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Abstract. We present an algorithm for computing A-annihilated elements of

the form QI [1] in H∗QS
0 where I runs through admissible sequences of positive

excess. This is an algorithm with polynomial time complexity to address a sub-

problem of an unsolved problem in algebraic topology known as the hit problem

of Peterson which is likely to be NP-hard.
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1. Introduction

Given a topological spaceX and an integer d ≥ 0,H∗(X;F2) =
⊕

d≥0H
d(X;F2)

is a graded F2-algebra. For k ≥ 0 and d > 0, there are F2-linear homo-

morphisms Sqk : Hd(X;F2) → Hd+k(X;F2) known as Steenrod squares.

These ‘cohomology operations’ have nice properties. In particular, for all

x ∈ Hd(X;F2) we have

• Sqk(x) = 0 if k > d and Sqkx = x2 if k = d.
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• The operation Sq0 is just the identity.

• For f, g ∈ H∗(X;F2), Sq
k(fg) =

∑k
i=0 Sq

i(f)Sqk−i(g) (Cartan for-

mula)

These operations live in an associative and non-commutative algebra, called

the (mod 2) Steenrod algebra, denoted A. The hit problem is to determine

H∗(X;F2) as a left module over A. For the cohit module defined by

Qd(H∗(X;F2)) := Hd(X;F2)⊗A F2

the hit problem asks for determining an F2-basis for Q
d(H∗(X;F2)).

ForX(n) = RP×n it is known that P (n) := H∗(X(n);F2) ≃ F2[x1, x2, . . . , xn :

deg(xi) = 1] as an algebra. The hit problem of Peterson is concerned with de-

termining generators of P (n) or equivalently determining the cohit module

Qd(n) := Qd(P (n)). This problem is open for n > 5 (see [9],[5],[6]). For

X = BO(n), it is known that

H∗(BO(n)) ≃ P (n)Σn ≃ F2[ei : deg(ei) = i, i > 0].

The hit problem in this case is known as the symmetric hit problem which is

open for n > 4 (see [2],[3]).

2. Hit problem in homological setting

The hit problem is often addressed by determining relevant numerical invari-

ants such as dimF2
Qd(H∗(X;F2) or at least providing an upper bound in the

dimension of cohit module. To study the problem in homological setting, notice

that by the Universal Coefficient Theorem, over F2, we have duality between

vector spaces Hd(X;F2) and Hd(X;F2), and the operation Sqi induces a dual

operation on vector spaces Sqi∗ : Hd(X;F2) → Hd−i(X;F2). Consequently,

setting

AnnA(Hn(X;F2)) := {x ∈ Hn(X;F2)|Sqi∗x = 0 for all i > 0}

we have a duality of vector spaces over F2 as

HomF2
(Qd(Hn(X;F2))),F2) ≃ AnnA(Hn(X;F2)).

Therefore, the hit problem in dual setting is to determine the submodule of

A-annihilated classes in H∗(X;F2) given by
⊕+∞

n=1 AnnA(Hn(X;F2)). Let’s

note that this action turn homology of a given space X into a left Aop-module

where Aop denotes the opposite algebra of A.

3. Main results

A solution to the symmetric hit problem for all n is equivalence to solving it

for X = Z×BO and vice versa. We have considered this point of view in [10].

We prefer study the dual of the symmetric hit problem. For QS0 = colim ΩiSi,

the unit of the KO spectrum provides a map QS0 → Z×BO which induces a
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monomorphism of Aop-modules in homology. We may ask for the description of

A-annihilated classes in H∗QS
0 whose complete description is unknown. But,

there are some sufficient conditions that allow one to identify some of these

classes. Recall that the homology of QS0 is a polynomial algebra ‘generated’

by Dyer and Lashof by symbols QI [1] where QI is an iterated Kudo-Araki

operation given by QI := Qi1 · · ·Qis for I = (i1, . . . , is) which are required to

satisfy ij ⩽ 2ij+1 for all j = 1, . . . , s − 1. The following is due to Curtis [1,

Lemma 6.2, Theorem 6.3] (see also Wellington [7, Theorem 5.6] as well as [8]).

