Journal of Finsler Geometry and its Applications Vol. 4, No. 2 (2023), pp 38-42 <https://doi.org/10.22098/jfga.2023.13630.1097>

The size of quasicontinuous maps on Khalimsky line

Fatemah Ayatollah Zadeh Shirazi^{∗ D}and Nima Shirinbayan

Faculty of Mathematics, Statistics and Computer Science College of Science, University of Tehran, Enghelab Ave., Tehran, Iran

> E-mail: f.a.z.shirazi@ut.ac.ir E-mail: shirinbayan@ut.ac.ir

Abstract. In the following text we show if D is Khalimsky line (resp. Khalimsky plane, Khalimsky circle, Khalimsky sphere), then for topological space X we show the collection of all quasicontinuous maps from D to X has cardinality $card(X)^{\aleph_0}.$

Keywords: Alexandroff space, Khalimsky circle, Khalimsky sphere.

1. Introduction

Quasicontinuity is one of the weaker forms of continuity. In topological spaces Y, Z :

- Z^Y denotes the collection of all maps from Y to Z,
- $Q(Y, Z)$ denotes the collection of all quasicontinuous maps from Y to Z,
- $C(Y, Z)$ denotes the collection of all continuous maps from Y to Z.

where we say $f: Y \to Z$ is quasicontinuous at $y \in Y$, if for each open neighborhood G of y and open neighborhood H of $f(y)$, there exists nonempty open subset W of G such that $f(W) \subseteq H$. Also we say $f: Y \to Z$ is quasicontinuous if f is quasicontinuous at each point of Y [\[2\]](#page-4-0). It is clear that $C(Y,Z) \subseteq Q(Y,Z) \subseteq Z^Y.$

[∗]Corresponding Author

AMS 2020 Mathematics Subject Classification: 54C35, 54D05

This work is licensed under a [Creative Commons Attribution-NonCommercial 4.0](https://creativecommons.org/licenses/by-nc/4.0/) International License.

Copyright © 2023 The Author(s). Published by University of Mohaghegh Ardabili

By Khalimsky line we mean $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$ equipped with topological base $\{\{2n+1\} : n \in \mathbb{Z}\} \cup \{\{2n-1, 2n, 2n+1\} : n \in \mathbb{Z}\}\$ [\[1\]](#page-4-1). Let's denote Khalimsky line by K and:

$$
V(n) := \begin{cases} \{2k+1\} & n = 2k+1 \in 2\mathbb{Z} + 1, \\ & \{2k-1, 2k, 2k+1\} & n = 2k \in 2\mathbb{Z}, \end{cases}
$$

then $V(n)$ is the smallest open neighborhood of each $n \in \mathcal{K}$. We call \mathcal{K}^2 , Khalimsky plane.

Let's mention $\aleph_0 = card(\aleph)$ denotes the least infinite cardinal number. In this text we compute the cardinality of $Q(K, X)$.

2. Quasicontinuous maps on Khalimsky line and Khalimsky plane

In this section we show $card(Q(\mathcal{K}^n, X)) = card(X)^{\aleph_0}$ for each topological space X.

Theorem 2.1. For topological space X, $k \in \mathbb{Z}$, and $f : \mathcal{K} \to X$:

- 1. f is quasicontinuous at $2k-1$,
- 2. if there exists i such that $f(2k) = f(2k + (-1)^i)$, then f is quasicontinuous in 2k,
- 3. in metric space (X, d) if f is quasicontinuous at $2k$, then there exists i such that $f(2k) = f(2k + (-1)^i)$.

Proof. (1) $2k - 1$ is an isolated point of K, so any map on K is continuous (quasicontinuous) at $2k-1$.

(2) Suppose there exists i such that $f(2k) = f(2k + (-1)^i)$, G is an open neighborhood of 2k and H is an open neighborhood of $f(2k)$, then

$$
W := \{2k + (-1)^i\} \subseteq V(2k) \subseteq G
$$

and W is a nonempty open subset of G , moreover

$$
f(W) = \{ f(2k + (-1)^i) \} = \{ f(2k) \} \subseteq H.
$$

Thus f is quasicontinuous at $2k$.

(3) For metric space (X, d) suppose f is quasicontinuous at $2k$. For each $n \geq 1$ there exists nonempty open subset W_n of $V(2k)$ such that $f(W_n) \subseteq \{x \in$ $X : d(x, f(2k)) < \frac{1}{n}$. All nonempty open subsets of $V(2k)$ are $V(2k) =$ $\{2k-1, 2k, 2k+1\}, \{2k-1\}, \{2k+1\}.$ Hence, $2k-1 \in W_n$ or $2k+1 \in W_n$. Therefore there exists $j_n \in \{-1,1\}$ with $2k + j_n \in W_n$ and

$$
d(f(2k), f(2k+j_n)) < \frac{1}{n}.
$$

The sequence $\{2k+j_n\}_{n\geq 1}$ has at least one of the constant subsequences $\{2k+\frac{1}{2},2\}$ $1\}_{m\geq 1}$ or $\{2k-1\}_{m\geq 1}$. Suppose $\{2k+(-1)^{i}\}_{n\geq 1}$ is the constant subsequence of $\{2k + j_n\}_{n \geq 1}$. So

