Invariant infinite series metrics on reduced Σ -spaces

Simin Zolfegharzadeh and Megerdich Toomanian*

Department of Mathematics, Karaj Branch, Islamic Azad University Karaj, Iran

E-mail: toomanian@kiau.ac.ir

E-mail: simin.zolfegharzadeh@kiau.ac.ir

Abstract. In this paper, we study the geometric properties of Finsler Σ -spaces. We prove that Infinite series Σ -spaces are Riemannian.

Keywords: Finsler metric, (α, β) – metric, infinite series metric

1. Introduction

Let M be a C^{∞} manifold and $\mu: M \times M \longrightarrow M$, $\mu(x,y) = x.y$ be a differentiable multiplication. The space M with the multiplication μ is said to be symmetric if the following conditions hold:

- (1) x.x = x
- $(2) \ x.(x.y) = y$
- (3) x.(y.z) = (x.y)(x.z)
- (4) Every point x has a neighborhood U such that x.y = y implies y = x, for all $y \in U$.

The notion of symmetric spaces is due to E. Cartan and reformulated by O. Loos as pair (M, μ) with conditions (1) - (4) in [18]. A. J. Ledger [15, 16] initiated the study later, generalized symmetric spaces or regular s-spaces. Let M be a C^{∞} -manifold with a family of maps $\{s_x\}_{x\in M}$. The space M is said to be a regular s-space if the following conditions hold:

^{*}Corresponding Author

AMS 2020 Mathematics Subject Classification: 53C30, 53C60

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2023 The Author(s). Published by University of Mohaghegh Ardabili

- (a) $s_x x = x$,
- (b) s_x is a diffeomorphism,
- (c) $s_x \circ s_y = s_{s_x y} \circ s_x$,
- (d) $(s_x)_*$ has only one fixed vector, the zero vector.

 Σ —spaces and reduced Σ —spaces where first introduced by O. Loos [18] as generalisation of reflection spaces and symmetric spaces [19]. They include also the class of regular s—manifolds [9].

The definition of symmetric Finsler space is a natural generalization of E. Cartan's definition of Riemannian symmetric spaces. We call a Finsler space (M, F) as a symmetric Finsler space if for any point $p \in M$ there exists an involutive isometry s_p of (M, F) such that p is an isolated fixed point of s_p .

If we drop the involution property in the definition of symmetric Finsler space keeping the property $s_x \circ s_y = s_z \circ s_x$, $z = s_x(y)$ we get a bigger class of Finsler manifolds as symmetric Finsler spaces [6, 8, 10, 22]. Finsler Σ -spaces were first proposed and studied by the second authors in [11].

2. Preliminaries

A Finsler metric on a C^{∞} manifold of dimension n, is a function $F:TM\longrightarrow [0,\infty)$ which has the following properties:

- (i) F is C^{∞} on $TM_0 = TM$ $\{0\}$,
- (ii) F is positively 1-homogeneous on the fibers of tangent bundle TM,
- (iii) For any non-zero $y \in T_xM$, the fundamental tensor g_y : $T_xM \times T_xM \longrightarrow R$ on T_xM is positive definite,

$$g_y(u,v) = \frac{1}{2} \frac{\partial^2}{\partial s \partial t} [F^2(y + su + tv)]|_{s=t=0}, \quad u, v \in T_x M.$$

Then (M, F) is called an *n*-dimensional Finsler manifold.

One of the main quantities in Finsler geometry is the flag curvature which is defined as follows:

$$K(P,y) = \frac{g_y(R(u,y)y,u)}{g_y(y,y)g_y(u,u) - g_y^2(y,u)}, \label{eq:KP}$$

where $P = Span\{u, y\}$ is a 2-plane in T_xM ,

$$R(u,y)y = \nabla_u \nabla_y y - \nabla_y \nabla_u y - \nabla_{[u,y]} y$$

and ∇ is the Chern connection induced by F [5, 21].