Theorem 3.1. For a natural number n with its binary expansion given by

n =
∑+∞
i=0 ni2

i with ni ∈ {0, 1} we define ϕ(n) = min{i : ni = 0}. Then, a

generator QI [1] of H∗QS
0 with I = (i1, . . . , is), s > 1, is A-annihilated if and

only if ex(I) < 2ϕ(i1) and 0 ≤ 2ij+1 − ij < 2ϕ(ij+1) for 1 ≤ j ≤ s− 1. If s = 1,

i.e. I = (i) then QI [1] is A-annihilated if and only if i < 2ϕ(i), i.e. i = 2t − 1.

Here, ex(I) = i1 − (i2 + · · ·+ is).

Here, Qi is the i-th Kudo-Araki operations which acts on F2-homology of

QS0. The aforementioned result of Curtis, reduces the problem to determining

all sequences I that satisfy the given conditions. We say I = (i1, . . . , ir) is an

(indecomposable) A-annihilated if it satisfies conditions of Theorem 3.1. Our

main result is an algorithm that determines all such sequences.

Theorem 3.2. Suppose r > 2 and i0 > 0 are given. Consider the following

algorithm.

For k = 0, . . . , r − 1 do the following

(1) n := ik;

(2) choose an allowable 0 in the binary expansion of n, say ni, and set ϕ(m) = i− 1;

(3) for j ≤ ϕ(m) set mj := nj+1;

(4) for 0 ≤ j < ϕ(m) set mj := 1

(5) ik+1 :=
∑ψ(ik)−2
j=0 mj2

j

Then I = (i1, . . . , ir) is an A-annihilated sequence. Moreover, by choosing var-

ious different allowable 0s, the above algorithm determines all such sequences.

In particular, the set of A-annihilated sequence I of length r and dimension

|I| = i0 would be included in the set of A-annihilated sequences produced by the

above algorithm.

There is a notion of an allowable 0 which we shall introduce in the next

section. Here, specifically for positive integers m and n we fix that mj , nj ∈
{0, 1} are the coefficients of binary expansion of m and n, respectively. More

precisely, m =
∑+∞

0 mj2
j and likewise n. It is possible to derive codes that

could be used by machine to perform computations, and we have done this and

determined all A-annihilated classes QI [1] with i1 + · · · is ⩽ 227. It is fairly

simple to compute the complexity of the above algorithm.
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Corollary 3.3. The complexity of our algorithm is O(t3). In particular, our

algorithm is run in polynomial time.

For the hit problem, the following seems of interest. Although, it is in

contrast with the conjecture that the hit problem of Peterson in NP-hard.

Corollary 3.4. (i) For every k > 0, there is a submodule inside⊕k
n=1 AnnA(Hn(QS

0;F2)) which is determined in polynomial time.

(ii) For every k > 0, there is a submodule inside
⊕k

n=1 AnnA(Hn(Z×BO;F2))

which is determined in polynomial time.

Proof. Note that our algorithm computes a submodule inside
⊕

n=1 AnnA(Hn(QS
0;F2)).

Recall that the obvious map QS0 → Z×BO, provided by the unit of the KO-

spectrum S0 → KO, induces a monomorphisms of A-modules Hn(QS
0;F2) →

H∗(Z×BO;F2) [4]. Applying Corollary 3.4 our claims follow. □

Finally, notice that we could define a formal evaluation from the Dyer-Lashof

algebra R to H∗QS
0 sending QI to QI [1] which is an homomorphism of Aop-

modules. Consequently, our algorithm provides A-annihilated monomials in

R. Furthermore, noting that R is a quotient of the Λ algebra [8], we have a

similar conclusion for monomials λI in the Λ algebra.

4. Sketch of Proof for Theorem 3.2

We begin with a simple reduction result.

Lemma 4.1. For I = (i1, . . . , ir) let i0 := i1+· · ·+ir. Then I is A-annihilated

if and only if for (i0, I) := (i0, i1, . . . , ir) we have 0 < 2ij+1 − ij < 2ϕ(ij+1) for

all j ∈ {0, . . . , r − 1} where i0 = |I|.

