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Abstract. One of the Helmholtz conditions for the inverse problem of a La-

grangian Mechanics is the metric compatibility of a semispray and the associ-

ated nonlinear connection with a generalized Lagrange metric. In this paper,

with respect to the supermetric induced by the Hessian of the Lagrangian, we

find a family of nonlinear connections compatible with supermetric. In a par-

ticular case, when a Lagrangian superfunction is regular, we have a solution for

the Euler-Lagrange superequation which defines a metric nonlinear connection.

Keywords: Horizontal endomorphism, Finsler supermanifolds, Canonical non-

linear connection, Supermetric.

1. Introduction

One of the Helmholtz condition for the inverse problem of a Lagrangian Me-

chanics is the metric compatibility of a semispray and the associated nonlinear

connection with a generalized Lagrange metric. The inverse problem is the

search for a non-singular, symmetric, type (0,2) tensor field g such that

∇g = 0,

AMS 2020 Mathematics Subject Classification: 53C60, 58A50

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International

License.

Copyright © 2023 The Author(s). Published by University of Mohaghegh Ardabili

22

https://doi.org/10.22098/jfga.2023.13513.1094
https://orcid.org/0000-0003-1823-289X
 https://creativecommons.org/licenses/by-nc/4.0/


On the compatibility of supermetrics with nonlinear connections 23

where ∇ is the dynamical covariant derivative associated with a given semis-

pray S (see [9], [20]). Also, for a given semispray and a generalized Lagrange

metric, another approach to the Helmholtz condition is the search for a nonlin-

ear connection which is compatible with the metric tensor (see [5]). A similar

programme can be carried out in the setting of supermechanics. Such a ge-

ometrical foundation has been established and in this geometrical setting the

inverse problem of Lagrangian supermechanics acquires a structure similar to

the inverse problem in ordinary Lagrangian mechanics [13, 14].

An interesting question is to discuss the generalization of Helmholtz condi-

tions in the setting of supermechanics. The Helmholtz conditions, in this case,

are the conditions that must be satisfied by a nonlinear connectionNa
b (x, y; η, θ)

in order that the generalized Lagrange supermetric (gab(x, y; η, θ)) satisfies

(3.1)-(3.4). In the first place, this will require introducing the superfunctions

g|ab obtained by g-compatibility conditions, bringing them into a distinguished

form into the process of defining a nonlinear connection. It also have another

term derived from the differentiating of the coefficients of a given superspray.

In a particular case, when a Lagrangian superfunction is regular, we have a so-

lution for the Euler-Lagrange superequation which is called the Euler-Lagrange

supervector field. The nonlinear connection associated with this supervector

field is a solution for the above inverse problem. We should mention that,

in this case the Lagrangian superfunction must be an odd superfunction. We

could not find out the complete solution of the problem.

The paper is divided into two sections. In the first one we review the defini-

tion of a nonlinear connection, a superspray, the Euler-Lagrange superequation

and the Barthel endomorphism, which is constructed by using the solution of

the Euler-Lagrange superequation. Basic information about a nonlinear con-

nection on a supermanifold has been studied by Bejancu [4] and Vacaru [21].

In the second section we try to answer the inverse problem. In this section

an important concept is the dynamical superderivative with respect to a given

spray S with the coefficients Gi, Gα. If we consider a dynamical superderivative

associated with S such that its coefficients obtained directly from the differen-

tiation of Gi, Gα, then we can not define a nonlinear connection to answer the

inverse problem. So we consider a special dynamical superderivative, denoted

by ∇, and introduce a nonlinear connection which has the property ∇g = 0,

where g is a given generalized supermetric.

2. The Barthel Endomorphism.

The concept of nonlinear connection (N-connection) was introduced in com-

ponent form in a number of works by Cartan [7] and Ehresmann [11]. But the

first global definition is due to Barthel [3] (for global definition of a nonlinear

connection, see [8], [15]). The geometry of N-connection in superspaces are

considered in details in [24], [21], [18] .
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Let introduce the necessary definitions and denotations on vector superbun-

dle (see details in [1], [10], [24]). The basic structure for building up superman-

ifolds is the Grassmann algebra. For each positive integer L, BL will denote

the Grassmann algebra over the reals with generators 1, β1, ..., βL and relations

1.βi = βi.1 = βi, i = 1, ..., L,

βi.βj = −βj .βi, i, j = 1, ..., L.

