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ABSTRACT. This article presents the novel set termed SB - neutro-
sophic set (SB-NSS), which extends the concept of the Neutrosophic
set (NSS). We illustrate its fundamental operations with examples.
This concept of SB-NSSs is applied to BCK/BCI-algebras, and we
introduce the notion of SB-neutrosophic subalgebra (SB-NSSA),
SB-neutrosophic ideal (SB-NSI), and related properties are investi-
gated. Furthermore, we provide conditions for an SB-NSS to be an
SB-NSSA, for an SB-NSS to be an SB-NSI, and for an SB-NSSA
to be an SB-NSI. In a BClI-algebra, conditions for an SB-NSI to be
an SB-NSSA are given.
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1. INTRODUCTION

The list of acronyms used in this article is given below with their
corresponding extensions to help readers understand the terminology
and concepts presented.

BCK/BCI-Algebra: BCK/BCI-A
BCK-Algebra: BCK-A

Fuzzy Set: FS

Interval-Valued Fuzzy Set: IVFS
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Fuzzy Subalgebra: FSA

Fuzzy Ideal: FI

Intuitionistic Fuzzy Set: IFS
Neutrosophic Set: NSS
SB-Neutrosophic Set: SB-NSS
SB-Neutrosophic Subalgebra: SB-NSSA
SB-Neutrosophic Ideal: SB-NSI

In 1965, L.A. Zadeh [30] from the University of California introduced
FSs, making it possible to analyse the extent to which elements be-
long to a set and innovate the handling of uncertainty in decision-
making. In 1986, Atanasov [!] extended the concept further by gen-
eralising the FS to an IF'S by including an additional function known as
the non-membership function. The concept of NSS (NSS), introduced by
Smarandache ([25], [20]), represents a more comprehensive framework
that extends the concepts of Classical Set, FS, IFS, and Interval Valued
Fuzzy (Intuitionistic) Set, providing a more extensive approach to han-
dling indeterminate and inconsistent data. The study of BCK/BCI-As,
initiated by Imai and Iseki ([5, 6]) in 1966, was based on the study of set-
theoretic difference and propositional calculi, marking a significant ad-
vancement in algebraic structures. As part of the broader development
of BCI/BCK algebras, the study of ideals and their fuzzy extensions

holds significant importance. Jun et al. ([17, 18, 19, 11]) examined the
fuzzy characteristics of different ideals within BCI/BCK algebras. The
literature, including articles [28, 2, 13, 14, 15, 16, 21, 22, 23, 27, 24], pro-

vides a more detailed description of neutrosophic algebraic structures.
We have provided an illustration of the process through a framework di-
agram shown in Figure 1. Our intention is that this visual representation
will enhance your understanding of the task.

This article aims to introduce a new generalisation of the NSS, called
SB-NSS. A NSS consists of a membership function, an indeterminate
membership function, and a non-membership function, each of which
can be represented as FSs. When considering the generalisation of an
NSS, we utilise an IVFS as a membership function, as it represents a
broader generalisation of the FS. SB-neutrosophic structures are par-
ticularly beneficial in situations where there is a high degree of un-
certainty in the data, especially concerning the membership function.
Additionally, in scenarios where there is a low degree of uncertainty in
the indeterminate membership function and non-membership function,
SB-Neutrosophic structures can also prove valuable.
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Moreover, innovative research has led to the introduction of new con-
cepts such as SB-NSSA, SB-NSI, closed SB-NSI, and related properties
within the field of BCK/BCI-As. We present a comprehensive character-
ization of SB-NSSA and SB-NSI. Additionally, we discuss the homomor-
phic pre-image and translation of the SB-NSSA. Our findings demon-
strate that every closed SB-NSI is an SB-NSSA in a BCI-A, while in a
BCK-A, every SB-NSI is an SB-NSSA. In the context of an (s)-BCK-A,
we establish that every SB-NSI can be considered an SB-neutrosophic
o-subalgebra. Furthermore, we provide conditions for an SB-NSS to be
an SB-NSI in an (s)-BCK-A.

SB-NSS.png

Figure 1.

2. PRELIMINARIES

Definition 2.1. ([1], [7]) Let K be a non-empty set with a binary oper-
ation “¢” and a constant “0” is called a BCI-A if it satisfies the following
axioms for all (1,n1,01 € K

(2.1) ((Ctom)o(Ciobr))o(Brom)=0
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(2.2) (Gio(Grom))om =0
(2.3) Lol =0
(2.4) Gom=0moG1=0=C=m

If the BCI-A K satisfies the following identity
(2.5) 0¢(¢1 =0 for all (; € K, then K is called a BCK-algebra.

The following properties hold in any BCK/BCI-A (See [4, 10]),
(2.6) (100=0
(2.7) GQ<m=Cqobth <mob,biom <00
(2.8) (Cuom) o= (Cobi)om
(2.9) (Crobr)o(mobr) < om forall (i,m, b € K.

where (1 < n; if and only if (; o1 = 0.
The following conditions hold in any BCI-A K (See [1]),

(2.10) Go(Go(CGiom))=Com

(2.11) 00 (Crom)=(00¢)o(00m)
Definition 2.2. [1] A BCI-A K is said to be p-semisimple if
(212) 00(0041) = Cl

for all {(; € K. In a p-semisimple BCI-A I, the following holds for all
Cla m e K

(2.13) 00 (Grom)=meoG

(2.14) Go(Gom)=m.

Definition 2.3. [1] A BCI-A K is said to be a weakly BCK-A if
(2.15) 00 < (7 forall (; €K.

Definition 2.4. [1] A BCI-A K is said to be associative if
(2.16) (Ciom) oy = ((1o01)om forall (1,m1,601 € K.

Definition 2.5. [10] An (s)-BCK-A, we mean a BCK-A K such that,
for any (1,m € K, the set {0 € K/6, (1 < 1} has a greatest element,
denoted by (1 on;.
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Definition 2.6. A subset H(# 0) of a BCK/BCI-A K is called a sub-
algebra of IC if (1 om1 € H for all (1,n1 € H.

