP = L is an L—fuzzy filter of M.

Proof. Recall that M = (M,1U,1) = M? = (M,N,U) and £ = (L,V,\) =
L2 = (L,A,V).

(i) = (zz) Let pn: M — L be an L—fuzzy ideal of M. Let z,y € M.

If z € U9 y then z € 2 My. Hence u(z) > p(z) V u(y);

If z€xM?y then z € x Uy. Hence u(2) = p(z) A puly).

If 21, 20 € U9y then 21, 20 € xMy. Hence u(z1) = p(22). Thus p?
an L—fuzzy filter of M.

(i) = (i) Let u? : M? = L be an L—fuzzy filter of M? and let
x,y € M.

If z € xMy then z € x U7 y. Hence u(z) > pu(z) V puly).

If € xUy then z € £ M y. Hence u(2) = p(z) A puly).

If 21,23 € My then 21,2 € 2 U9 y. Hence u(z1) = pu(z2). Therefore
w is an L—fuzzy filter of M. O

~— —

From Proposition 4.6 and Theorem 4.8 we have the following corol-
lary:

FI(M,L) = FF(M? L)

P s a lattice isomor-
= p

Corollary 4.9. ¢ :
phism.

Theorem 4.10. The following assertions are equivalent:
(i) p: M — L is an L—fuzzy ideal of M satisfying p(z) < p(x) Vv
w(y) for all z € xMy.
(ii) po : M? — L£2 is an L2 fuzzy ideal of M? satisfying p(z) <
w(z) VO u(y) for all z € x M2 y;
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Proof. (i) = (ii) Suppose that p is an L—fuzzy ideal of M. Let z,y €
MO,

3.8) that is u(z) < p(z) or more precisely that p

If z € 2102y then z € x My. Hence u(z) > p(x) and p(z) > u(y)
since z < x and z < y. Therefore u(z) > u(x) vV uy) = w(x) A2 u(y),
the reverse inequality comes from the assumption.

If 21, 20 € £M% then 21, 20 € 2Uy. Hence pu(z1) = p(x)Ap(y) = u(ze).
Thus ;0 is an L0 —fuzzy filter of M?.

(ii) = (i) uses the previous arguments since (£%)? = £ and (M?)? =
M. O

Theorem 4.11. Then, (.): x+ (z) is an (Ip)? —fuzzy ideal of M.

Proof. Let x,y € M.
If <y then (z) C (y) that is (y) C? (x).
If 2 € 2 Uy then (2) = (z) V (y), this implies (z) = (z) A? (y).
If 2,2 € x My then (zMy) N (z) # 0 and (xMy)N(z
2/ € (z) and z € (2') it follows that (z) = (2/). O
We end this section by establishing that the £—fuzzy ideals lattice of

M, FI(M, L) is completely described by homomorphisms from £? to
the ideals lattice of M, J .

Theorem 4.12. FZ(M, L) is isomorphic to Hom(L?, Irq).
Proof. Consider the following mapping:

FI(M,L) = Hom(L?,T4)

D : L9 — Tm
— @ :
1P o B(0)(0) = e
Corollary 3.18 proves that @ is well defined and Lemma 4.3 proves its
compatibility with A and V.
Let u,p/ € FZ(M,L). Then, ®(u) = ®(y') implies pq = pl, for all

a € L. Hence by Lemma 4.5 we have p = p/ which proves that ® is one

to one.
Let f: £2 — T, be a lattice homomorphism. Define

w:M—=Lby p(z)=\{aeL:ze f(a)}.
We will prove that y € FZ(M, L) and ®(u) = f.
Let x,y € M. If x < y then y € f(«) implies x € f(a) since f(a) is
an ideal of M. Hence {a € L | y € f(a)} C{a € L| z € f(o)} and
then \V/{a € L| z € f(a)} > V{a e L| ye f(a)} that is u(z) > u(y).
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If 2,2 € xMy then 2z € f(a) iff 2/ € f(«) since f(a) is either empty
or an ideal of M. Thus u(z) = u(2’).

It remains to prove that u(z) > p(z) A u(y) for all z € z Uy. For this
it will suffice to prove that [z € f(a) and y € f(8) = z € f(a A B)].

v € f(a) and y € F(8) imply {z,y} C f(a) v f(B). Hence z iy C
F(@) v F(8) = f(a A B). Thus = € f(a A B).

This is true since f(a) and f(/) are both ideals and f(a A 5) =

fla) vV £(B). O

5. CONCLUSION AND FUTURE WORKS

The L—fuzzy ideals lattice of multilattice has been described. Sev-
eral characterizations have been proposed and the relationship between
ideals and L£—fuzzy ideals has been highlighted. The transition from the
L—fuzzy ideals to the L—fuzzy filters evidenced by the Duality principle
has been shown. We have finally proved that the £L—fuzzy ideals lattice
of a multilattice is isomorphic to the lattice of homomorphisms from the
dual of £ to the ideals lattice of M.

We plan in a future to study the prime L£L—fuzzy ideals theorem and
maximality on £L—fuzzy ideals of multilattices.
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