BL is a graded algebra [7] which can be written as a direct sum

BL = (BL)0 + (BL)1,

where (BL)0 and (BL)1 are the even and odd parts of (BL) respectively. If the

elements A,A′ ∈ BL are homogeneous, then

AA′ ∈ (BL)|A|+|A′|, AA′ = (−1)|A||A′|A′A,

where |A| denotes the parity (= 0, 1) of value A. Given the Grassmann alge-

bra BL, the corresponding (m,n)−dimensional superspace is defined to be the

space

Bm,n
L = (BL)0 × ...× (BL)0︸ ︷︷ ︸

m copies

× (BL)1 × ...× (BL)1︸ ︷︷ ︸
n copies

where m is said to be the even dimension and n the odd dimension of the

superspace.

We use ”a” , ”b”, ”c”,... as an index for our supertensors. Then the index ”a”

( and similarly for ”b”, ”c”) is i=1,...,m and α = 1, ...., n where dimM = (m,n).

For example, in index notation, we write gab instead of the coefficients of the

supertensor g defined in (2.6). If X is a homogeneous geometric object, then

|X| denotes the parity (= 0, 1) of values X. Also, we use another notation |a|
which defines as bellow:

|a| = 0, if a = i, where i = 1, ...,m. and |a| = 1, if a = α, where α = 1, ..., n.

Let us consider a vector superbundle E = (E, πE ,M) whose type fiber is F
and πT : TE→TM is the superdifferential of the map πE . The kernel of this

vector superbundle morphism being a subbundle of (TE, τE , E) is called the

vertical subbundle over E and is denoted by V E = (V E, τV , E). Its total space

is

V E =
⋃

u∈E
Vu,

where Vu = kerπT and u∈E .
A nonlinear connection, N-connection [22, 23], in vector superbundle E is a

splitting on the left of the exact sequence

07−→V E i7−→ TE 7−→TE/V E 7−→0, (2.1)

i.e. a morphism of vector superbundles N : TE → V E such that N◦i is the

identity on V E .
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The kernel of the morphism N is called the horizontal subbundle and is

denoted by (HE, τH , E). From the exact sequence (2.1) it follows that N-

connection structure can be equivalently defined as a distribution TuE =

HuE⊕VuE, u ∈ E on E defining a global decomposition, as a Whitney sum,

TE = HE ⊕ V E .

locally a nonlinear connection in E is given by its coefficients

N j
i (x, y, η, θ), N

β
i (x, y, η, θ), N

j
α(x, y, η, θ), N

β
α (x, y, η, θ).

In the tangent superbundle a local basis adapted to the given nonlinear

connection N is introduced by

(
δ

δxi
,

δ

δηα
,
∂

∂yi
,

∂

∂θα
),

where
δ

δxi
:=

∂

∂xi
−N j

i

∂

∂yj
−Nα

i

∂

∂θα
(2.2)

and
δ

δηα
:=

∂

∂ηα
−N i

α

∂

∂yi
−Nβ

α

∂

∂θβ
. (2.3)

Let (xi; ηα) be local coordinates on M and (xi, yi; ηα, θα) the corresponding

local coordinates on TM. If

X = Xi ∂

∂xi
+Xα ∂

∂ηα

is a supervector field on M, then the vertical lift Xv and the complete lift Xc

of X have the form (see [6])

Xv = Xi ∂

∂yi
+Xα ∂

∂θα
,

and

Xc =

m∑
i=1

Xi ∂

∂xi
+

 m∑
j=1

yj
∂Xi

∂xj
+

n∑
γ=1

θγ
∂Xi

∂ηγ

 ∂

∂yi


+

n∑
α=1

Xα ∂

∂ηα
+

 m∑
j=1

yj
∂Xα

∂xj
+

n∑
γ=1

θγ
∂Xα

∂ηγ

 ∂

∂θγ

 .

