تعداد نشریات | 27 |
تعداد شمارهها | 366 |
تعداد مقالات | 3,243 |
تعداد مشاهده مقاله | 4,753,779 |
تعداد دریافت فایل اصل مقاله | 3,244,681 |
مقایسة کاربرد زغالزیستی اصلاحنشده و اصلاحشده و ریزموجودات بر برخی شاخصهای میکروبی و اکوفیزیولوژیک خاک آلوده به نفت خام | ||
مدل سازی و مدیریت آب و خاک | ||
مقاله 3، دوره 4، شماره 4، آذر 1403، صفحه 33-56 اصل مقاله (2.01 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22098/mmws.2023.13663.1356 | ||
نویسندگان | ||
میلاد بی ریا1؛ حبیب اله نادیان قمشه2؛ حسین معتمدی3؛ بیژن خلیلی مقدم* 4؛ نفیسه رنگزن5 | ||
1دانشجوی دکتری، گروه علوم و مهندسی خاک، دانشکدة کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران | ||
2استاد، گروه علوم و مهندسی خاک، دانشکدة کشاورزی، دانشگاه کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران | ||
3استاد، گروه زیستشناسی، دانشکدة علوم، و مرکز تحقیقات پالایشگاه زیستی دانشگاه شهید چمران اهواز، اهواز، ایران | ||
4دانشیار، گروه علوم و مهندسی خاک، دانشکدة کشاورزی، دانشگاه کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران | ||
5استادیار، گروه علوم و مهندسی خاک، دانشکدة کشاورزی، دانشگاه کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران | ||
چکیده | ||
این مطالعه با هدف مقایسة تغییر خصوصیات زغالزیستی حاصل از باگاس نیشکر و نخل خرما از طریق فعالسازی شیمیایی سطحی با پراکسیدهیدروژن (زغالزیستی اصلاح شده) و زغالزیستی اصلاحنشده بر فعالیتهای متابولیکی، آنزیمی و میزان زیستتودة میکروبی در یک خاک آهکی شور آلوده به نفت خام به مرحلة اجرا درآمد. در این پژوهش آزمایشی در قالب طرح اندازهگیریهای مکرر در زمان انجام شد. در اواسط و انتهای دورة آزمایش (روز 60 و 120)، تأثیر سطوح مختلف زغالزیستی اصلاحنشده و اصلاح شدة باگاس نیشکر و نخل خرمای اصلاحنشده (یک و دو درصد) بههمراه ریزموجودات (با زغالزیستی و بدون زغالزیستی و در مجموع 57 نمونة آزمایشی در دو زمان) بر برخی ویژگیهای زیستی و شاخصهای اکوفیزیولوژیک خاک شامل تنفس پایة میکروبی، تنفس ناشی از سوبسترا، کربن زیتودة میکروبی، آنزیم دهیدروژناز، سهم میکروبی و سهم متاوبولیک بررسی شد. نتایج بهدست آمده نشان داد که در اثرات برون گروهی، تمام تیمارها دارای تفاوت معناداری با یکدیگر در سطح یک درصد دارند. در اثرات درونگروهی، زمان در تمامی تیمارهای مورد بررسی وضعیت مشابهی داشت. برهمکنش زمان و تیمارها نیز جز در کربن زیتودة میکروبی و تنفس ناشی از سوبسترا در باقی تیمارها تفاوت معناداری را نشان دادند. بهترین نتایج در آنزیم دهیدروژناز، کربن زیتودة میکروبی، تنفس پایه و ناشی از سوبسترا متعلق به تیمار مخلوط چهار (مخلوط باگاس اصلاح شدة دو درصد و کنسرسیوم باکتری دو درصد) با زمان 60 روزه بود. لذا، میزان این متغیرها را نسبت به تیمار شاهد بهترتیب 98/70، 96/8، 97/53 و 54/53 درصد افزایش داده است. بالاترین میزان سهم میکروبی متعلق به تیمار شاهد 120 روزه و بالاترین مقدار سهم متابولیک نیز متعلق به تیمار مخلوط سه (مخلوط باگاس اصلاحنشده یک درصد و کنسرسیوم باکتری دو درصد) با زمان 120 روز بود که این متغیر را نسبت به تیمار شاهد 120 روز 70/76 درصد افزایش داده است. بنابراین، اصلاح زغالزیستی با استفاده از پراکسیدهیدروژن، بهعنوان یک عامل اصلاحکنندة نسبتاً ارزان قیمت و دوستدار محیط زیست، سبب افزایش تأثیر زغالزیستی بر خصوصیات زیستی و اکوفیزیولوژیکی مورد مطالعه داشت. زغالزیستی باگاس نیشکر نسبت به ضایعات نخل خرما و حضور ریزموجودات باعث بهبود شاخصهای زیستی خاک شد. | ||
کلیدواژهها | ||
آنزیم دهیدروژناز؛ باگاس نیشکر؛ تنفس میکروبی؛ سهم متابولیک؛ سهم میکروبی؛ نخل خرما | ||
مراجع | ||
Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. Academic Press, London. 608 pages. Paperback ISBN: 9780125138406. Ali, S., Rizwan, M., Noureen, S., Anwar, S., Ali, B., Naveed, M., Abd_Allah, E.F., Alqarawi, A.A., & Ahmad, P. (2019). Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environmental Science and Pollution Research, 26, 11288-11299. doi: 10.1007/s11356-019-04554-y. Anderson, C.R., Condron, L.M., Clough, T.J., Fiers, M., Stewart, A., Hill, R.A., & Sherlock, R.R. (2011). Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54(5-6), 309-320. doi :10.1016/j.pedobi.2011.07.005. Beiyuan, J., Qin, Y., Huang, Q., Wang, H., Tsang, D.C., & Rinklebe, J. (2021). Effects of modified biochar on as-contaminated water and soil: A recent update. Advances in Chemical Pollution, Environmental Management and Protection, 7, 107-136. Brookes, P.C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19, 269–279. Burns, R.G. (1978). Soil enzymes. Academic Press, New York, pp: 149-196. doi:10.1016/B978-012513840-6/50022-7. Basaltpour, A. (2005). Bioremediation of soil contaminated with petroleum hydrocarbons by Phytostimulation method. Master's Thesis, Isfahan University of Technology, Isfahan, Iran. [In Persian] Cassida, L.E., Klein, J.D., & Santoro, D. (1964). Soil dehydrogenase activity. Soil Science, 98, 371-374. doi: 10.1097/00010694-196412000-00004. Chen, T., Luo, L., Deng, S., Shi, G., Zhang, S., Zhang, Y., Deng, O., Wang, L., Zhang, J., & Wei, L. (2018). Sorption of tetracycline on H3PO4 modified Biochar derived from rice straw and swine manure. Bioresource Technology, 267, 431-437. doi: 10.1016/j.biortech.2018.07.074. Deenik, J.L., McClellan, T., Uehara, G., Antal, M.J., & Campbell, S. (2010). Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Science Society of America Journal, 74(4), 1259-1270. doi: 10.2136/sssaj2009.0115. Dempster, D.N., Gleeson, D.B., Solaiman, Z.I., Jones, D.L., & Murphy, D.V. (2012). Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus Biochar addition to a coarse textured soil. Plant and Soil, 354, 11-324. doi:10.1007/s11104-011-1067-5 Diaz-Ravina, M., Calvo, D., Anta, R., & Baath, E, (2007). Tolerance (PICT) of the bacterial communities to copper in Vineyards soils from Spain. Journal of Environmental Quality, 36, 1760-1764. doi: 10.2134/jeq2006.0476. Dick, R.P., Breakwell, D.P., & Turco, R.F. (1996). Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. 247-271. In: Doran, J.W., & A.J. Jones (eds), Methods for assessing soil quality. Special Publication No. 49, Soil Science Society of America Journal, USA., Madison, WI. doi:10.2136/SSSASPECPUB49.C15 Domene, X., Mattana, S., Hanley, K., Enders, A., & Lehmann, J. (2014). Medium-term effects of corn Biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biology and Biochemistry, 72, 152-162. doi 10.1016/j.soilbio.2014.01.035 Dong, H., Zhang, C., Hou, K., Cheng, Y., Deng, J., Jiang, Z., Tang, L., & Zeng, G. (2017). Removal of trichloroethylene by Biochar supported nanoscale zero-valent iron in aqueous solution. Separation and Purification Technology, 188, 188-196. doi:10.1016/j.seppur.2017.07.033 Farkhian Firouzi, A., Milad Biria, M., Moezzi., A. B., & Rahnam. (2023). The effect of Cenocarpus biochar on some physical and mechanical