Definition 2.7. [9] A subset H(# () of a BCK/BCI-A K is called an
ideal of K if
(i) 0 e H,
(ii) N, 1om e H=C € Hforall (1,m € K.
Definition 2.8. [1] A subset H(# 0) of a BCI-A K is called a closed
ideal of K if it is an ideal of K that satisfies
(eH=00( € Hforall (; € K.

Definition 2.9. [30] Let I be a non-empty set. A FS in K is a mapping
a: K —[0,1].

Definition 2.10. [30] The complement of a FS ay, denoted by ()€, is
also a FS defined as () =1 — oy for all (; € K. Also, ((a)) = ay.
Definition 2.11. [29] A FS a; : K — [0,1] is called a FSA of K if

ar(Gromn) = min{ay (1), e (m)} for all (,m € K.
Definition 2.12. [20] A FS oy : £ — [0,1] of a BCK-A K is said to be
a FI of K if

(i) at(0) > au(C1)

(i1) ay(¢1) = min{oy (¢ o), aq(mr)} for all (1,m € K.

An interval number, denoted as 0= [©~,07], represents a closed
subinterval of [I], where 0 < O~ < ©1 < 1. Here, [I] refers to the set
of all interval numbers. The interval [©, O] is indicated by the number
© € [0,1] for whatever follows. Let us define the refined minimum
(briefly, rmin) and refined maximum (briefly, rmax) of two elements
in [I]. We also define the symbols =, %=, and = in the case of two
clements in [I]. Consider two interval numbers ©; = [©;~,0;7] and
éQ = [@27,@2+]. Then

o rmin{©1,02} = [min{617,0:"},min{O:1",057}]
o rmaz{O1,O0,} = [maz{©17,02"},maz{0:7,0:7}]
00176060, 26,7, 0" > 0,7
001500 6," <67, 0t <O,
o él = 62 < 017 =097, @1+ = @2+

Let ©; € [I] where i € M. We define
o rinf@; = [m fO;~,in f@ﬁ]

€M €M €M
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) rsup(:)i = [sup@f,sup@ﬁ}
ien ien ien

Definition 2.13. [3] Let K be a non-empty set. A function a : £ — [I]
is called an IVFS in K. Let [I]* represent the set of all IVFSs in K.
For every a € [I]’C and (1 € K, a(¢1) = [a ((1),a™(¢1)] is called the
membership degree of an element (; € &, where a= : K — [I] and
at : K — [I] are FSs in K which are called a lower FS and an upper FS
in K, respectively. For simplicity, we denote & = [a™, a™].

Definition 2.14. [206] Let K be a non-empty set. A NSS in K is a
structure of the form

N = {{C;(C1), i(Cr), ap(C1)) = ¢ € K

where a; : K — [0,1] is a degree of membership, a; : £ — [0,1] is
a degree of indeterminacy, and ay : K — [0,1] is a degree of a non-
membership.

3. SB-NEUTROSOPHIC STRUCTURES

Definition 3.1. Let K be a non-empty set. An SB-neutrosophic set
(SB-NSS) in K is a structure of the form

(3.1) N = (G ai(Q), i(Q), ar () | C € K},

where «; and a ¢ are FSs in K, which are called a degree of indeterminacy
and degree of non-membership, respectively. &, is an IVFS in K, which
is called an interval valued degree of membership.

For the sake of simplicity, we will denote the SB-NSS as
N = (ay, a;, ap).

Remark 3.2. In an SB-NSS N = (&, a4, af), if we take a; : K — [1],
¢ ™ (€), T (Q)] with oy (¢) = ¢ ((), then N = (&, o, f) s a
NSS in K.

Ezample 3.3. Let K = {5,15,30,55,85} be a set representing the ages
of individuals. We define an SB-NSS N of K to represent the Interval-
valued degree of membership, degree of indeterminacy, and degree of

non-membership of each age to the category ‘young people’ as N =
{([0.1,0.3],0.2.0.7) ((0.9,1],0.6,0.1)  (0.7,1],0.9,0.1)  ([0.1,0.6],0.4,0.9) ([0,0.1],0.2,1)}
5 15 ) 30 ’ 55 85 :

Y Y
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Definition 3.4. Let N7 = (G, o4, p) and Ny = (Et,ﬁi,ﬁf) be SB-
NSSs of K. We say that A7 is a subset of N, denoted by A7 C Ns, if it
satisfies
a(Q) = Bi(Q),  @i(Q) = Bi(€),  ayp(¢) < Br(¢) for all ¢ € K.
If N1 C N5 and Ay C N7, then we say that N7 = Ns.
Definition 3.5. For every two SB-NSSs A7 and N> of K, the union,
intersection, and complement are defined as follows
Nl U NQ :{(ga rmam(at(C)a Et(())a
maz(a;(C), Bi(€)), min(ay(¢), Br(C)))}
NN Na ={(¢ rmin(@(C), Bi(€)),
min(a;(C), Bi(C)), maz(as(C), Br(¢)))}-
M ={a5(C), a5 (¢), a5(O)}-
where

ag(¢) =1 — a7 (), 1 — e~ ()],

a;(Q) =1 — ai(Q),

a$(¢) =1 —ay((), for all € K.
Ezample 3.6. Let us consider SB-NSSs N7 and N of K = {1, m,61}-
The full description of SB-NSS N is

N1 ={(C1, a¢(C1), i (Cr), o (C1)), (1, @ (m), (), g (),
(01, e (01), i(61), ap(61))}-(or)

N = {(at(ﬁ):aiéfl),af(fl))’ (at(771)7041'1(77171)70#(771))7 (5t(91)»0¢z‘é?1)704f(91))}

For example,
I {([().3,0.8],0.5,0.1) ([0.1,0.5],0.3,0.7) ([0.2,0.7],0.1,0.4)}
1 =

G1 ’ m ’ 01
{([0.1,0.5],0.6,0.5) ([0.3,0.9],0.2, 0.6) ([0.5,0.7],0.7,0.8)}
NQ - ) )
G M 01
Then
NN, — {([0.3,0.8],0.6,0.1)’ (0:3.09).03,06) ([0.5,0.7],0.7,0.4)}
§ m 01
v {([0.1,0.5],0.5,0.5)’ (0.0,05],02.,07) ([0.2,().7],().1,0.8)}
G1 m 01
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AC = { ([0.2,0.7],0.5,0.9) ([0.5,0.9],0.7,0.3) (]0.3,0.8], 0.9,0.6)}
' G ’ m ’ 01 '

Proposition 3.7. Let N7, Na, and N3 be an SB-NSSs of K. Then
(i) N1 UNy =N UNs.
(il) N1NANe =N NN
(i) M1 U (N UN3) = (N7 UN2) UN3
(iv) MiN(NaNN3) = (N1 NN2) NN

Proposition 3.8. If N be an SB-NSS of K, then (N¢)¢ =N

Proposition 3.9. If N7 and N3 be an SB-NSSs of K, then
(i) N1 C Ny & No® C N©
(i) MMUNy =N; & Ny TN
(i) M NNy =N, & N CN,.