$$
f(2k) = \lim_{n \to \infty} f(2k + j_n) = \lim_{m \to \infty} f(2k + (-1)^i) = f(2k + (-1)^i)
$$

which completes the proof. \Box

Theorem 2.2. In topological space X we have:

$$
card(Q(K, X)) = card(X)^{\aleph_0} .
$$

In particular for infinite countable X,

 $card(Q(K, K)) = card(Q(K, X)) = \aleph_0^{\aleph_0} = 2^{\aleph_0}, \quad card(Q(K, \mathbb{R})) = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0}.$ *Proof.* Suppose $\mathfrak{S} = \{x_n\}_{n \in \mathbb{Z}}$ is a bisequence in X, by Theorem [2.1,](#page-1-0) $f_{\mathfrak{S}} : \mathcal{K} \to$

X with $f_{\mathfrak{S}}(2k-1) = f_{\mathfrak{S}}(2k) = x_k$ $(k \in \mathbb{Z})$ is quasicontinuous. Therefore

$$
card(Q(K, X)) \geq card\{\mathfrak{S} : \mathfrak{S} \text{ is a bisequence in } X\}
$$

=
$$
card(X^{\mathbb{Z}}) = card(X)^{card(\mathbb{Z})} = card(X)^{\aleph_0}
$$

On the other hand

$$
card(X)^{\aleph_0} = card(X^{\mathcal{K}}) \stackrel{(X^{\mathcal{K}} \supseteq Q(\mathcal{K}, X))}{\geq} card(Q(\mathcal{K}, X))
$$

which completes the proof by Schröder-Bernstein theorem. \Box

Corollary 2.3. If X is a totally disconnected space (e.g., Cantor set or discrete space), then $C(K, X)$ is just the collection of constant maps, therefore $card(X) = card(C(K, X))$. In particular for $D \in \{Z, \mathbb{N}, \mathbb{Q}\}\$ we have:

$$
card(C(K,D)) = card(D) = \aleph_0 < 2^{\aleph_0} = card(Q(K,D)).
$$

Theorem 2.4. For $j \in \mathbb{Z}$ let:

$$
j^* := \begin{cases} j & j \in 2\mathbb{Z} + 1, \\ j - 1 & j \in 2\mathbb{Z}, \end{cases}
$$

then for each $(a_1, \dots, a_n) \in \mathcal{K}^n$ (equipped with product topology), topological space X, and $f: \mathcal{K}^n \to X$ we have:

- 1. $V(a_1) \times \cdots \times V(a_n)$ is the smallest open neighborhood of (a_1, \dots, a_n) ,
- 2. $\{(a_1^*, \dots, a_n^*)\}$ is an open subset of $V(a_1) \times \dots \times V(a_n)$,
- 3. if $f(a_1, \dots, a_n) = f(a_1^*, \dots, a_n^*)$, then f is quasicontinuous at (a_1, \dots, a_n) , 4. $card(Q(\mathcal{K}^n, X)) = card(X)^{\aleph_0} (= card(X^{\mathcal{K}^n})).$

Proof. (1, 2) Use properties of product topology.

(3) Use a similar method described in Theorem [2.1.](#page-1-0)

(4) $(2\mathbb{Z}+1)^n$ is infinite countable, so we may suppose $(2\mathbb{Z}+1)^n = \{u_1, u_2, \ldots\}$ with distinct u_is. Suppose that $\mathfrak{S} = \{x_i\}_{i\in\mathbb{N}}$ is an arbitrary sequence in X, by item (3), $f_{\mathfrak{S}} : \mathcal{K}^n \to X$ with $f_{\mathfrak{S}}(a_1, \dots, a_n) = x_k$ (where $k \in \mathbb{N}$ and

.

 $(a_1^*, \dots, a_n^*) = u_k$ is quasicontinuous. Using a similar method described in Theorem [2.2](#page-2-0) we have $card(Q(\mathcal{K}^n, X)) = card(X)^{\aleph_0}$. □

3. Quasicontinuous maps on Khalimsky circle and Khalimsky sphere

In topological space W suppose $\infty \notin W$ and let $A(W) := W \cup {\infty}$. Consider $A(W)$ with topology $\{U \subseteq W : U$ is an open subset of $W\} \cup \{U \subseteq A(W) : W \setminus U$ is a closed compact subset of W , we call $A(W)$ one point compactification or Alexandroff compactification of W [\[3\]](#page-4-2). One point compactification of Khalimsky line is called Khalimsky circle and one point compactification of Khalimsky plane is called Khalimsky sphere. In this section we show $card(Q(A(\mathcal{K}^n), X)) =$ $card(X)^{\aleph_0}$ for each topological space X and $n \geq 1$.