properties of calcareous soil under corn cultivation. Water and Soil Management and Modeling. doi:10.22098/mmws.2023.12233.1217 [In Persian] Fontaine, S., Marotti, A., & Abbadie, L. (2003). The priming effect of organic matter: A question of microbial competition. Soil Biology and Biochemistry, 35, 837-843. doi:10.1016/S0038-0717(03)00123-8. Frene, J.P., Frazier, M., Liu, S., Clark, B., Parker, M., & Gardner, T. (2021). Early effect of pine Biochar on peach-tree planting on microbial community composition and enzymatic activity. Applied Sciences, 11(4), 1473. doi:10.3390/app11041473. General Department of Meteorology of Khuzestan Province (2016). Meteorological technical newsletter. Khuzestan, Ahvaz, 35 pages. doi: 10.059/ijswr.019.7746.668143. [In Persian] Habibi, H., Motsharazadeh., B., & Alikhani., H.A. (2017). The effect of biological treatments on the concentration of nutrients (phosphorus, potassium, calcium, magnesium, iron and manganese) of Amaranthus plant in a soil contaminated with oil compounds. Iran Water and Soil Research, 48(2), 369-384. Heydari Fard, M.H. (2002). Investigation of nickel and vanadium in Asmari and Bangestan reservoirs in Bibi Hakimeh square. Master's Thesis, Shahid Chamran University of Ahvaz, Ahvaz, Iran. [In Persian] Horwath W.R., & Paul E.A. (1984). Microbial biomass. In: Buxton DR(Ed). Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties. Soil Science Society of America Journal, 5, 753-773. doi:10.2136/sssabookser5.2.c36. Huang, M., Yang, L., Qin, H., Jiang, L., & Zou, Y. (2013). Quantifying the effect of Biochar amendment on soil quality and crop productivity in Chinese rice paddies. Field Crops Research, 154, 172-177. doi:10.1016/j.fcr.2013.08.010 Jiang, Z., Lian, F., Wang, Z., & Xing, B. (2020). The role of Biochars in sustainable crop production and soil resiliency. Journal of Experimental Botany, 71(2), 520-542. doi: 10.1093/jxb/erz301. Kermannejad, J., Torabi Podeh, H., Ghanbari Adivi, E., & Shahinejad, B. (2023). Drainage Water Sodium Removal by Biochar. Water and Soil Management and Modeling. doi: 10.22098/mmws.2023.13129.1308. [In Persian] Kavousi Bafti, M., Asrar, Z., Hassan Shahian, M., & Karamatian, B. (2013). Investigating the effect of oil pollution and crude oil-decomposing bacteria on some biochemical indicators and corn plant growth. Iranian Plant Biology, 1(6), 71-84. 20.1001.1.20088264.1393.6.21.7.2 [In Persian] Lehmann J., & Joseph S. (2009). Biochar for environmental management-an introduction. In: Lehmann J. and Joseph S. (Eds). Biochar for environmental management: Science and Technology. Earthscan, London, pp: 1–11. ISBN: 978-1-84407-658-1. Li, M., Xiong, Y., & Cai, L. (2021). Effects of Biochar on the soil carbon cycle in agroecosystems: An promising way to increase the carbon pool in dryland. In IOP Conference Series: Earth and Environmental Science, IOP Publishing. doi: 10.1088/1755-1315/693/1/012082. Li, Y., Shao, J., Wang, X., Deng, Y., Yang, H., & Chen, H. (2014). Characterization of modified Biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy Fuels, 28(8), 5119–5127. doi:10.1021/ef500725c Liao, M., Chen, CL., Zeng, LS., & Huang, CY. )2007(. Influence of lead acetate on soil microbial biomass