4. SB-NEUTROSOPHIC SUBALGEBRA

Definition 4.1. Let K be a BCK/BCI-A. An SB-NSS N = (o, o, ay)
in K is called an SB-neutrosophic subalgebra (SB-NSSA) of K if it follows
(SB-NSSA 1) a(¢1om) = rmin{ca(C1), a(m)}
(SB-NSSA 2) (¢ om) = min{ai(C1), ci(m)}
(SB-NSSA 3) ay(¢1om) < maz{ay(Cr),op(m)}
for all (1,m1 € K.

Ezample 4.2. Let us consider a set K = {0,(1,m, 61} with the binary
operation ‘¢’ as given in the Table 1. Then, (K;¢,0) is a BCK-A.

TABLE 1. BCK-algebra.

o | 0 |G |m |0
Ol0]0]01|O0
G|¢G|]0]0 ]G

mim|G|0|m
0116116016011 0

Let N' = (a4, a;,ar) be an SB-NSS in K defined by Table 2. It is
routine to verify that N" = (ou, a;, ar) is an SB-NSSA of K.

Proposition 4.3. If N' = (a, a4, af) is an SB-NSSA of K, then
ay(0) = (1), @i(0) = ai(Gr), and af(0) < ap(Cr)
forall (1 € K.
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TABLE 2. SB-NSS

K1 a) [alQ)] s
0 [[0509]] 0.8 | 0.3
G 0407 06 | 05
m | [0.2,08] ] 0.7 | 04
6, ]03,06] | 03 | 1

Proof. Let N' = (ay, a;,ay) be an SB-NSSA. Then, for any (; € K, we
have

a¢(0) = @ (1o ¢1) = rmin{@:(C1), @ (1)}
= rmin{[a;” (1), (G, [ ™ (C1) ™ ()]}
= [ (C1), 2 (G)] = @ (),
@;(0) = a;(C1 © 1) = min{a;(C1)ei(G)} = ai(G),
ap(0) = ayp(Go ) < maz{ap(C), ap(Cr)} = ap(Gr).

Hence, the proof is completed. O

Proposition 4.4. Let N = (au, a4, of) is an SB-NSSA of K. If there
exists a sequence {((1)n} in K such that

Jim @ (Gp) = [1,1], lim @i(Cry) = 1 and Tim ar(Gry,) =0,
then a;(0) = [1,1], a;(0) =1, and a¢(0) = 0.

Proof. Using the Proposition 4.3, we have a:(0) > a¢(¢1,), «i(0) >
a;(C1,), and af(0) < a¢(C1,) for every positive integer n. Note that

[1,1) = @:(0) = lim a¢(Gry,) = [1,1]
12 0;(0) > lim a;(Gp,) =1

0<ap(0) < li_)IIl ar(Ci,) =0.

Therefore, a;(0) = [1,1],a;(0) =1, and af(0) = 0. O

Theorem 4.5. Let N' = (ay, 4, a5) be an SB-NSS of K. Then N =
(a, a4, p) is an SB-NSSA of K if and only if o, a, o, and ap€ are
FSAs of K.
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Proof. Suppose that N = (ay, a;, ay) is an SB-NSSA of K, then
a(Crom) = rmin{a(C1), ae(m)}

a;i(C1om) = min{oy(Cr), os(m)}
ayp(Crom) < maxfap(Cr), op(m)}
for all (1,71 € K. Now
[~ (Crom),e (¢ om)]
= rmin{[a; ™ (C1), T ()]s [ ™ (m), au™ ()]}
[min{cy™(C1), a0~ (m) }, min{a ™ (¢1), e (m)}]
= a; (Gom) > min{ay (¢1), ¢ (m)} and
a(Crom) = min{ay™(G), a0 (m)}-

max{og(C1), ap(n)}

1 —max{ay(r), o (m)}
min{l —ap(¢1),1 —ar(m)}
min{o (1), ar(m)}

Hence, oy, ay™", oy, and ay¢ are FSAs of K. The converse part is
obvious. O

Also, af(C1 om
= 1—ap(Gom
“(Grom

(Ctom

= Oy

[

~— — — —

<
>
>
>

= Oy

Definition 4.6. Let N’ = (ay, a;, af) be an SB-NSS of . We define
the following level sets

Ua; [, 1)) = {G € K () = [, 1]}
Z/I(ozi;m) = {Cl eEL: Ozi(Cl) >
Llagin) ={G € KL:ap(C1) < n}

where m,n € [0,1] and [I1,l2] € [I].

Theorem 4.7. An SB-NSS N = (&, a;,a) of K is an SB-NSSA of
K if and only if the non-empty level sets U(ay; [l1,12]), U(cai;m), and
L(ag;n) are subalgebras of IC for all m,n € [0,1] and [l1,15] € [I].

Proof. Suppose that N' = (&, o, af) is an SB-NSSA of K. Let m,n €
[0,1] and [l1,15] € [I] be such that U(ay; [I1,12]), U(ei;m), and L(ay;n)
are non-empty. For any aj,as, by, ba,c1,c0 € K if aj, a9 € U(ay; [11,12]),
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bi,b2 € U(ay;m), and 1, co € L(ay;n), then

&t(al <o CLQ) = rmin{&t(al), &t(ag)} = rmin{[ll, lg], [ll, lg]} = [ll, lg]

a;(by © b)) > min{a;(b1), a;(b2)} > min{m,m} =m

ag(croc2) < max{ayf(cr),ar(c2)} < max{n,n} =n
Therefore, a; ¢ as € U(ay;[l1,l2]), by © by € U(ay;m), and ¢1 ¢ co €
L(ayg;n). Hence, U(ay; [l1,12]), U(ei;m), and L(ay;n) are subalgebras
of K.