For a Finsler metric F on n-dimensional manifold M, the Busemann-Hausdorff volume form $dV_F = \sigma_F(x) dx^1 ... dx^n$ is defined by

$$\sigma_F(x) = \frac{Vol(B^n(1))}{Vol\{(y^i) \in R^n | F(y^i \frac{\partial}{\partial x^i}|_x) < 1\}}.$$

Let

$$G^i := \frac{1}{4} g^{il} [\frac{\partial^2(F^2)}{\partial x^k \partial y^l} y^k - \frac{\partial(F^2)}{\partial x^l}],$$

denote the geodesic coefficients of F in the same local coordinate system. The S-curvature can be defined by

$$\mathbf{S}(y) = \frac{\partial G^{i}}{\partial y^{i}}(x, y) - y^{i} \frac{\partial}{\partial x^{i}}[ln\sigma_{F}(x)],$$

where $y = y^i \frac{\partial}{\partial x^i}|_x \in T_x M$ (see [5]). The Finsler metric F is said to be of isotropic \mathbf{S} -curvature if

$$\mathbf{S} = (n+1)cF,$$

where c = c(x) is a scalar function on M.

Let (M, F) be an n-dimensional Finsler manifold. The non-Riemannian quantity Ξ -curvature $\Xi = \Xi_i dx^i$ on the tangent bundle TM, is defined by

$$\Xi_i = \mathbf{S}_{.i|m} y^m - \mathbf{S}_{|i},$$

where S denotes the S-curvature, "." and "|" denote the vertical and horizontal covariant derivatives, respectively. We say that a Finsler metric have almost vanishing Ξ -curvature if

$$\Xi_i = -(n+1)F^2(\frac{\theta}{F})_{y^i},$$

where $\theta = \theta_i(x)y^i$ is a 1-form on M [21, 7].

3. $(\alpha, \beta) - \Sigma$ - spaces

We first recall the definition and some basic results concerning Σ -spaces [17].

Definition 3.1. Let M be a smooth connected manifold, Σ a Lie group, and $\mu: M \times \Sigma \times M \longrightarrow M$ a smooth map. Then the triple (M, Σ, μ) is a Σ -space if it satisfies

 $(Σ_1): μ(x, σ, x) = x,$

(Σ_2): $\mu(x, e, y) = y$,

(Σ_3): $\mu(x,\sigma,\mu(x,\tau,y)) = \mu(x,\sigma\tau,y)$

(Σ_5): $\mu(x,\sigma,\mu(y,\tau,z)) = \mu(\mu(x,\sigma,y),\sigma\tau\sigma^{-1},\mu(x,\sigma,z))$

where $x, y, z \in M$, $\sigma, \tau \in \Sigma$ and e is the identity element of Σ . The triple (M, Σ, μ) is usually dinoted by M.

For a fixed point $x \in M$ we define a map $\sigma_x : M \longrightarrow M$ by $\sigma_x(y) = \mu(x, \sigma, y)$ and a map $\sigma^x : M \longrightarrow M$ by $\sigma^x(y) = \sigma_y(x)$. with respect to these maps the above conditions become

$$(\Sigma_1')$$
: $\sigma_x(x) = x$,

$$(\Sigma_2')$$
: $e_x = id_M$,

(
$$\Sigma_3'$$
): $\sigma_x \tau_x = (\sigma \tau)_x$
(Σ_4'): $\sigma_x \tau_y \sigma_x^{-1} = (\sigma \tau \sigma^{-1}) \sigma_x(y)$.

For each $x \in M$ by Σ_x we denote the image of Σ under the map $\Sigma \longrightarrow \Sigma_x$, $\sigma \longrightarrow \sigma_x$. For each $\sigma \in \Sigma$ we define (1,1) tensor field S^{σ} on the Σ -space M by

$$S^{\sigma}X_x = (\sigma_x)_*X_x \quad \forall x \in M, X_x \in T_xM.$$

Clearly S^{σ} is smooth.