Definition 2.1. A vertical endomorphism on the tangent superbundle TM is

a (super) tensor field

J : X (TM) 7→ X (TM)

satisfies in ImJ = KerJ, J2 = 0.
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If J is a vertical endomorphism, the vertical differentiation dJ is the mapping

dJ = [iJ , d] = iJod− doiJ .

In particular, for any superfunction f on M, we have

dJf = ijdf.

Let (xi; ηα) be local coordinates on M and (xi, yi; ηα, θα) the corresponding

local coordinates on TM. The Liouville supervector field C on X (TM) defined

by

C = yi
∂

∂yi
+ θα

∂

∂θα
. (2.4)

Definition 2.2. A morphism h : X (TM) 7→ X (TM) is said to be a horizontal

endomorphism on M if it satisfies the following conditions:

(i) h2 = h

(ii)Kerh = X v(TM).

Assume h is a horizontal endomorphism. The supervector 1-form, or simply

the vector 1-form, [h,C] is said to be the tension of h. The vector 2-form [J, h]

is said to be the torsion of h.

Let h be a horizontal endomorphism. If X h(TM) := Imh, then

X (TM) = X h(TM)⊕X v(TM)

and X h(TM) is called the supermodule of horizontal supervector fields. v :=

(id − h) : X (TM) 7→ X (TM), is the vertical projection on X v(TM) along

X h(TM). Also, we have hoJ = 0 and Joh = J.

Definition 2.3. A supervector field S on TM is a super-semispray if

J(S) = yi
∂

∂yi
+ θα

∂

∂θα
. (2.5)

When the coefficients Gk and Gα of a super-semispray S are homogeneous

of degree 2, we say that S is a superspray.

If S is a super-semispray, then for any supervector field X on M, J [Xv, S] =

Xv. Also for the Liouville supervector field C and any superspray S, we have

[C, S] = S.

It is not difficult to show that if h is a horizontal endomorphism on M and

S′ an arbitrary super-semispray then S := hS′ is also a super-semispray on

M. It satisfies the relation h[C, S] = S. So S is called the super-semispray

associated with h.
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As in general case, on any Finsler Supermanifold [2, 22], there exists a

superspray induced by a Finsler metric. So as in general case, we need to work

with Euler-Lagrange equation and show that every Euler-Lagrange supervector

field is a super-semispray.

The Lagrange spaces were introduced [16](see also [18]), in order to ge-

ometrize the concept of Lagrangian in mechanics.

A generalized Lagrange superspace is a pair GLm,n = (M, g(x, y, ; η, θ)),

where g(x, y; η, θ) is a distinguished tensor field on TMo = TM − {0}, su-
persymmetric of super rank (m,n). A Lagrange superspace is defined as a

particular case of generalize Lagrange superspace when the distinguished ten-

sor field on M can be expressed as

gij =
1

2

∂2L

∂yi∂yj
, giβ =

1

2

∂2L

∂yi∂θβ
, gαj =

1

2

∂2L

∂θα∂yj
, gαβ =

1

2

∂2L

∂θα∂θβ
(2.6)

where L : TM 7→ BL, is a superfunction called a Lagrangian on M (see [22]).

Locally, L is regular if and only if the matrix

g =

[
gij giβ
gαj gαβ

]
is invertible. For example, if L = F 2, where F is a Finsler metric and will be

defined in the following definition, then L is a regular Lagrangian. In this case

L is a homogeneous superfunction of degree 2.

The superenergy EL is defined as the superfunction

EL = C(L)− L

where C is the Liouville superfield.

Definition 2.4. A supervector field X ∈ X (TM) is called dynamical super-

symmetry for (M, L) if [S,X] = 0.

To define a supermetric on a supermanifold, we consider the base manifold

M of a vector superbundle E = (E, πE ,M) to be a connected and paracompact

manifold.