Conversely, assume that the non-empty sets U(ay; [l1,lo]), U(ay;m),
and L(ay;n) are subalgebras of I for all m,n € [0,1] and [y, 1] € [I].
Suppose that

ai(ag o bg) < rmin{ay(ag), ay(bo)}
for some ag, by € K. Let ai(ag) = [01,02], ar(bo) = [03,04] and ay(ag ¢
bO) = [l17l2]' Then7
[ll, lg] < rmin{[él, (52], [53, 54]}
= [min{51, 53}, mz’n{ég, 54}]
= 11 < min{d1,03} and ly < min{da,d4}.

Taking,

[11,m2] = %[&t(ao o bo) + rmin{ai(ao), a¢(bo)}]

- %[[51,12] + [min{61, 3}, min{0z, 64 }]]

1 . 1 )
= [§(l1 + mm{él, 53}), §(l2 + mzn{ég, (54})]
It follows that

1
Lh<m= §(l1 + min{d1,d3}) < min{dy,d3} and

1
la <mp = 5(12 + min{dz, d4}) < min{dz,da}.

Hence, [min{d1, 03}, min{dz, 64}] > [n1,n2] > [l1,l2] = c(agobp). There-
fore, ag © by ¢ U(au; [l1,12]). On the other hand, we have

at(ag) = [01, 02] = [min{éd1, 63}, min{da, 64}] = [11,n2]

at(bo) = [03,04] = [min{d1, 3}, min{d2, 04} = [m1,m2].

[
that is ag, by € U(aw;[l1,12]). This is a contradiction and, therefore, we
have a;(¢1 o m) = rmin{a;(¢1), ax(n1)} for all ¢1,m € K.
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Also, if a;(ag © bg) < min{a;(ag),a;(bg)} for some ag,by € K, then
ag, by € U(a;;mo) but agobg ¢ U(ay;mo) for mo = min{a;(ag), a;(bo)}-
This is a contradiction, and thus «;(¢1on1) > min{a;(¢1), ai(m)} for all
C1,m € K. Similarly, we can show that af(¢rom) < max{as(C1), ap(n)}
for all (1,m € K. Consequently, N' = (&, aj,af) is an SB-NSSA of
K. O

Corollary 4.8. If N = (&, oy, af) s an SB-NSSA of K, then the sets
Ka, ={G € K| (1) = ar(0)}, Ko, = {G € K [ (1) = 4(0)}, and
Ko, ={G € K| as(C1) = ay(0)} are subalgebras of K.

We say that the subalgebras U(ay; [I1,l2]), U(cy;m) and L(ayp;n) are
SB-subalgebras of N = (&, a;, o).

Theorem 4.9. Every subalgebra of IC can be realized as an SB-subalgebra
of an SB-NSSA of K.

Proof. Let J be a subalgebra of IC, and let N = (&, i, of) be a SB-NSS
in I defined by

~ [m,me), f G €T m, if G eJ
4.1 = i(G) = d
(1) ale) {[O, 0], otherwise ai(G1) 0, otherwise "
if
ap(@) = 4" BT v i,y and m € (0,1] with 1 < 2,

1, otherwise
and n € [0,1). It is clear that U(as;[n1,m2]) = T, U(ai;m) = T, and
L(agin)=J.
Let ¢1,m1 € K. If (1,m € J, then (; on1 € J and so
at(Crom) = [, m2] = rmin{[n, nal, [, nel} = rmin{a:(C1), a(m)}
a;i(¢rom) =m=min{m,m} = min{a;((1), xi(m)}
as(Gr om) = n = maz{n, n} = maz{as(C1), as(m)}

If any one of (; and n; is contained in J, say (1 € J, then a:(¢1) =

[7717772]7 OZi(Cl) = m, O‘f(cl) =n, &t(nl) = [O?O]v ai(nl) = 0, and
ayf(nm) = 1. Hence,
ar(¢om) = [0,0] = rmin{[ny, n2], [0, 0]} = rmin{a(C1), ()}
a;i(Ciom)
(

0 = min{m,0} = min{a;(¢1), @i(n1)}
1

o = maz{n,1} = maz{ag(C), s (m)}.
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IfCi,m & J, then ay(¢1) = [0,0], i (¢1) =0, ap(C1) = 1, ar(m) = [0,0],
a;(m) =0, and a(m) = 1. It follows that

at(Crom) = [0,0] = rmin{[0,0], [0, 0]} = rmin{ca:(C1), ax(m)}
a;i(¢1om) > 0=min{0,0} = min{a;(¢1), a;(m)}
ap(Gom) <1 =max{l,1} = max{ar(C), ar(m)}-

Therefore, N' = (a, a4, orf) is an SB-NSSA of K. O

Theorem 4.10. For any non-empty set J of K, let N' = (&, oy, of) be
an SB-NSS in K as defined in (4.1). If N' = (&, oy, of) is an SB-NSSA
of K, then J is a subalgebra of K.

Proof. Let ¢i,m € J. Then a;(¢1) = [m1,m2], 2i(G1) = m, ap((1) = n,
ar(m) = [m,n2], ai(m) =m, and ay(m1) = n. Thus

ay(Com) = rmin{a(Cr), ar(m)} = [771,?72]

a;i(Crom) = minfai(C), oi(m)} =

ay(Gom) <mazfas(G),ap(m)} =n
Therefore, (1 o1 € J. Hence, J is a subalgebra of K. O

Theorem 4.11. Given an SB-NSSA N = (ay, i, o) of a BCI-A K,
let N° = (af,a;®,a°) be an SB-NSS defined by &7 (¢1) = (00 (1),
a;°(C1) = a;i(00 (1), and af®(C1) = ap(00 ¢r) for all & € K. Then
N® = (a7, a;°, af°) is an SB-NSSA of K.
Proof. In a BCI-A, we have that 0¢ (¢ oni) = (00 (1) ¢ (00 np) for all
C1,m € K. Then
@y (Crom) = a(00 (Gom)) =a((00C1) o (00m))
7 rmin{ay (00 C1), a(00m)}t = rmin{ay (C1), &g (m)},
a;’(Ctom) =a;(00(Ctom)) = ai((00¢) o (00m))
> min{ai(OoQ),al(Oom)} mln{az (Cl) Q; (771)}
ap®(Grom) =ap(0o(Gom)) =ap((0oG)o(0omn))
< maz{ayp(00 Q) ap(00m)}t =maz{as(G), ar(m)}
for all (1,m € K. Therefore, N = (af, a;°, a°) is an SB-NSSA of
K. O

