تعداد نشریات | 27 |
تعداد شمارهها | 364 |
تعداد مقالات | 3,223 |
تعداد مشاهده مقاله | 4,741,521 |
تعداد دریافت فایل اصل مقاله | 3,238,625 |
On right (left) θ-centralizers on Banach algebras | ||
Journal of Hyperstructures | ||
دوره 12، شماره 1، 2023، صفحه 134-141 اصل مقاله (263.5 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22098/jhs.2023.2517 | ||
نویسندگان | ||
Ghazal Moradkhani* ؛ Neda Ghoreishi | ||
Department of Mathematics, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran. | ||
چکیده | ||
Let A be a Banach algebra with unity 1, and θ : A → A be an continuous automorphism. In this paper we characterize a continuous linear map T : A → A which satisfies one of the following conditions: a, b ∈ A, ab = w =⇒ θ(a)T(b) = T(w), a, b ∈ A, ab = w =⇒ T(a)θ(b) = T(w), or a, b ∈ A, ab = w =⇒ θ(a)T(b) = T(a)θ(b) = T(w) , where w ≠ 0 is a left (right) separating point of A. | ||
کلیدواژهها | ||
Left θ-centralizer؛ right θ-centralizer؛ θ-centralizer؛ Banach algebra | ||
مراجع | ||
[1] E. Albas, On τ -centralizers of semiprime rings, Sib. Math. J. 48 (2007), 191–196. [2] A. Barari, B. Fadaee and H. Ghahramani, Linear maps on standard operator algebras characterized by action on zero products, Bull. Iran. Math. Soc. 45 (2019),1573–1583. [3] M. Breˇsar, Characterizing homomorphisms, multipliers and derivations in rings with idempotents, Proc. R. Soc. Edinb. Sect. A. 137 (2007), 9–21. [4] B. Fadaee and H. Ghahramani, Jordan left derivations at the idempotent elements on reflexive algebras , Publ. Math. Debrecen, 92/3-4 (2018), 261–275. [5] B. Fadaee and H. Ghahramani, Linear maps on C∗-algebras behaving like (Anti-)derivations at orthogonal elements, Bull. Malays. Math. Sci. Soc. 43 (2020),2851–2859. [6] B. Fadaee, K. Fallahi and H. Ghahramani, Characterization of linear mappings on (Banach)*-algebras by similar properties to derivations, Math. Slovaca, 70(4)(2020), 1003–1011. [7] H. Farhadi, Characterizing left or right centralizers on ∗-algebras through orthog-onal elements, Math. Anal. Conv. Optim. 3 (2022), no. 1, 37–41. [8] A. Foˇsner and H. Ghahramani, Ternary derivations of nest algebras, Operator and Matrices, 15 (2021), 327–339. [9] H. Ghahramani, On centralizers of Banach algebras, Bull. Malays. Math. Sci.Soc. 38 (2015), 155–164. [10] H. Ghahramani, Characterizing Jordan maps on triangular rings through commutative zero products, Mediterr. J. Math. (2018) 15: 38.https://doi.org/10.1007/s00009-018-1082-3. [11] H. Ghahramani and S. Sattari, Characterization of reflexive closure of some operator algebras acting on Hilbert C∗-modules, Acta Math. Hungar. 157 (2019),158–172, https://doi.org/10.1007/s10474-018-0877-9. [12] H. Ghahramani, Left ideal preserving maps on triangular algebras. Iran J Sci Technol Trans Sci, 44 (2020), 109–118. https://doi.org/10.1007/s40995-019-00794-2. [13] H. Ghahramani and A.H. Mokhtari, Characterizing linear maps of standard operator algebras through orthogonality, Acta Sci. Math. (Szeged) 88, (2022), 777–786, https://doi.org/10.1007/s44146-022-00049-4. [14] H. Ghahramani and W. Jing, Lie centralizers at zero products on a class of op-erator algebras, Ann. Funct. Anal. 12 (2021), 1–12. [15] B. Hayati and H. Khodaei, On triple θ-centralizers, Int. J. Nonlinear Anal. Appl., (2023), doi: 10.22075/ijnaa.2023.30207.4365. [16] J. He, J. Li, and Qian, Characterizations of centralizers and derivations on some algebras, J. Korean Math. Soc. 54 (2017), 685–696. [17] S. Huang and C. Haetinger, On θ-centralizers of semiprime rings, Demonstratio Math. 45 (2012), 29–34. [18] I. Nikoufar and Th.M. Rassias, On θ-centralizers of semiprime Banach ∗-algebras,Ukranian Math. J. 66(2014), 300–310. [19] X. Qi and J. Hou, Characterizing centralizers and generalized derivations on triangular algebras by acting on zero product, Acta Math. Sin. (Engl. Ser.) 29 (2013),1245–1256. [20] J. Vukman, I. Kosi-Ulbl, Centralizers on rings and algebras, Bull. Aust. Math.Soc. 71 (2005), 225–239. [21] W. Xu, R. An, and J. Hou, Equivalent characterization of centralizers on B(H),Acta Math. Sinica (Engl. Ser.) 32 (2016), 1113–1120. | ||
آمار تعداد مشاهده مقاله: 109 تعداد دریافت فایل اصل مقاله: 177 |