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Abstract. In this paper, we study the geometric properties of Finsler ¥.—spaces.
We prove that Infinite series ¥ —spaces are Riemannian.
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1. Introduction

Let M be a C*° manifold and p : M x M — M, pu(z,y) = z.y be a
differentiable multiplication. The space M with the multiplication p is said to
be symmetric if the following conditions hold:

(1) zax==

(2) z(zy) =y
(3) @.(y.2) = (w.9)(@-2)
(4) Every point x has a neighborhood U such that z.y = y

implies y = x, for all y € U.
The notion of symmetric spaces is due to E. Cartan and reformulated by O.
Loos as pair (M, u) with conditions (1) — (4) in [18]. A. J. Ledger [15, 10]
initiated the study later, generalized symmetric spaces or regular s—spaces.
Let M be a C°°—manifold with a family of maps {s;}.cn. The space M is
said to be a regular s—space if the following conditions hold:
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(a) szz =,
(b) s, is a diffeomorphism,
(€) 8208y = Ss,y O Sz,
(d) (s.)« has only one fixed vector, the zero vector.
Y —spaces and reduced Y—spaces where first introduced by O. Loos [18] as
generalisation of reflection spaces and symmetric spaces [19]. They include
also the class of regular s—manifolds [9].

The definition of symmetric Finsler space is a natural generalization of E.
Cartan’s definition of Riemannian symmetric spaces. We call a Finsler space
(M, F) as a symmetric Finsler space if for any point p € M there exists an
involutive isometry s, of (M, F') such that p is an isolated fixed point of s,,.

If we drop the involution property in the definition of symmetric Finsler
space keeping the property s; o s, = s, 085,, 2 = s, (y) we get a bigger class of
Finsler manifolds as symmetric Finsler spaces [0, 8, 10, 22]. Finsler ¥—spaces
were first proposed and studied by the second authors in [11].

2. Preliminaries

A Finsler metric on a C*° manifold of dimension n, is a function F' : TM —
[0, 00) which has the following properties:
(i) F'is C* on TMy =TM {0},
(ii) F is positively 1—homogeneous on the fibers of tangent
bundle TM,
(iii) For any non-zero y € T, M, the fundamental tensor g, :
T.M xT,M — R on T,,M is positive definite,
2

gy(u7 U) = 5 asat
Then (M, F) is called an n-dimensional Finsler manifold.

[FZ(Z/ + su+ tv)]|s=t=0, u,v € TyzM.

One of the main quantities in Finsler geometry is the flag curvature which
is defined as follows:

K(P7 y) — gy(R(uvy)yvu)

9y (¥ y)gy (U, u) — g5 (y,u)’
where P = Span{u,y} is a 2—plane in T, M,

R(u,y)y = VuVyy — VyVuy — Vi 1y

and V is the Chern connection induced by F' [5, 21].

For a Finsler metric F' on n—dimensional manifold M, the Busemann-
Hausdorff volume form dVp = op(x)daz!...dx™ is defined by
_ Vol(B™(1))
Vol{(y) € R|Fyis:

op(x) <1
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Let R )
i 1 ,,0°(F O(F
G:ngl[ EC )lyk_ ( l)},
4% "0xkoy ox
denote the geodesic coefficients of F' in the same local coordinate system. The
S—curvature can be defined by

() = G (0.9) ~ ' s linoe(a)],

where y = yi% € TyM (see [5]). The Finsler metric F' is said to be of
isotropic S—curvature if

S = (n+1)cF,

where ¢ = ¢(z) is a scalar function on M.

Let (M, F) be an n—dimensional Finsler manifold. The non-Riemannian
quantity Z—curvature = = Z;dz’ on the tangent bundle TM, is defined by

Ei =S.imy™ — Sy,

W

where S denotes the S—curvature, “.” and “|” denote the vertical and horizontal
covariant derivatives, respectively. We say that a Finsler metric have almost
vanishing Z—curvature if
- 2,0
== —(n+ DF (5,
where 6 = 0;(x)y® is a 1-form on M [21, 7].

3. (o, B) — X— spaces

We first recall the definition and some basic results concerning ».—spaces

[17].

Definition 3.1. Let M be a smooth connected manifold, ¥ a Lie group, and
M xE x M — M asmooth map. Then the triple (M, X, u) is a X—space
if it satisfies

(Z1): p(z,0,2) =
(E2): plz,e,y) = v,
(33): (@, 0,1z, 7,y)) = w(@,07,y)

(3s5): pl@,0,u(y, 7,2)) = pu(z,0,y), 070, u(x, 0, 2))
where z,y,z € M, o,7 € ¥ and e is the identity element of ¥. The triple
(M, %, 1) is usually dinoted by M.

For a fixed point © € M we define a map o, : M — M by 0, (y) = u(z,0,y)
and a map o® : M — M by 0%(y) = o,(x). with respect to these maps the
above conditions become

()t oola) =,
(25): ex =idy,
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(23): 00T = (07)s
(E;l): UzTyU;1 = (JTU?I)JI(y)'
For each z € M by ¥, we denote the image of ¥ under the map > — ¥,
o —> 0. For each o € ¥ we define (1,1) tensor field S on the X—space M
by
87X, = (0,)s Xy VxeM, X, eT,M.