Theorem 4.12. Let ¢ : K — Y be a homomorphism of a BCK/BCI-
A If N = (a, az,p) is an SB-NSSA of Y, then ¢~ (N) = (¢~ (au),
gi)_l(ai), d)‘l(af)) is an SB-NSSA of K, where (;3_1(64})(@) = a(o(C1)),
¢~ Hai)(G1) = ai(¢(Q1)), and ¢~ (ay)(C1) = ay(¢(G1)) for all G € K.
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Proof. Let (1,m € K. Then
¢~ (@) (Grom) = a(d(Crom)) = au(
rmain{ay (¢(C1)), au(
rmin{¢™" (@) (¢1), ¢~ (@) (m)},
ai(@(Crom)) = ai(¢(G
min{o;($(C1)), ai(d(m)
= min{d ™ () (¢1), ¢
= ay(o(Crom)) = ay(e(C) o d(m))
< maz{as(¢(C1)), cp(d(m))}
= maz{p™ (ap)(G1), ™ (ap)(m)}-
Hence, ¢~ 1(N) = (¢ (a4), ¢ (), (af)) is an SB-NSSA of €. O
Let N' = (&, oy, af) be an SB-NSS in K. We denote
b =[1,1] — rsup{a(¢1) | G € K},
s =1 —sup{oi(Q1) | G1 € K},
n=inf{ay(Q) |G €K}

For any a € [[0,0],b], b € [0,5], and ¢ € [0, n] we define a(¢;) = a(G)+
a, az‘b(C1) = ai(Cl) + b, and afc = 04f(§1) — ¢ then N1 = (&?,aib,afc)
is an SB-NSS in K, which is called a (a, b, c)—translative SB-NSS of K.

Theorem 4.13. If N = (au, a4, ) is an SB-NSSA of K, then the
(a,b, c)—translative SB-NSS of N' = (G, o, of) is also an SB-NSSA of
K.

s

¢ () (C1om)

AV

¢ Hap)(Gom)

Proof. For any (1,m € K, we have,
af(Crom) = ar(Crom) +a = rmin{ar(C1), ar(m)} + a
= rmin{@(C1) + &, ar(m) + a} = rmin{af (¢1), a¢ (m)},
ai’(Grom) = ai(¢rom) +b > min{ai(C1), ai(m)} +b
= min{a;((1) + b, ai(m) + b} = min{a;®(1), @ (m)},
ar(Grom) = as(Gom) —c < max{ap(Cr), ap(m)}t —c
= maz{ay(G) — ¢, ap(m) — ¢} = maz{a;(G), ar(m)}.
Therefore, N7 = (a2, o;®, as¢) is an SB-NSSA of K. O
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Theorem 4.14. Let N' = (&, o, a¢) be an SB-NSS in K such that
its (a, b, c)—translative SB-NSS is an SB-NSSA of K for a € [[0,0], b],
be0,s], and c € [0,n]. Then N = (i, a4, f) is an SB-NSSA of K.

Proof. Assume that N7 = (&, ;% af¢) is an SB-NSSA of K for a €
[[0,0],6], b € [0,s], and ¢ € [0,n]. Let (3,11 € K. Then
ai(Crom) +a=af(¢uom) = rmin{af(¢1),af(m)}
= rmin{a((1) + a, o (m) + a}
= rmin{ay(C1), ar(m)} + a,
ai(Grom) +b=a;’(Crom) > min{a:i"(¢1), i (m)}
= min{a;((1) + b, a;(n1) + b}
=min{ai(G1), ai(m)} + 0,
ap(Gom) —c=ap (G om) < maz{as (), ar(m)}
= maz{ayf(G) — ¢, ap(m) — c}
= maz{oyp(C), ap(m)} —c.
It follows that
ar(Grom) = rmin{a (), ae(m)}
@i (C1om) = min{a;(C1), oi(m)}
ap(Grom) < maxf{op(Cr), ap(m)}
for all (1,m € K. Hence, N = (&, a4, ay) is an SB-NSSA of K. O

>
<

5. SB-NEUTROSOPHIC IDEAL

Definition 5.1. Let K be a BCK/BCI-A. An SB-NSS N = (&, oy, o)
in K is called an SB-neutrosophic ideal (SB-NSI) of K if it satisfies
(SB-NSI 1) a4(0) = a¢(¢1), ai(0) > a;(¢1), and af(0) < ap(x)
(SB-NSI 2) a(C1) = rmin{ca: (¢ om), ae(m)}
(SB-NSI 3) a;(C1) = min{ai(¢1 om), oi(m)}
(SB-NST 4) a¢(¢1) < max{as (¢ om),ap(m)} for all ¢,m € K.

Ezample 5.2. Consider a set K = {0, (1,71, 61} with the binary operation
‘o’ as given in the Table 3. Then (K;¢,0) is a BCI-A.

Let N' = (&, a4, o) be an SB-NSS in K as defined in the Table 4. It
is routine to verify that N' = (&, oy, af) is an SB-NSI of K.
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TaBLE 3. BCl-algebra

o | 0| C|m |0
010|006
G |G |[0]0]6
m | m|m| 0|6
01161160116, 0

TABLE 4. SB-Neutrosophic set

K1 a(Q) |eil(Q) | ar(C)
0] [081] | 0.9 | 01
G 07,08 07 | 03
m | [04,0.6] | 05 | 0.6
6, 0.2,05]| 0.1 | 0.8