Definition 2.5. ([23]) A metric structure on the total space E of a vector

superbundle E is a supersymmetric, second order, covariant supertensor field

g which in every point u ∈ E is given by nondegenerate supermatrix gab =

g(∂a, ∂b) ( with nonvanishing superdeterminant, detg ̸= 0).

Definition 2.6. A function F : TM → BL is called a Finsler metric (see

[22],[23]) if the following conditions are satisfied:

(1) The restriction of F to TMo = TM−{0} is of the class C∞ and F is only
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continuous on the image of the null cross–section in the tangent supermanifold

to M.

(2) F (x, λy; η, λθ) = λF (x, y; η, θ), where λ is a real positive number.

(3) The restriction of F to the even subspace of TMo is a positive function.

(4) If we put

gij =
1

2

∂2F 2

∂yi∂yj
, giβ =

1

2

∂2F 2

∂yi∂θβ
, gαj =

1

2

∂2F 2

∂θα∂yj
, gαβ =

1

2

∂2F 2

∂θα∂θβ
(2.7)

then

g =

[
gij giβ
gαj gαβ

]
is invertible .

A pair (M, F ) is called a Finsler Supermanifold.

It is obvious that Finsler superspaces form a particular class of Lagrange

superspaces with Lagrangian L = F 2.

Definition 2.7. Let L be a Lagrangian defined on TM. The dynamics of

a system (TM, ω, L), associated with L is given by a supervector field X ∈
X (TM) satisfying the equation

iXω = −dL (2.8)

where ω = ddJL.

In local coordinates (x, y; η, θ), the local form of ω is

ω =
∂2L

∂xj∂yi
dxj ∧ dxi +

∂2L

∂yj∂yi
dyj ∧ dxi − (−1)|L| ∂2L

∂ηα∂yi
dηα ∧ dxi

−(−1)|L| ∂2L

∂θα∂yi
dθα ∧ dxi − (−1)|L|{ ∂2L

∂xj∂θα
dxj ∧ dηα +

∂2L

∂yi∂θα
dyi ∧ dηα

+(−1)|L| ∂2L

∂ηβ∂θα
dηβ ∧ dηα + (−1)|L| ∂2L

∂θβ∂θα
dθβ ∧ dηα}. (2.9)

Theorem 2.1. ([19]) On any Finsler supermanifold (M, F ), there is a super-

spray

S = yj
∂

∂xj
+ θβ

∂

∂ηβ
− 2Gj(x, y; η, θ)

∂

∂yj
− 2Gβ(x, y; η, θ)

∂

∂θβ
,

where

Gj =
1

4
gjm(yk

∂2F 2

∂xk∂ym
− ∂2F 2

∂ηα∂ym
θα − ∂F 2

∂xm
)

−1

4
gmβ(yj

∂2F 2

∂xj∂θγ
+

∂2F 2

∂ηµ∂θγ
θµ − ∂F 2

∂ηγ
), (2.10)
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and

Gβ =
1

4
gβm(yk

∂2F 2

∂xk∂ym
− ∂2F 2

∂ηα∂ym
θα − ∂F 2

∂xm
)

+
1

4
gβγ(yj

∂2F 2

∂xj∂θγ
+

∂2F 2

∂ηµ∂θγ
θµ − ∂F 2

∂ηγ
). (2.11)

We call this superspray the canonical superspray of a Finsler metric.

Let S be the Euler-Lagrange supervector field, then the coordinate form of

(2.8) is

gijG
j − (−1)|L|giαG

α =
1

4
(yj

∂2L

∂xj∂yi
− (−1)|L| ∂2L

∂ηα∂yi
θα − ∂L

∂xi
) (2.12)

and

gαiG
i + (−1)|L|gβαG

β =
1

4
(yj

∂2L

∂xj∂θα
+ (−1)|L| ∂2L

∂ηβ∂θα
θβ − ∂L

∂ηα
). (2.13)

where {gij , giα, gαi, gβα} are introduced in (2.6).