Definition 3.2. A Σ -space M is a reduced Σ -space if for each $x \in M$,

(1) T_xM is generated by the set of all $\sigma^x(X_x)$, that is

$$T_x M = gen\{(I - S^{\sigma})X_x | X_x \in T_x M, \sigma \in \Sigma\},\$$

(2) If $X_x \in T_x M$ and $\sigma^x X_x = 0$ for all $\sigma \in \Sigma$ then $X_x = 0$, and thus no non-zero vector in $T_x M$ is fixed by all S^{σ} .

Definition 3.3. A Finsler Σ -space, denoted by (M, Σ, F) is a reduced Σ -space together with a Finsler metric F which is invariant under Σ_p for $p \in M$.

Definition 3.4. let $\alpha = \sqrt{\tilde{a}_{ij}(x)y^iy^j}$ be a norm induced by a Riemannian metric \tilde{a} and $\beta(x,y) = b_i(x)y^i$ be a 1-form on an n-dimensional manifold M , and let

$$\|\beta(x)\|_{\alpha} := \sqrt{\tilde{a}^{ij}b_i(x)b_j(x)}.$$
(3.1)

Now , the function F is defined by ,

$$F := \alpha \phi(s)$$
 $s = \frac{\beta}{\alpha},$ (3.2)

where $\phi = \phi(s)$ is a positive c^{∞} function on $(-b_0, b_0)$ satisfying

$$\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0, \qquad |s| \le b < b_0.$$
(3.3)

Then by lemma 1.1.2 of [3],F is a Finsler metric if $\|\beta(x)\|_{\alpha} < b_0$ for any $x \in M$. A Finsler metric in the form (3.2) is called an (α, β) – metric [1,3]. A Finsler space having the Finsler function,

$$F(x,y) = \frac{\beta^2(x,y)}{\beta(x,y) - \alpha(x,y)},\tag{3.4}$$

is called a Finsler space with an infinite series ($\alpha,\beta)$ - metric.

now we present the main results

Lemma 3.5. Let (M, Σ, F) be an infinite series Σ - space with $F = \frac{\beta^2}{\beta - \alpha}$ defined by the Riemannian metric \tilde{a} and the vector field X. Then (M, Σ, \tilde{a}) is a Riemannian Σ -space.

Proof. Let σ_x be a diffeomorphism $\sigma_x : M \longrightarrow M$ defined by $\sigma_x(y) = \mu(x, \sigma, y)$. Then for $p \in M$ and for any $y \in T_pM$ we have

$$F(p,Y) = F(\sigma_x(p), d\sigma_x(Y)),$$

Applying equation (3.4) we get

$$\frac{\tilde{a}(X_p,y)^2}{\tilde{a}(X_p,y)-\sqrt{\tilde{a}(y,y)}} = \frac{\tilde{a}(X_{\sigma_x(p)},d\sigma_x(y))^2}{\tilde{a}(X_{\sigma_x(p)},d\sigma_x(y))-\sqrt{\tilde{a}(d\sigma_x(y),d\sigma_x(y))}},$$

which implies

$$\tilde{a}(X_p, y)^2 \tilde{a}(X_{\sigma_x(p)}, d\sigma_x(y)) - \tilde{a}(X_p, y)^2 \sqrt{\tilde{a}(d\sigma_x(y), d\sigma_x(y))}$$

$$= \tilde{a}(X_{\sigma_x(p)}, d\sigma_x(y))^2 \tilde{a}(X_p, y) - \tilde{a}(X_{\sigma_x(p)}, d\sigma_x(y))^2 \sqrt{\tilde{a}(y, y)}. \tag{3.5}$$

Applying the above equation to -Y, we get

$$\tilde{a}(X_p, y)^2 \tilde{a}(X_{\sigma_x(p)}, d\sigma_x(y)) + \tilde{a}(X_p, y)^2 \sqrt{\tilde{a}(d\sigma_x(y), d\sigma_x(y))}$$

$$= \tilde{a}(X_{\sigma_x(p)}, d\sigma_x(y))^2 \tilde{a}(X_p, y) + \tilde{a}(X_{\sigma_x(p)}, d\sigma_x(y))^2 \sqrt{\tilde{a}(y, y)}, \tag{3.6}$$