This immediately follows from the definition of ex(I) as defined in Theorem

3.1. Our next observations, mostly are so easy to prove once we work with

binary expansions. First, we make another simple, yet useful, definition. Define

ψ : N → N ∪ {0} by

ψ(n) = max{j : nj = 1}+ 1 = min{j : ∀k ≥ j, nk = 0}.

The following lemma records some nice properties of ϕ and ψ.

Lemma 4.2. Suppose I = (i1, . . . , ir) is an admissible sequence with ex(I) > 0

such that 0 < 2ij+1 − ij < 2ϕ(ij+1). Then, fixing i0 =
∑r
j=1 ij, we have

• I is strictly decreasing with all of its entries being odd.

• ϕ(i1) ≤ · · · ≤ ϕ(ir).

• For all j ∈ {2, . . . , r} we have ψ(ij) = ψ(ij−1)− 1.

• If i0 is non-spike, then we have ψ(i1) = ψ(i0)− 1.

Here, k ∈ N is called spike if k = 2t − 1 for some t > 0.
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Our next observation completely resolved the case when i0 is spike.

Lemma 4.3. (i) Suppose I is an A-annihilated sequence such that i0 = 2t − 1

for some t > 0. Then, I = (2t − 1).

(ii) Suppose I = (i1, . . . , ir) is an A-annihilated sequence so that ij is a spike

for some j. Then, j = r.

So far, our results tell us that if we are given ij then the binary expansion of

ij+1 is somehow determined by that of ij . The bottom line is that ij+1 inherits

some part of the binary expansion of ij but with a shift to the right, up to

allowable 0s that are possible to choose by the algorithm. Hence, it suffices

to clarify what 0s are allowable. Our next result, tells us which 0s should

not be chosen, informally introducing forbidden 0s, opposite to which we have

allowable 0s in our algorithm.

Lemma 4.4. Suppose n =
∑ψ(n)
i=1 ni2

i is a positive integer where ni ∈ {0, 1}.
(i) If n0 = 0 or n1 = 0 then in either case, we have a forbidden 0.

(ii) For any positive integer n, nϕ(n) = 0 is a forbidden 0.

(iii) If n is even then ϕ(n/2) + 1 corresponds to a forbidden 0.

(iv) Let n be even and t be the least positive integer such that for all ϕ(n/2)+1 <

j < t−1 we have nj = 0 and nt = 1. Then, for any such j, nj = 0 is a forbidden

0.

(v) If m is not a spike then ψ(n) corresponds to a forbidden 0.

Finally, we have our main constructive result by which we mean it allows to

find the building blocks of our algorithm. We have the following.

Theorem 4.5. Assume m and n are positive integers with binary expansions

m =
∑
jmj2

j and n =
∑
j nj2

j. If (i) For all i ≥ ϕ(m) we have ni+1 = mi;

(ii) ϕ(n) ≤ ϕ(m) such that ϕ(n) = ϕ(m) if and only if nϕ(m)+1 = 0 and

ϕ(n) > 0 and ϕ(n) < ϕ(m) if and only if there exists 0 < j < ϕ(m) such that

nj = 0 and nϕ(m) = 1 and nϕ(m)+1 = 0.

The converse also does hold, that is if the above conditions are satisfied then

0 < 2m− n < 2ϕ(m).

Our algorithm now easily follows by applying this theorem iteratively.

Example 4.6. Let i0 = 33 and r = 3. For the binary expansion of 33 given by

33 :

B︷︸︸︷
0 1

B︷︸︸︷
000 01

we have the above ‘blocks’ of allowable 0s. Here, the most left 0 corresponds to

ψ(33) is an allowable 0. According to choices of allowable 0s we will have just

two cases.
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i0 : 0 1 0 0 0 0 1

i1 : 0 0 1 0 0 0 1

i2 : 0 0 0 1 0 0 1

i3 : 0 0 0 0 1 0 1

i0 : 0 1 0 0 0 0 1

i1 : 0 0 1 0 0 0 1

i2 : 0 0 0 1 0 0 1

i3 : 0 0 0 0 1 1 1
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