and community structure in two different soils with the growth of Chinese cabbage (Brassicachinensis). Chemosphere, 66, 1197–1205. doi: 10.1016/j.chemosphere.2006.07.046. Lominchar, M.A., Lorenzo, D., Romero, A., & Santos, A. (2018). Remediation of soil contaminated by PAHs and TPH using alkaline activated persulfate enhanced by surfactant addition at flow conditions. Journal of Chemical Technology and Biotechnology, 93, 1270–1278. doi: 10.3390/ijerph16030441. Lopes, E.B. (2001). Diversidademetabólicaem solo tratado com biossólidos, M.Sc. Dissertation, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, Brasil, 65. Martens R, 1991. Methodenzur quantitative Bestimmung und Charakterisierung dermikrobiellen biomasse in Boden. Eigenverlag des institutes fürBodenbiologie der FAL Braunschweig. doi: 10.11606/D.11.2002.tde-29042002-160938. Luo, J., Li, X., Ge, C., Müller, K., Yu, H., Huang, P., Li, J., Tsang, D.C., Bolan, N.S., Rinklebe, J., & Wang, H. (2018). Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified Biochar under single and ternary systems. Bioresource Technology, 263, 385-392. doi: 10.1016/j.biortech.2018.05.022. Major, J., Rondon, M., Molina, D., Riha, S.J., & Lehmann, J. (2010). Maize yield and nutrition during 4 years after Biochar application to a Colombian savanna oxisol. Plant and Soil, 333, 117-128. doi:10.1007/s11104-010-0327-0. Mansoor, S., Kour, N., Manhas, S., Zahid, S., Wani, O.A., Sharma, V., Wijaya, L., Alyemeni, M.N., Alsahli, A.A., El-Serehy, H.A., Paray, B.A., Ahmad, P. (2021). Biochar as a tool for effective management of drought and heavy metal toxicity. Chemosphere, 271, 129458. doi: 10.1016/j.chemosphere. Martens, R. (1991). Methodenzur quantitative bestimmung und charakterisierung dermikrobiellen biomasse in Boden. Eigenverlag des institutes fürBodenbiologie der FAL Braunschweig. https://www.openagrar.de/receive/timport_mods_00005888. McLean, E.O. (1983). Soil pH and lime requirement. Methods of soil analysis: Part 2 Chemical and microbiological properties, 9, 199-224. doi:10.2134/agronmonogr9.2.2ed.c12. Metson, A.J. (1961). Methods of Chemical Analaysis for Soil Survey Samples, Soil Bureau Bulletin 12, Depth Scientific; Industrial Research, New Zealand. Mierzwa-Hersztek, M., Wolny-Koładka, K., Gondek, K., Gałązka, A., & Gawryjołek, K., (2020). Effect of coapplication of Biochar and nutrients on microbiocenotic composition, dehydrogenase activity index and chemical properties of sandy soil. Waste and Biomass Valorization, 11, 3911-3923. doi:10.1007/s12649-019-00757-z. Mishra, S., Lal, B., Jyot, J., & Rajan, S. (1991). Field study in situe Bioremidiation od oily sludge contaminated land using oilzapper, hazardous and industrial wastes, industrial and hazardous confrance, University of Connecticut. Olsen, S., Cole, C., Watanabe, F., & Dean, L. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular Nr 939, US Gov.Print. Office, Washington, D.C. oclc/17316676. Omidpur, A. (2015). Isolation of bacteria resistant to heavy metals and decomposing oil hydrocarbons from drilling mud residues. Master's Thesis, Shahid Chamran University of Ahvaz, Ahvaz, Iran. [In Persian] Page, A.L., Miller, R.H., & Keeney, D.R. (1982). Methods of soil analysis agronomy No G. Partz USA. Inc. doi: 10.2134/agronmonogr9.2.2ed.frontmatter Park, J.H., Cho, J.S., Ok, Y.S., Kim, S.H., Kang, S.W., Choi, I.W., Heo, J.S., DeLaune, R.D., & Seo, D.C. (2015) Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived Biochar: batch and column experiment. Journal of Environmental Science and Health, 50(11) ,1194-1204. doi: 10.1080/10934529.2015.1047680. Purakayastha, T.J., Kumari, S., & Pathak, H. (2015). Characterisation, stability, and microbial effects of four Biochars produced from crop residues. Geoderma, 239, 293-303. doi:10.1016/j.geoderma.2014.11.009 Pollution Standards of Soil Resources and its Guidelines (2022). Human Environment Deputy, Water and Soil Office. https://wsm.doe.ir/portal/home/?generaltext/673823/1010221/. [In Persian] Quilchano, C., & Maranon, T. (2002). Dehydrogenase activity in mediterranean forest soils. Biology and Fertility of Soils, 35(2), 102-107. doi:10.1007/s00374-002-0446-8. Rahbari-Sisakht, M., Pouranfard, A., Darvishi, P., & Ismail, A.F. (2017). Biosurfactant production for enhancing the treatment of produced water and bioremediation of oily sludge under the conditions of Gachsaran oil field. Journal of Chemical Technology and Biotechnology, 92, 1053-1064. doi;10.1002/jctb.5081. Rajapaksha, A.U., Chen, S.S., Tsang, D.C.W., Zhang, M., Vithanage, M., Mandal, S., Gao, B., Bolan, N.S., & Ok, Y.S. (2016). Engineered/designer Biochar for contaminant removal/immobilization from soil and water: Potential and implication of Biochar modification. Chemosphere, 148, 276–291. doi:10.1016/j.chemosphere.2016.01.043 Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., & Lehmann, J. (2011). Corn growth and nitrogen nutrition after additions of Biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48(3), 271-284. doi:10.1007/s00374-011-0624-7. Rhoads. J.D., Ingvabon, R.D., & Hatcher, D.D. (1970). Labortory determination Leacheable soil boron. Soil Science Society of America Journal, 34, 871-875. doi:10.2136/sssaj1970.03615995003400060018x. Rutigliano, F.A., Romano, M., Marzaioli, R., Baglivo, I., Baronti, S., Miglietta, F., & Castaldi, S. (2014). Effect of Biochar addition on soil microbial community in a wheat crop. European Journal of Soil Biology, 60, 9-15. doi:10.1016/j.ejsobi.2013.10.007. Saeed, M., Ilyas, N., Jayachandran, K., Gaffar, S., Arshad, M., Ahmad, M.S., Bibi, F., Jeddi, K., & Hessini, K. (2022). Biostimulation potential of Biochar for remediating the crude oil contaminated soil and plant growth. Saudi Journal of Biological Sciences, 28(5), 2667-2676. doi: 10.1016/j.sjbs.2021.03.044. Sahin, O., Taskin, M.B., Kaya, E.C., Atakol, O., Emir, E., Inal, A., & Gunes, A. (2017). Effect of acid modification of Biochar on nutrient availability and maize growth in a calcareous soil. Soil Use and Management, 33(3), 447-456. doi:10.1111/sum.12360. Salazar, S., Sanchez, L., Alvarez, J., Valverde, A., Galindo, P., Igual, J., Peix, A. (2011). Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering 37, 1123-1131. doi:10.1016/j.ecoleng.2011.02.007. Shaaban, A., Se, S.M., Mitan, N.M.M., & Dimin, M.F. (2013). Characterization of Biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups. Procedia Engineering, 68, 365-371. doi: 10.1016/j.proeng.2013.12.193. Šíša, R. (1993). Enzym ová aktivit apůdyja koukazate ljejíbiologi ckéaktivity. Rostl. Výr, 39, 817–825. doi: 10.17221/4131-PSE. Smith, J.L., Collins, H.P., & Bailey, V.L. (2010). The effect of young Biochar on soil respiration. Soil Biology and Biochemistry, 42(12), 2345-2347. doi:10.1016/j.soilbio.2010.09.013 Song, D., Tang, J., Xi, X., Zhang, S., Liang, G., Zhou, W., & Wang, X. (2018). Responses of soil nutrients and microbial activities to additions of maize straw Biochar and chemical fertilization in a calcareous soil. European Journal of Soil Biology, 84, 1-10. doi:10.1016/j.ejsobi.201711.003. Speir, T.V., Kettles, H.A., Parshotam, A,, Searle P.L., Vlaar, L.N.C. (1995). A simple kinetic approach to derive the ecological dose value ED 50, for the assessment of Cr (VI) toxicity to soil biological properties. Soil Biology and Biochemistry, 27, 801–811.doi:10.1016/s0038-0717(98)00169-2. Suárez-Hernández, L., & Barrera-Zapata, R. (2017). Morphological and physicochemical characterization of Biochar produced by gasification of selected forestry species. Revista Facultad de Ingeniería, 26(46), 123-130. doi:10.19053/01211129.v26.n46.2017.7324. Sun, C., Chen, T., Huang, Q., Wang, J., Lu, S., & Yan, J. (2019). Enhanced adsorption for Pb (II) and Cd (II) of magnetic rice husk Biochar by KMnO 4 modification. Environmental Science and Pollution Research, 26, 8902-8913. doi: 10.1007/s11356-019-04321-z. Salimi, M., Ebrahimi, S., & Ghorbani Nasrabadi, R. (2019). Optimizing the survival of non-native bacteria that effectively decompose crude oil in different carriers. Environmental Science and Technology, doi:10.034/jest.00.34708.4186. [In Persian] Sharifi Hosseini, S., Shahbazi, A., Yazdipour, A., & Kamranfar, I. (2008). Biological remediation of soil contaminated with crude oil with chemical fertilizers. Water and Soil (Agricultural Sciences and Industries), 3(3), 155-145. doi:10.22067/jsw.v0i0.2322. [In Persian] Shaheswarzadeh Jangi, P., Shoja Al-Sadati, S.A., & Hashemi Najafabadi, S. (2007). Evaluating the effect of soil texture on the bioremediation of soils contaminated with crude oil. The 12th National Congress of Chemical Engineering of Iran, Sahand University of Technology, Tabriz. Iran. https://civilica.com/doc/57716/. [In Persian] Takaya, C.A., Fletcher, L.A., Singh, S., Okwuosa, U.C., Ross, A.B. (2016). Recovery of phosphate with chemically modified Biochars. Journal of Environmental Chemical Engineering, 4(1), 156-1165. doi:10.1016/j.jece.2016.01.011 Tan, Z., Zou, J., Zhang, L., & Huang, Q. (2018). Morphology, pore size distribution, and nutrient characteristics in Biochars under different pyrolysis temperatures and atmospheres. Journal of Material Cycles and Waste Management, 20(2), 1036-1049. doi: 10.1007/s10163-017-0666-5. Tarkashvand, M., Lakzian, A., Fotovat, A., & Mohammady, M. (2019). Isolation, screening and efficiency of Pseudomonas isolates in biofilm formation on organic and inorganic carriers and phenanthrene degradation. Journal of Microbial World, 13(4), 6-0. dor:20.1001.1.20083068.1399.13.42. [In Persian] Tavalla, I.H., & Massomi, T. (1998). Simulation kinetic spectrophotometric determination of vanadium and iron. Talanta, 