Clearly S is smooth.
Definition 3.2. A Y—space M is a reduced Y —space if for each x € M,
(1) T, M is generated by the set of all 0%(X,), that is
T.M = gen{(I — S°)X,|X, € T,M,0 € ¥},

(2) If X, € T, M and 0”X, = 0 for all ¢ € ¥ then X, = 0, and thus no
non-zero vector in 7, M is fixed by all S7.

Definition 3.3. A Finsler ¥ —space, denoted by (M, ¥, F') is a reduced X —space
together with a Finsler metric F' which is invariant under ¥, for p € M.

Definition 3.4. let a = y/a;;(x)y’y? be a norm induced by a Riemannian
metric @ and B(z,y) = b;(x)y’ be a 1-form on an n-dimensional manifold M ,
and let

[B(z)lla == 1/ @7bi(x)b; (). (3.1)
Now , the function F is defined by ,
F = ag¢(s) s = g, (3.2)

where ¢ = ¢(s) is a positive ¢* function on (—by, by) satisfying
o(s) — s¢'(s) + (b — %) (s) >0,  [s| <b< by (3.3)
Then by lemma 1.1.2 of [3],F is a Finsler metric if ||3(x)||o < bo for any z € M

. A Finsler metric in the form (3.2) is called an (o, 8)— metric [1,3]. A Finsler
space having the Finsler function ,

B2 (2,y)
F(LU, y) = ) (3’4)
B(xﬁlj) - a(xyy)
is called a Finsler space with an infinite series(c, ) - metric.
now we present the main results

2

Lemma 3.5. Let (M,%, F) be an infinite series X— space with F = b
-«

defined by the Riemannian metric a and the vector field X. Then (M,X,a) is
a Riemannian Y—space.

Proof. Let o,, be a diffeomorphism o, : M — M defined by o, (y) = u(z, 0,y).
Then for p € M and for any y € T,,M we have
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F(p,Y) = F(o.(p),do.(Y)),
Applying equation (3.4) we get
(X, y)? _ A(Xo, (), dow(y))?

a(Xp,y) = Valy,y) (X, ), dos(y)) = valdos(y), dow(y))

i

which implies
(X, 9)* WX o, (), Ao (y)) — @(Xp,y)*Va(doy(y), doe(y))

= a’(Xﬂ'm(p)7 dgz(y))2d(Xpa y) - d(Xcrm(p% daz(y))Q V d(y7 y) (35)
Applying the above equation to —Y', we get

@(Xp,y)2a(Xo, (p): doa(y)) + a(Xp, y)*Va(dou (y), dos (y))

= a(XO'l-(p)? dax(y))Qa(Xpa Z/) + EL(XO',;(p)7 daw(y))Q V d(y7 y)a (36)
Applying equations (3.5)a nd (3.6), we get
a(Xp,y) = a(Xo, (p), do(y)) (3.7)

Subtracting equation (3.5) from equation (3.6) and using equation (3.7), we
get

a’(yv y) = d(daw (y)7 doy (y))

Thus o, is an isometry with respect to the Riemannian metric a. O

Lemma 3.6. Let (M,X,a) be a Riemannian ¥—space. Let F' be an infinite se-
ries defined by the Riemannian metric a and the vector field X. Then (M, %, F)
is an infinite series Y—space if and only if X is o—invariant for all x € M.

Proof. Let X be o,—invariant. Then for any p € M, we have X, (,) = do,X,,.
Then for any y € T, M we have
a(Xo, (p); dogyp)?
W(Xo, (p)> do2yp) — v/ A(do2yp, dosyp)
a(do Xy, doyyy)?
a(doy Xy, dogyy) — /a(doryp, dogyp)

F(o:(p), dowyy)

_ &(mep)Q
a(Xp, Yp) — vV a(yp, vp)
= F(pa yp)

Conversely, let F' be a ¥j; — invariant. Then for any p € M and y € T, M,
we have

F(p,Y) = F(o4(p), dox(Y))
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Applying the lemma (3.5) we have

d(XZN y) = d(Xaz(p)a dgw(y))

which implies

&(yv y) = &(daz (y)v do (y)) (38)
Combining the equation (3.7) and (3.8) , we get

é(me) = CNl()(vfm(p% sz(y)) (3‘9)
Therefore do, X, = X _(p)- O

Theorem 3.7. An infinite series 3—space must be Riemannian

2
Proof. Let (M,%, F) be an infinet series ¥—space with F = S defined
-

by the Riemannian metric a and the vector field X. Let o, be a diffeomor-
phism defined by o, (y) = p(z, o, y). by lemma (3.5) (M, X, a) is a Riemannian
Y. —space. Thus we have
A(Xo, dos(y))?
a(Xe,dog(y)) — \/&(dar(y), do,(y))
a( X, dow(y))Z

(X, dos(y)) — valy,y)

= F('Tay)

F(:L’, dazy) =

Therefore a(X,,doyy) = a(Xy,y), Vy € T, M. The tangent map S7 = (doy),
is an orthogonal transformation of T, M without any nonzero fixed vectors. So
we have a(X,, (57 —id),(y)) =0, Vy € T, M. Since (S — id), is an invertible
linear transformation, we have X, = 0, Vx € M. Hence F is Riemannian. [
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