Applying equations (3.5)a nd (3.6), we get

$$\tilde{a}(X_p, y) = \tilde{a}(X_{\sigma_x(p)}, d\sigma_x(y)) \tag{3.7}$$

Subtracting equation (3.5) from equation (3.6) and using equation (3.7), we get

$$\tilde{a}(y,y) = \tilde{a}(d\sigma_x(y), d\sigma_x(y))$$

Thus σ_x is an isometry with respect to the Riemannian metric \tilde{a} .

Lemma 3.6. Let (M, Σ, \tilde{a}) be a Riemannian Σ -space. Let F be an infinite series defined by the Riemannian metric \tilde{a} and the vector field X. Then (M, Σ, F) is an infinite series Σ -space if and only if X is σ_x -invariant for all $x \in M$.

Proof. Let X be σ_x -invariant. Then for any $p \in M$, we have $X_{\sigma_x(p)} = d\sigma_x X_p$. Then for any $y \in T_p M$ we have

$$F(\sigma_x(p), d\sigma_x y_p) = \frac{\tilde{a}(X_{\sigma_x(p)}, d\sigma_x y_p)^2}{\tilde{a}(X_{\sigma_x(p)}, d\sigma_x y_p) - \sqrt{\tilde{a}(d\sigma_x y_p, d\sigma_x y_p)}}$$

$$= \frac{\tilde{a}(d\sigma_x X_p, d\sigma_x y_p)^2}{\tilde{a}(d\sigma_x X_p, d\sigma_x y_p) - \sqrt{\tilde{a}(d\sigma_x y_p, d\sigma_x y_p)}}$$

$$= \frac{\tilde{a}(X_p, y_p)^2}{\tilde{a}(X_p, y_p) - \sqrt{\tilde{a}(y_p, y_p)}}$$

$$= F(p, y_p).$$

Conversely, let F be a $\Sigma_M - invariant$. Then for any $p \in M$ and $y \in T_pM$, we have

$$F(p,Y) = F(\sigma_x(p), d\sigma_x(Y))$$

Applying the lemma (3.5) we have

$$\tilde{a}(X_p, y) = \tilde{a}(X_{\sigma_x(p)}, d\sigma_x(y))$$

which implies

$$\tilde{a}(y,y) = \tilde{a}(d\sigma_x(y), d\sigma_x(y)) \tag{3.8}$$

Combining the equation (3.7) and (3.8), we get

$$\tilde{a}(X_x, y) = \tilde{a}(X_{\sigma_x(p)}, d\sigma_x(y)) \tag{3.9}$$

Therefore $d\sigma_x X_p = X_{\sigma_x(p)}$.

Theorem 3.7. An infinite series Σ -space must be Riemannian

Proof. Let (M, Σ, F) be an infinet series Σ -space with $F = \frac{\beta^2}{\beta - \alpha}$ defined by the Riemannian metric \tilde{a} and the vector field X. Let σ_x be a diffeomorphism defined by $\sigma_x(y) = \mu(x, \sigma, y)$. by lemma (3.5) (M, Σ, \tilde{a}) is a Riemannian Σ -space. Thus we have

$$\begin{split} F(x,d\sigma_x y) &= \frac{\tilde{a}(X_x,d\sigma_x(y))^2}{\tilde{a}(X_x,d\sigma_x(y)) - \sqrt{\tilde{a}(d\sigma_x(y),d\sigma_x(y))}} \\ &= \frac{\tilde{a}(X_x,d\sigma_x(y))^2}{\tilde{a}(X_x,d\sigma_x(y)) - \sqrt{\tilde{a}(y,y)}} \\ &= F(x,y). \end{split}$$