We are now in position to generalize the Barthel endomorphism to the super-

symmetric case. To do it we need to define a supervector 1-form [J,X], where

J is a vector 1-form and X a supervector field. The way to proceed is the

following. On an ordinary manifold M it is known that the Frolicher-Nijenhuis

bracket satisfies, for K = ξ ⊗X,Z = η ⊗ Y,

[K,Z]FN = ξ ∧ η ⊗ [X,Y ] + LKη ⊗ Y − (−1)rsLZξ ⊗X, (2.14)

where ξ ∈ Ωr(M) and η ∈ Ωs(M) are differential forms and X,Y two vector

fields [17]. In this paper we use only vector 1-forms. So, substituting M for

M , it is not difficult to see that for vertical endomorphism

J = dxi ⊗ ∂

∂yi
+ dηα ⊗ ∂

∂θα

and any homogeneous supervector field X, (2.14) is replaced by

[J,X] = dxi ⊗ [
∂

∂yi
, X] + dηα ⊗ [

∂

∂θα
, X]

− (−1)(r×s+|J|×|X|)(LXdxi ⊗ ∂

∂yi
+ LXdηα ⊗ ∂

∂θα
).

Notice that r = 1, s = 0 and J is a vector form of degree 0.

For each supervector field Y on TM we have

[J,X]Y = (−1)|X||Y |
(
Y i[

∂

∂yi
, X] + Y α[

∂

∂θα
, X]

)
− (−1)|X||Y |

(
Y (Xi)

∂

∂yi
+ Y (Xα)

∂

∂θα

)
.

An easy computation shows that

[J,X]Y = (−1)|X||Y |[JY,X]− (−1)|X||Y |J [Y,X],
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so, we proved that:

Lemma 2.2. If J is the vertical endomorphism and X,Y two homogeneous

supervector fields on TM, then we have

[J,X]Y = (−1)|X||Y |[JY,X]− (−1)|X||Y |J [Y,X]. (2.15)

Theorem 2.3. (1) Any super-semispray S generates a horizontal endomor-

phism

h =
1

2
(id+ [J, S]), (2.16)

where id is the identity map on T (TM). The horizontal lift of a supervector

filed X on M is

Xh := hXc =
1

2
(Xc + [Xv, S]). (2.17)

(2) A super-semispray associated with h is

Sh =
1

2
(S + [C, S]). (2.18)

If S is a superspray, then Sh = S.

(3) The torsion of h vanishes.

Proof. (1) First, we show that h is a horizontal endomorphism. So let X be

a homogeneous supervector field on M. Since S is an even supervector field,

thus

h(Xv) =
1

2

(
Xv − J

{
Xi(

∂

∂xi
− 2

∂Gj

∂yi
∂

∂yj
− 2

∂Gβ

∂yi
∂

∂θβ
)

+ Xα(
∂

∂ηα
− 2

∂Gi

∂θα
∂

∂yi
− 2

∂Gβ

∂θα
∂

∂θβ
)} − yj(

∂Xi

∂xj

∂

∂yi
+

∂Xα

∂xj

∂

∂θα
)

− θβ(
∂Xi

∂ηβ
∂

∂yi
+

∂Xα

∂ηβ
∂

∂θβ
)
)
=

1

2
(Xv −Xi ∂

∂yi
−Xα ∂

∂θα
) = 0.

This shows that Xv(TM) ⊂ kerh.

Now, let Y ∈ kerh, then

0 = 2h(Y ) = Y + [JY, S]− J [Y, S],

so

Y = −[JY, S] + J [Y, S].

If we compute JY , it follows that

JY = −J [JY, S] = 0.

Thus kerh ⊂ Xv(TM) and therefore

Xv(TM) = kerh.
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It is clear that for any supervector field Xv ∈ X (TM), we have h2(Xv) = 0.

On the other hand

h2(Xc) =
1

2

(
hXc + h[JXc, S]− hoJ [Xc, S]

)
=

1

2

(
hXc + h[Xv, S]

)
= hXc.

This shows that on X (TM) we have h2 = h.

(2) If S̃ is an arbitrary super-semispray on M and h is the horizontal en-

domorphism defined by (2.16), then Joh(S̃) = C. So Sh = h(S̃) is a super-

semispray.