Proposition 5.3. Let K be a BCK/BCI-A. Then every SB-NSI N =
(0, a4, ) of K satisfies the following assertion

at(C1) = rmin{ag (), (61)}
(5.1) Gom <= | ai(C) = min{a;(m),@(61)}
ar(C1) < max{ay(n), ap(01)}

for all (1,m1,01 € K.
Proof. Let (1,n1,61 € K be such that (1 o1 < 61. Then
ar(Grom) = rmin{a,((Gom) o 01), 0 (01)}
= rmzn{&t(O), &t(el)} = &t(Gl),
a; (G om) = min{a;((C1 om) o 01), a;(61)}
= min{ai(O), ai(el)} = ai(el),
ap(Grom) < maxfop((CLom)obr),ap(61)}
= maz{ay(0),ar(61)} = as(01).
It follows that for all (1,m € K, we have

ar(C1) = rmin{ca(C1om), ar(m)} = rmin{aw(01), ar(n)}

@;(C1) = min{ai(G om), ai(m)} > min{a;(01), ci(m)}

ayp(C1) < max{ayp(Crom),ar(m)} < maz{ay(h), ar(m)}
Hence, the proof is completed. ]
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Theorem 5.4. Every SB-NSS in a BCK/BCI-A K satisfying (SB-NSI
1) and assertion (5.1) in Proposition 5.3 is an SB-NSI of K.

Proof. Let N' = (&, oy, af) be an SB-NSS in K satisfying (SB-NSI 1)
and assertion (5.1). Since (1 ¢ (¢1 on1) < m for all (3,71 € K, we have,
ar(C1) = rmin{ax (G om), au(m)}

@;(C1) = min{ai(¢ om), ai(m)}
ay(Gr) < max{ar(Crom),ar(n)}-

Therefore, N' = (a, o, ay) is an SB-NSI of K. O

Theorem 5.5. Given an SB-NSS N = (a4, a;,a) in a BCK/BCI-A
K. Then N = (au, o, o) is an SB-NSI of K if and only if c™, au™,
a;, and o€ are FIs of K.

Proof. Suppose that N = (i, a4, arf) is an SB-NSI of . Then we have,
for all (1,m € K.
at(0) = a(C1), ai(0) > a;(¢1), and ay(0) < ap(Gr)
ar(Cr) = rmin{ax (G om), au(m)}
;(C1) = min{ai (¢ om), ai(m)}
ay(C1) < max{ay(Com), ar(m)}

a:(0) = @ (G) = [ (0), r T (0)] = [~ (G1), ™ (1))
=a;7(0) > oy (¢1) and T (0) > T (¢1).
ap(0) < ap(G) =1—ap0) =1 —ar(G) = ar(0) = ar ().

Now &;(¢1) = rmin{a(Cr o), ae(m)}
= [or ™ (¢1)s0(G1)]
= rman{[oy (GLom), ar T (Crom)], [ ™ (m), cawt (1))}
= [min{oy™ (G om), a0~ ()}, min{a™ (¢ om), ar ™ (m)}]

Therefore, oy~ (¢1) > min{oy™ (Gt om), e (m)}s
a;™(¢1) = min{ay (G om), ai (m)}-
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Also af(C1) < max{ag(Grom),ap(m)}
= 1—ap(¢1) > 1—maz{ag(Gom),ar(m)}
= af(G1) = min{l —ag(Gom),1 —as(m)}
= af(C1) = min{af(Gom), af(m)}

Therefore, oy, oy, «;, and ¢ are FIs of K. The converse part is
obvious. 0

Theorem 5.6. An SB-NSS N = (a, ay, o) of K is an SB-NSI of K if
and only if the non-empty sets U(cy; [l1,12]), U(cui;m), and L(ay;n) are
ideals of KC for all m,n € [0,1] and [l1,12] € [I].

Proof. The proof of theorem follows a similar approach to the proof
presented in the Theorem 4.7. U

Theorem 5.7. Given an ideal J of a BCK/BCI-A K, let N = (o,
a;, af) be an SB-NSS of K as defined in Equation (4.1). Then N =
(Qg, a4, 5) is an SB-NSI of K such that U(ay; [m,n2)) = T, U(ag;m) =
J, and L(ayg;n) =J.

Proof. Let (1,m e K. If ;om € J and m € J, then (1 € J and so
at(C1) = [m,me2] = rmand{ [, m2], [n, n2]} = rmin{a (G om), e (m)}
@i(C1) = m = min{m, m} = min{a;(¢1 ©m), a;(m)}
af(C1) =n =maz{n,n} = maz{ag(Ciom),ar(m)}.

If any one of (1 o7 and 7; is contained in 7, say (1 on1 € J, then

at(Crom) = [m,ml, ai(Gom) =m, ap(Crom) =n, a(m) = [0,0],
a;(m) =0, and ay(n1) = 1. Hence,

a:(C1) = [0,0] = rmin{[n, n2], [0, 0]} = rmin{a; (¢ ©m), a(m)}

@i(C1) > 0 =min{m,0} = min{a;(¢1 o m), i(m)}

ap(C) <1 =maz{n,1} = maz{ar(G om),ar(m)}.
If GGom ¢ and m ¢ J, then a; (¢ om) = [0,0], a;((1om) = 0,
ar(Ciom) =1, ag(m) = [0,0], ai(m) = 0, and ay(m) = 1. It follows
that

&t(gl) s [07 O] - rmin{[(], 0]7 [07 0]} - rmin{&t(cl < 771)&15(771)}
0 = min{0,0} = min{a; (¢ om), a;(m)}
1 = maa{1, 1} = maz{ay (G om), o (m)}.
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It is obvious that ay(0) = a(¢1), i (0) > a;(¢1), and af(0) < ap(¢r) for
all ; € K. Therefore, N' = (a4, a;,ay) is an SB-NSI of K. Obviously,
we have U(ay; [n1,1m2]) = T, U(ousm) = T, and L(ayg;n) = J. O

Theorem 5.8. For any non-empty subset J of K, let N' = (qy, a4, o)
be an SB-NSS of K as defined in Equation (4.1). If N' = (a4, a4, of) is
an SB-NSI of K, then J is an ideal of K.

Proof. Obviously, 0 € J. Let (3,m € K be such that ¢; ¢ m and
m € J. Then ay(Grom) = [n,me), ai(Gom) =m, ap(Gom) =n,
ai(m) = [m,n2], ai(n) = m, and af(n1) = n. Thus,

at(C1) = rmin{ax (G om), au(m)} = [771,"72]

;(C1) = min{ei (G om), ai(m)} =

ap(G) < maz{ap(Crom), ap(m)} =

and therefore, (; € J. Hence, J is an ideal of K. O
Theorem 5.9. In a BCK-A K, every SB-NSI is an SB-NSSA of K.