Therefore $\tilde{a}(X_x, d\sigma_x y) = \tilde{a}(X_x, y)$, $\forall y \in T_x M$. The tangent map $S^{\sigma} = (d\sigma_x)_x$ is an orthogonal transformation of $T_x M$ without any nonzero fixed vectors. So we have $\tilde{a}(X_x, (S^{\sigma} - id)_x(y)) = 0$, $\forall y \in T_x M$. Since $(S - id)_x$ is an invertible linear transformation, we have $X_x = 0$, $\forall x \in M$. Hence F is Riemannian. \square

References

- 1. H. An and S. Deng, Invariant (α, β) metric on homogeneous manifolds, Monatsh. Math. **154**(2008), 89-102.
- P. Bahmandoust and D. Latifi, on Finsler s-manifolds, Eur .J. Pure and App .Math. 10(5) (2017), 1099-1111.
- 3. P. Bahmandoust and D.Latif, Naturally reductive homogeneous (α, β) spaces, Int.J. Geom. Method Modern Phys. **17**(2020), 2050117.
- X. Chen, X. Mo and Z. Shen, On the flag curvature of Finsler metrics of scalar curvature,
 J. London Math. Soc. 68(2003), 762-780.
- S. S. Chern and Z. Shen, Riemann-Finsler geometry, World Scientific, Nankai Tracts in Mathematics, 2005.
- 6. S. Deng and Z. Hou, On symmetric Finsler spaces, Israel J. Math., 162(2007), 197-219.
- Z. Didekhani, B. Najafi, B. Bidabad, Homogeneous Finsler spaces with special non-Riemannian curvature, Global J. Adv. Re. Class. Mod. Geom, 7 (2018) 37-43.

- P. Habibi and A. Razavi, On generalized symmetric Finsler spaces, Geom. Dedicata, 149(2010), 121-127.
- O. Kowalski, Generalized symmetric spaces, Lecture Notes in Mathematics, Springer Verlag, 1980.
- D. Latifi and A. Razavi, On homogeneous Finsler spaces, Rep. Math. Phys, 57(2006), 357-366. Erratum: Rep. Math. Phys. 60(2007), 347.
- 11. D. Latifi and M. Toomanian, On Finsler $\Sigma-spaces$, J. Cont. Math. Ana ${\bf 50}(2015),\,107-115$
- D. Latifi and M. Toomanian, Invariant naturally reductive Randers metrics on homogeneous spaces, Math.Sci. 63(2012), https://doi.org/10.1186/2251-7456-6-63.
- D. Latifi and M. Toomanian, On the existence of bi-invariant Finsler metrics on Lie groups, Math .Sci. 37(2013).https://doi.org/10.1186/2251-7456-7-37.
- D. Latifi, On generalized symmetric square metrics, Acta Univ Apulensis, 68(2021), 63-70.
- A. J. Ledger and M. Obata, Affine and Riemannian s-manifolds, J. Differential Geometry. 2(1968), 451-459.
- A. J. Ledger, Espaces de Riemann symetriques generalises, C. R. Acad. Sc. Paris. 264(1967), 947-948.
- 17. A. J. Ledger and A. R. Razavi, Reduced Σ- spaces, Illinois J. Math. 26(1982), 272-292.
- 18. O. Loos, Symmetric spaces, W. A. Benjamin Inc., New York (1969).
- O. Loos, An intrinsic characterisation of fibre bundles associated with homogeneous spaces defined by Lie group automorphisms, Abn. Math. Sem. Univ. Hamburg. 37(1972), 160-179.
- G. Randers, On an asymmetrical metric in the four-space of general relativity, Phys. Rev. 59(1941), 195-199.
- Z. Shen, On some non-Riemannian quantities in Finsler geometry, Canad. Math. Bull. 56(2013), 184-193.
- L. Zhang and S. Deng, On generalized symmetric Finsler spaces, Balkan J. Geom. Appl. 21(2016), 113-123.

Received: 11.10.2023 Accepted: 26.11.2023