Now let S̃ has the local form

S̃ = yi
∂

∂xi
+ θα

∂

∂ηα
− 2G̃i ∂

∂yi
− 2G̃α ∂

∂θα
.

It is not difficult to show that J [S̃, S] = −S + S̃. If S is a superspray, i.e. Gi

and Gα are homogeneous superfunctions of degree two, then [C, S] = S and

h(S̃) =
1

2
(S̃ + [JS̃, S]− J [S̃, S]) = S.

(3) We begin this part of proof with the definition of horizontal endomor-

phism h, thus we have

[J, h] =
1

2
[J, id] +

1

2
[J, [J, S]].

It is clear that [J, id] = 0, so we show that [J, [J, S]] = 0. Note that in this case

J is an even 1-vector valued form and S an even supervector field. From the

Bianchi identities for the lie superalgebra of vector-valued forms, we have

(−1)1.0[J, [J, S]] + (−1)1.1[J, [S, J ]] + (−1)0.1[S, [J, J ]] = 0.

Apply Lemma 3.5 to [S, J ], we see that [S, J ] = −[J, S]. Since [J, J ] = 0,

therefore [J, [J, S]] = 0 and the torsion of h is zero. □

In local coordinates (x, y; η, θ) in (TM), we have

h(
∂

∂xi
) =

∂

∂xi
−N j

i

∂

∂yj
−Nβ

i

∂

∂θβ
=

δ

δxi

and

h(
∂

∂ηα
) =

∂

∂ηα
−N j

α

∂

∂yj
−Nβ

α

∂

∂θβ
=

δ

δηα
.
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3. Nonlinear connections obtained from metric compatibility.

The dynamical superderivative that corresponds to a super-semispray S and

a nonlinear connection N is defined by

∇ : χv(TM) 7→ χv(TM)

through

∇(Xi ∂

∂yi
+Xα ∂

∂θα
) =

(
S(Xi) +XjAi

jN
i
j +XαAi

αN
i
α

) ∂

∂yi

+
(
S(Xα) +XiAα

i N
α
i +XβAα

βN
α
β

) ∂

∂θα
,

where As
t are the coefficients of an operator Ā such that for each (0,2)-tensor

field as the supermetric g, defined as

Ab
cgbc =

{
−gbc if b = i and c = α

gbc else.

One can immediately check that

∇fX = S(f)X + f∇X.

Note that, since S is even supervector field therefore ∇ is also even su-

perderivative. For the homogeneous supermetric tensor g, its dynamical deriv-

ative is given by

(∇g)(X,Y ) = S(g(X,Y ))− g(∇X,Y )− g(X,∇Y ).

In local coordinates,

g|ij := S(gij)−Nk
i gkj −Nα

i gαj −Nk
j gik −Nα

j giα = 0, (3.1)

g|iα := −S(giα) + gkαN
k
i + gβαN

β
i − gijN

j
α + giβN

β
α = 0, (3.2)

g|αi := −S(gαi)− gjiN
j
α + gβiN

β
α + gαjN

j
i − gαβN

β
i = 0, (3.3)

g|µα := −S(gµα) + gtαN
t
µ + gγαN

γ
µ − gµtN

t
α + gµγN

γ
α = 0. (3.4)

Thus a nonlinear connection N is g-metric if ∇g = 0

Theorem 3.1. Let S be a super-semispray with local coefficients Gi and Gα.

There is a metric nonlinear connection N̄ , whose coefficients N̄a
b are given by
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(3.5 - 3.8 ).

N̄ i
j =

tij
2
gikgkj| +

sij
2
giµgµj| +

∂Gi

∂yj
, (3.5)

N̄ i
α =

tiα
2
gikgkα| +

siα
2
giµgµα| +

∂Gi

∂θα
, (3.6)

N̄α
i =

tαi
2
gαkgki| +

sαi
2
gαµgµi| +

∂Gα

∂yi
, (3.7)

N̄α
β =

tαβ
2
gαkgkβ| +

sαβ
2
gαµgµβ| +

∂Gα

∂θβ
, (3.8)

where tab are the coefficients of an operator T̄ and similar to the operator Ā, such

operator defined as tabgca = gca except for the cases tγαgβγ = −gβγ , t
γ
αgγj = −gγj

and tβi gαβ = −gαβ , also sab are the coefficients of an operator S̄ and defined as

sabgca = gca except for sγαgβγ = −gβγ , s
γ
αgγj = −gγj and sjigαj = −gαj .