Proof. Let N' = (G, o, of) be an SB-NSI of a BCK-A K. Since ((; ¢
m) o <m forall (1,m € K, it follows from Proposition 5.3 that

ai(C1om) = rmin{a(C1), ar(m)}
ai(C1om) = min{a; (1), i(m)}
af(Grom) < maz{ap(Cr), ap(m)}

for all (1,m € K. Hence, N' = (ay, a;, af) is an SB-NSSA of a BCK-A
K. O

>
<

The converse of the Theorem 5.9 may not be true, as shown in the
following example.

Ezample 5.10. Consider a BCK-A K = {0, (;,m, 601} with a binary op-
eration ‘¢’ as shown in the Table 5. Let N' = (ay, o, af) be an SB-
NSS of K as defined in the Table 6. Then N = (a4, ) is an
SB-NSSA of K However, it is not an SB-NSI of a BCK-A K because

ar(C1) < rmin{a (¢ om), ar(m)}-

In the following theorem, we provide a condition for an SB-NSSA to
be an SB-NSI of a BCK-A.
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TABLE 5. BCK-algebra

o1 0| C|m|b
010|001 O0
GG |00 ]G

m | m |G| 0|m
0116116011610

TABLE 6. SB-Neutrosophic set

K1 ) [ailQ)]ar()
0 [[0509]] 08 | 03
¢ 04,07 03 | 04
n | [0.5,09] | 03 | 05
6, [01,03] ] 0.7 | 1

Theorem 5.11. Let N = (ou, o, a¢) be an SB-NSSA of a BCK-A K
satisfying the conditions

( ai(C1) = rmin{ay(m), cax(61)} )
(5.2) Gom < b= | «(C)>min{a;(m),ai(01)}
af(C) < maxfay(m),or(61)}

for all ¢i,m, 01 € K. Then, N = (0u, i, auy) is an SB-NSI of K.
Proof. For any (1 € K, we get
at(0) = (G o C1) = rmin{a (1), e (G)}
= rmin{loy ™ (C), 0T (C)], few ™ (1), (G
= [y (¢1), o (G1)] = @ (),
@;(0) = a;(C1 o C1) = min{a;(C1), 2i(G)} = i(G),
af(0) = af(Ci o) < maz{af(Cr), ap(G)}t = ar(G).
Since ¢ ¢ ((1 om) < m for all {;,m € K, it follows that
at(C1) = rmin{a(Cr om), ar(m)}
;(C1) = min{ai (¢ om), ai(m)}
ay(C) < maz{oyp(Gom), op(m)}
for all ¢1,m € K. Therefore, N' = (a4, o, a¢) is an SB-NST of K. O
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Definition 5.12. An SB-NSIof N = (@, o, a¢) of a BCI-A K is said to
be closed if a;(00¢1) = a(C1), ai(00¢1) > a;(¢1), and ap(00¢1) < o (Cr)
for all (1 € K.

Theorem 5.13. In a BCI-A K, every closed SB-NSI is an SB-NSSA.

Proof. Let N' = (au, a;,ay) be a closed SB-NSI of a BCI-A K. By
using Definition 5.1, (2.8), (2.2), and Definition 5.12, we obtain for all

G,m ek
ag(Crom) = rmin{ay((C1om) o 1), (1)}
= rmin{a((C1 o 1) om), (1)}
= rmin{a:(0om), a(C1)} = rmin{a(m), o (G)},

min{a;

Y

7

((C1om) o), ai(C)}
min{a;((C1 o C1) om), i(Cr)}
min{a; (00 m1), ai(C)} = min{os(m), ai(C1)}
ap(Crom) < max{op((Crom) o), ap(Ci)}
=maz{as((G1o¢)om),ap(C1)}
= maz{ap(0om),ar(C)} < maz{ayp(m),ar(Ci)}-
Hence, N' = (a4, a4, of) is an SB-NSSA of K. O
Theorem 5.14. In a weakly BCK-A K, every SB-NSI is closed.

Proof. Let N = (o, o, ap) be an SB-NSI of a weakly BCK-A K. By
using Definition 5.1 and (2.15), for any (; € K, we obtain

ar(00¢1) = rmin{a:((00 (1) o C1),a:(C1)}
= rmin{a(0), a(C1)} = au(Gr),
a;(00¢1) = min{ai((00¢1) © 1), (1)}
= min{a;(0), i(C1)} = i(C1),
ap(00¢) <maz{ar((00¢) o), ar(C)}
= maz{ay(0), ar(C1)} = ar(Gr).
Therefore, N' = (o, o, af) is a closed SB-NSI of K. O

Corollary 5.15. In a weakly BCK-A, every SB-NSI is an SB-NSSA of
K.

In the following example, we show that any SB-NSSA may not be an
SB-NSI of a BCI-A.

a;(C1om)

7

—~ o~

o
o
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Ezample 5.16. Consider a BCI-A I = {0, {y,m1,01,4, (5} with binary
operation ‘o’ as shown in the Table 7. Let N' = (&, o, a¢) be an SB-NSS
of K defined in the Table 8. It is routine to verify that N' = (&, 4, arf)
is an SB-NSSA of K. However, it is not an SB-NSI of K since a;(¢4) <

rmin{ag(Cqs o 61),a:(01)}.