479-485. doi: 10.1016/s0039-9140(98)00156-8. Thies, J.E., & Rillig, M.C. (2012). Characteristics of Biochar: biological properties. In Biochar for Environmental Management. pp. 117-138. Routledge. doi: 10.4324/9781849770552-13. Usman, A.R., Ahmad, M., El-Mahrouky, M., Al-Omran, A., Ok, Y.S., Sallam, A.S., El- Naggar, A.H., & AlWabel, M.I. (2015). Chemically modified Biochar produced from conocarpus waste increases NO 3 removal from aqueous solutions. Environmental Geochemistry and Health, 38(2), 511–521. doi : 10.1007/s10653-015-9736-6. Walkley, A., & Black, I.A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38. doi:10.1097/00010694-193401000-00003. Wang, C., Li, Y., Tan, H., Zhang, A., Xie, Y., Wu, B., & Xu, H., (2019). A novel microbe consortium, nano-visible light photocatalyst and microcapsule system to degrade PAHs. Chemical Engineering Journal, 359, 1065-1074. doi:10.1016/j.cej.2018.11.07. Wang, H., Zhang, R., Zhao, Y., Shi, H., & Liu, G., (2022). Effect of Biochar on rhizosphere soil microbial diversity and metabolism in tobacco-growing soil. Ecologies, 3(4), 539-556. doi:10.3390/ecologies3040040 Wang, Z., Zheng, H., Luo, Y., Deng, X., Herbert, S., & Xing, B. (2013). Characterization and influence of Biochars on nitrous oxide emission from agricultural soil. Environmental pollution, 174, 289-296. doi: 10.1016/j.envpol.2012.12.003. Wardle, D.A. (1992). A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews, 67(3), 321-358. doi:10.1111/j.1469-185X.1992.tb00728.x. Wu, M., Dick, W.A., Li, W., Wang, X., Yang, Q., Wang, T., Xu, L., Zhang, M., & Chen, L. (2016). Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum contaminated soil. International Biodeterioration and Biodegradation., 107, 158–164. doi:10.1016/j.ibiod.2015.11.019. Xu, W., Whitman, W.B., Gundale, M.J., Chien, C., & Chiu, C. (2020). Functional response of the soil microbial community to Biochar applications. GCB Bioenergy, 13(1), 269–281. doi:10.1111/gcbb.12773. Xue, J., Wu, Y., Shi, K., Xiao, X., Gao, Y., Li, L., & Qiao, Y. (2019). Study on the degradation performance and kinetics of immobilized cells in straw-alginate beads in marine environment. Bioresource Technology, 280, 88-94. doi:10.1016/j.biortech.2019.02.019. Yuan, B., & Yue, D, (2012). Soil microbial and enzymatic activities across a chronosequenceof chinese pine plantation development on the loess plateau of china. Pedosphere, 22, 1-12. doi:10.1016/S1002-0160(11)60186-0. Zhang, N., He, X., Gao, Y., Li, Y., Wang, H., Ma, D., Zhang, R., & Yang, S. (2010). Pedogenic carbonate and soil dehydrogenase activity in response to soil organic matter in artemisia ordosica community. Pedosphere, 20, 229-235. doi:10.1016/S1002-0160(10)60010-0. Zhang, B., Zhang, L., & Zhang, X. (2019). Bioremediation of petroleum hydrocarboncontaminated soil by petroleum-degrading bacteria immobilized on Biochar. RSC advances. 9, 35304–35311. doi:10.1039/C9RA06726D. Zingaro, K.A., Nicolaou, S.A., & Papoutsakis, E.T. (2013). Dissecting the assays to assess568 microbial tolerance to toxic chemicals in bioprocessing. Trends in Biotechnology: Cell Press. 31, 643-653. doi: 10.1016/j.tibtech.2013.08.005.
| ||
آمار تعداد مشاهده مقاله: 238 تعداد دریافت فایل اصل مقاله: 56 |