Proof. In [12], it is shown that, by differentiating of the coefficients of each

super-semispray with respect to yi, θα we obtain four superfunctions which

are the coefficients of a nonlinear connection. On the other hand gabgcd| are

components of a supertensor fields. Therefore all four superfunctions (3.8)

satisfy the transformation rules for a nonlinear connection and hence they define

a nonlinear connection.

We only show that (∇g)( ∂
∂θα ,

∂
∂θβ ) = 0 and the rest of equalities will be as

the same method. So, if we apply the superfunctions (3.5 - 3.8 ) in g|αβ :=

−S(gαβ) + giβN̄
i
α + gγβN̄

γ
α − gαiN̄

i
β + gαγN̄

γ
β , then we conclude that

giβ

(
1

2
tiαg

ikg|kα

)
+ gγβ

(
1

2
tγαg

γkg|kα

)
= 0,

−gαi

(
1

2
tiβg

ikg|kβ

)
+ gαγ

(
1

2
tγβg

γkg|kβ

)
= 0.

Since

giβ
(
siαg

iµ
)
+ gγβ (s

γ
αg

γµ) = δµβ

and

−gαi
(
siβg

iµ
)
+ gαγ

(
sγβg

γµ
)
= δµα,

then

−S(gαβ) − 1

2

(
giβs

i
αg

iµ + gγβs
γ
αg

γµ
)
S(gµα)

− 1

2

(
−gαis

i
βg

iµ + gαγs
γ
βg

γµ
)
S(gµβ) = 0.
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Using the same method, we can omit the term −giβ
∂Gi

∂θα by four sentences, i.e.

−giβ
∂Gi

∂θα
− 1

2

(
giβs

i
αg

iµ + gγβs
γ
αg

γµ
)
gµkN

k
α

+
1

2

(
−gαis

i
βg

iµ + gαγs
γ
βg

γµ
)
gjβN

j
µ = 0.

Continuity this way, we will obtain that (∇g)( ∂
∂θα ,

∂
∂θβ ) = 0. □

Consider now a nonlinear connection N, we can introduce two new natural

local bases that are dual to each other. In a local coordinate system (x, y; η, θ)

in TM, we define

δyi := dyi +N i
jdx

j −N i
αdη

α, δθα := −dθα −Nα
i dx

i −Nα
β dη

β . (3.9)

The tangent superbundle of the supermanifold TM has a local coordinate

basis that consists of the ∂
∂xi ,

∂
∂yi ,

∂
∂ηα and the ∂

∂θα . Similarly, the cotangent

superbundle of the supermanifold TM has a local coordinate basis that consists

of the {dxi, δyi, dηα, δθα}.
In order to make explicit computations, we will need the following result.

Lemma 3.2. The local expression of the supersymplectic form ω with respect

to the basis {dxi, δyi, dηα, δθα} is

ω = gjiδy
j ∧ dxi + (−1)|L|gαiδθ

α ∧ dxi − (−1)|L|giαδy
i ∧ dηα + gβαδθ

β ∧ dηα

+
1

2

(
−gkiN

k
j + gkjN

k
i + (−1)|L|gαiN

α
j

−(−1)|L|gαjN
α
i +

∂2L

∂xj∂yi
− ∂2L

∂xi∂yj

)
dxj ∧ dxi

+

(
gjiN

j
α + (−1)|L|gβiN

β
α − (−1)|L| ∂2L

∂ηα∂yi
+ (−1)|L| ∂2L

∂xj∂θα
δαβ

)
dηα ∧ dxi

+

(
(−1)|L|gjαN

j
i + gβαN

β
i − (−1)|L| ∂2L

∂xi∂θα
+ (−1)|L| ∂2L

∂ηα∂yi
δij

)
dxi ∧ dηα

+
1

2

(
−(−1)|L|(giαN

i
β + giβN

i
α) + (gγαN

γ
β + gγβN

γ
α)

−(
∂2L

∂ηβ∂θα
+

∂2L

∂ηα∂θβ
)

)
dηβ ∧ dηα.