TABLE 7. BCl-algebra

o |0 |G| m|b1]C]|G
0 0 0 91 m 01 (91
Cl[C| 0|61 |m|61]6
m m|m|0|60:]0]0
6|01 61 m |0 |m|m
G Cm |G |[6h]0]G
GG m|G|t|G]0

TABLE 8. SB-Neutrosophic set

K| () | ailGr) | af(Cr)
0110508 | 09 | 0.1
G 0.,03]] 03 | 07
10508 0.9 | 01
6, 10508 | 09 | 01
G 0,03 03 | 07
G 01,03 03 | 0.7

Theorem 5.17. In a p-semisimple BCI-A K, the following are equiva-
lent

(i) N = (&, a;,a5) is a closed SB-NSI of K.
(i) N = (au, i, ap) is an SB-NSSA of K.
Proof. (i) = (ii) See Theorem 5.13.
(i) = (i)
Let N = (a4, oy, af) is an SB-NSSA of K. For any (; € K, we obtain
at(0) = a(C1 0 C1) = rmin{ae (1), ar(C)} = a(C1)
a;(0) = (1 0 C1) = min{ai(¢1), 2(C1)} = (1)
ap(0) = ar(C1o ) < max{op(C), ap(C)} = ap(Cr)-
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Hence,
at(0 0 ¢1) = rmin{ay(0), ay(C1)} = ax(C1)
a;(00 1) = min{ai(0), os(C1)} = 2(C1)
ar(00C) < maz{ap(0), ap(C)} = ap(Gr)
for all {; € K. Let (1,m € K. Then
ar(C1) = aw(m o (m o C1)) = rmin{ar(m), ar(m © 1)}
= rmin{a:(m), (0o (¢ om))} = rmin{a (¢ om), ar(m)},
a;(C1) = a;(m < (m o C1)) = min{ai(m), ci(m o )}
= min{a;(m), (0o (G om))} = min{ai(C1 om), ai(m)},
ap(C) = ag(m o (m o)) < maxf{ay(m),or(m o)}
=maz{as(m),ap(0o (Crom))} < max{ap(Crom),ar(m)}
Therefore, N' = (a, a4, af) is a closed SB-NSI of K. O

Since every associative BCI-A is a p-semisimple, we have the following
corollary

Corollary 5.18. In an associative BCI-A K, the following are equiva-
lent

(i) N = (ou, a4, f) is a closed SB-NSI of K.
(i) N = (ay, i, ap) is an SB-NSSA of K.
Definition 5.19. Let K be an (s)-BCK-A. An SB-NSS N = (a, a4, o)

is called an SB-neutrosophic o-subalgebra of /C if the following assertions
are valid

ar(Crom) = rmin{ay(C1), & (m)}

a;(¢1om) = min{a;(¢1), as(m)}

ap(Crom) < max{af(Cr),ar(nm)} for all (,m € K.

Lemma 5.20. Every SB-NSI of a BCK/BCI-A K satisfies the following
assertion

G <m = (1) = ar(m), i(C1) = ai(m), and ap(Cr) < ap(m)

for all {1,m € K.

Proof. Assume that ¢4 < for all {1,m € K. Then {3 o1 = 0 and so
ar(C1) = rmin{az (G om), a(m)} = rmin{at(0), ar(m)} = ae(m)
a;i(C1) = min{ai(¢1 om), ai(m)} = min{a;(0), ai(m)} = ou(m)
ar(C) < maz{ayp(Gom),ap(m)} = maz{ayp(0),ap(m)} = ay(m).
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for all (1,m € K. O

Theorem 5.21. In an (s)-BCK-A, every SB-NSI is an SB - neutro-
sophic o-subalgebra.

Proof. Let N' = (o, a;,af) be an SB-NSI of an (s)-BCK-A K. Since
(Crom) o <m forall (1,m € K, we obtain

ar(Crom) = rmin{ay((¢1om) o C1), (1)} = rmin{a(m), a(¢1)}
@i(C1om) = min{a;((C1om) o C1), i(C1)} > min{ai(m), (1)}
ay(Com) <mazx{ap((Ciom) o), ap(C)} < max{ay(m),op(Cr)}-

Therefore, N' = (&, a;, ay) is an SB-neutrosophic o-subalgebra of K. O

Theorem 5.22. Let N = (ay, a;,af) be an SB-NSS in an (s)-BCK-A
K. Then N = (&, oy, ay) is an SB-NSI of K if and only if the following
assertion is valid

ar(C1) = rmin{ag (), a:(01)}
(5.3) G<mobr= | a(G)=min{ai(m),o(6h)}
as(Cr) < max{ag(m),ap(01)}

for all (1,m1,01 € K.

Proof. Assume that N' = (@, oy, of) is an SB-NSI of K Let (1, m1, 01 € K
be such that {1 < 17 0 6;. Then we have

ar(C1) = rmin{ag (¢ o (m 0 601)), ae(m 0 01)} = rmin{a(0), ax(n 0 61)}
= ay(n1 001) = rmin{ai(n1),a(61)},
@;(C1) = min{ai(C1 o (m 0 61)), ai(ny 0 01)} = min{ai(0), o (m 0 61)}
= a;(m 0 61) > min{a;(m), a;(01)},
ap(C) < maz{ag(Cro (mob61)),ap(m ob1)} =max{ar(0),op(n o)}
= ay(m o 01) < max{oyp(m),op(61)}-
Conversely, let N' = (o, a;, af) is an SB-NSS in an (s)-BCK-A K
satisfying the condition (5.3). Since 0 < (3 o (3 for all ¢; € K, we have
at(0) = rmin{a.(G), ae(C1)} = au(G)
;(0) = min{a;((1), @i (G1)} = (1)
ayp(0) < max{oyp(Gr), ap(G)} = ap(G).
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Since (1 < ({1 omp) om for all (3,m1 € K, we obtain
ar(C1) = rmin{ax (G om), ax(m)}
;(C1) = min{ai(¢ om), ai(m)}
ap(G) < maz{oyp(Crom), ap(m)}
Therefore, N' = (a, a4, of) is an SB-NSI of K. O

6. CONCLUSION

In this research, we introduced the new concept of SB-neutrosophic
sets (SB-NSS), a powerful extension of the NSS, and illustrated its basic
operations with examples. The application of SB-NSS to BCK/BCI-As
led us to the definition of SB-NSSA and SB-NSI, where we thoroughly
explored their properties. In particular, we established crucial conditions
for identifying various relationships between SB-NSS, SB-NSSA, and
SB-NSI within the context of BCK/BCI-As. Our study also included a
comprehensive discussion of homomorphic pre-image and translation of
an SB-NSSA | which provided valuable insights into the practical implica-
tions of these concepts. The study opens possibilities for future research
extending the application of SB-NSS to implicative, positive implicative,
and commutative ideals, as well as to the field of soft SB-neutrosophic
ideals. These extensions have the potential to provide valuable insights
and solutions to complex real-world challenges and improve our under-
standing of algebraic-structures.
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