Remark 3.1. For $n \geq 1$, compact subsets of \mathcal{K}^n are finite. Suppose E is a compact subset of \mathcal{K}^n , thus $\{V(a_1) \times \cdots \times V(a_n) : (a_1, \cdots, a_n) \in E\}$ is an open cover of E, hence there exists finite subset G of E such that $E \subseteq$ $\bigcup \{V(a_1) \times \cdots \times V(a_n) : (a_1, \cdots, a_n) \in G\}$, since $V(a_1) \times \cdots \times V(a_n)$ s and G are finite, E is finite too.

Theorem 3.2. $card(Q(A(K^n), X)) = card(X)^{\aleph_0}$ for topological space X and $n \geq 1$.

Proof. Using the same notations as in Theorem [2.4](#page-2-1) (2N – 1) × $(2\mathbb{Z} + 1)^{n-1}$ is infinite countable, so we may suppose $(2N-1) \times (2\mathbb{Z}+1)^{n-1} = \{u_1, u_2, \ldots\}$ with distinct u_is. For each sequence $\mathfrak{S} = \{x_i\}_{i \in \mathbb{N}}$ in X, define $g_{\mathfrak{S}} : \mathcal{K}^n \to X$ with:

$$
g_{\mathfrak{S}}(a) := \begin{cases} x_k & a = (a_1, \dots, a_n) \in \mathcal{K}^n, (a_1^*, \dots, a_n^*) = u_k, a_1^* > 0, \\ x_1 & a = (a_1, \dots, a_n) \in \mathcal{K}^n, a_1^* < 0, \\ x_1 & a = \infty, \end{cases}
$$

then for $a \in A(\mathcal{K}^n)$ we have the following cases:

• $a = (a_1, \dots, a_n) \in \mathcal{K}^n$: in this case for each open neighborhood U of a and open neighborhood V of $g_{\mathfrak{S}}(a)$, $V(a_1) \times \cdots \times V(a_n)$ is the smallest open neighborhood of a and $W := \{(a_1^*, \cdots, a_n^*)\}(\subseteq V(a_1) \times$ $\cdots \times V(a_n) \subseteq U$ is a nonempty open subset of U also:

$$
g_{\mathfrak{S}}(W) = \{ g_{\mathfrak{S}}(a_1^*, \cdots, a_n^*) \} = \{ g_{\mathfrak{S}}(a_1, \cdots, a_n) \} \subseteq V,
$$

therefore in this case $g_{\mathfrak{S}}$ is quasicontinuous at a,

• $a = \infty$: in this case for each open neighborhood U of a and open neighborhood V of $g_{\mathfrak{S}}(a) = x_1$, by Remark [3.1](#page-3-0) there exists finite subset H of \mathcal{K}^n such that $U = A(\mathcal{K}^n) \backslash H$, therefore there exists $p \geq 1$ such that

 $(-2p+1, \dots, -2p+1) \in U$ in particular $W := \{(-2p+1, \dots, -2p+1)\}\$ is a nonempty open subset of U and

$$
g_{\mathfrak{S}}(W) = \{ g_{\mathfrak{S}}(-2p + 1, \cdots, -2p + 1) \} = \{ x_1 \} = \{ g_{\mathfrak{S}}(\infty) \} \subseteq V.
$$

Thus $g_{\mathfrak{S}}$ is quasicontinuous at $a = \infty$ in this case.

Using the above cases $g_{\mathfrak{S}} : \mathcal{K}^n \to X$ is quasicontinuous.

Thus:

$$
card(Q(A(\mathcal{K}^n), X)) \geq card\{g_{\mathfrak{S}} : \mathfrak{S} \text{ is a sequence in } X\}
$$

=
$$
card\{\mathfrak{S} : \mathfrak{S} \text{ is a sequence in } X\}
$$

=
$$
card(X^{\mathbb{N}}) = card(X)^{\aleph_0}.
$$

Using a similar method described in Theorem [2.2](#page-2-0) completes the proof. \Box

4. Conclusion

For Khalimsky line K, Khalimsky plane K^2 , Khalimsky circle $A(K)$, Khalimsky sphere $A(\mathcal{K}^2)$ and topological space X we show the collection of all quasicontinuous maps from K (resp \mathcal{K}^2 , $A(\mathcal{K})$, $A(\mathcal{K}^2)$) to X has $card(X)^{\aleph_0}$ elements. In particular for countable X with at least two elements, $Q(K, X)$ (the collection of all quasicontinuous maps from K to X) is uncountable.

Acknowledgment: The authors wish to dedicate this paper to our lady, Fatimah-Zahra (as).

REFERENCES

- 1. S.-E. Han, An extension problem of a connectedness preserving map between Khalimsky spaces, Filomat, 30/1(2016), 15–28.
- 2. L. Holá and D. Holý, Metrizability of the space of quasicontinuous functions, Topology and its Applications, 246(2018), 137–143.
- 3. L. A. Steen and J. A. Seebach, Counterexamples in topology, Holt, Rinehart and Winston, Inc., New York, 1970.

Received: 04.09.2023 Accepted: 10.11.2023