Proof. It is sufficient to replace the factors dyi and dθα by δyi and δθα in the

supersymplectic form (2.9). □

Theorem 3.3. Let L be a regular Lagrangian. Suppose that S is the Euler-

Lagrange supervector field associated to L and for all X,Y ∈ X (TM) we have



On the compatibility of supermetrics with nonlinear connections 35

ω(hX, hY ) = 0. Then S and g satisfy ∇g = 0, where g is the metric associated

to L.

Proof. Let the condition ω(hX, hY ) = 0, of theorem be satisfied. Then we have

−gkiN
k
j + gkjN

k
i + (−1)|L|gαiN

α
j − (−1)|L|gαjN

α
i

= − ∂2L

∂xj∂yi
+

∂2L

∂xi∂yj
, (3.10)

gjiN
j
α + (−1)|L|gβiN

β
α = (−1)|L| ∂2L

∂ηα∂yi
− (−1)|L| ∂2L

∂xj∂θα
δαβ ,(3.11)

(−1)|L|gjαN
j
i + gβαN

β
i = (−1)|L| ∂2L

∂xi∂θα
− (−1)|L| ∂2L

∂ηα∂yi
δij ,(3.12)

−(−1)|L|(giαN
i
β + giβN

i
α) + (gγαN

γ
β + gγβN

γ
α)

= (
∂2L

∂ηβ∂θα
+

∂2L

∂ηα∂θβ
), (3.13)

where N is the nonlinear connection induced by S. By differentiating of the

equations (2.12) and (2.13) with respect to y and θ, we have four relations

gijN
j
k − (−1)|L|giαN

α
k =

1

2
S(gik) +

1

4

(
∂2L

∂xj∂yi
− ∂2L

∂yk∂xi

)
, (3.14)

giαN
i
j + (−1)|L|gβαN

β
j =

1

2
S(gjα) +

1

4

(
− ∂2L

∂yj∂ηα
+

∂2L

∂xi∂θα

)
,(3.15)

gjiN
j
β + (−1)|L|gαiN

α
β =

(−1)|L|

2
S(gβi)

+
1

4

(
−(−1)|L| ∂2L

∂θβ∂xi
− ∂2L

∂ηα∂yi

)
, (3.16)

gαiN
i
γ − (−1)|L|gβαN

β
γ =

1

2
S(gγα) +

1

4

(
∂2L

∂ηβ∂θα
− ∂2L

∂θγ∂ηα

)
. (3.17)

We should mention that in computing the above equations, for example the

equation (3.17), it is necessary to use

∂gαi
∂θγ

=
∂gγα
∂yi

,
∂gβα
∂θγ

= −∂gγα
∂θβ

,

then after replacing the value of the super-semispray S, the equation will be

obtained. On the other hand if we do the relations (3.16)-(3.11), we get

2gjiN
j
α + 2(−1)|L|gβiN

β
α − gjiN

j
α − (−1)|L|gβiN

β
α (3.18)

= (−1)|L|S(gαi) +
1

2

(
−(−1)|L| ∂2L

∂θα∂xi
− ∂2L

∂ηβ∂yi

)
(3.19)

− (−1)|L| ∂2L

∂ηα∂yi
+ (−1)|L| ∂2L

∂xj∂θα
δαβ . (3.20)
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Last four terms of the previous equation together are zero, therefore, if the

Lagrangian superfunction L is odd, so

g|αi = 0.

Also, minus of (3.17) and (3.13) gives us

g|γα = 0

and minus of (3.14) and (3.10) gives us

g|ik = 0.

This completes the proof. □
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