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Abstract. The generalized birecurrent Finsler space have been introduced by
the Finslerian geometers. The purpose of the present paper is to study three
special forms of P;kh in generalized B P—birecurrent space. We use the prop-
erties of P2—like space, P*—space and P—reducible space in the main space
to get new spaces that will be called a P2—like generalized B P—birecurrent
space, P*—generalized BP—birecurrent space and P—reducible generalized
B P—Dbirecurrent space, respectively. In addition, we prove that the Cartan’s
first curvature tensor S]i- xp, Satisfies the birecurrence property. Certain identi-
ties belong to these spaces have been obtained. Further, we end up this paper
with some demonstrative examples.

*Corresponding Author
AMS 2020 Mathematics Subject Classification: 53C42, 53C60

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International
88


https://doi.org/10.22098/jfga.2023.12908.1089
https://orcid.org/0000-0002-8034-1475
 https://creativecommons.org/licenses/by-nc/4.0/

Diverse Forms of Generalized Birecurrent Finsler Space 89

Keywords: Cartan’s first curvature tensor S;-kh, P2—1like space, P*—space,
P—reducible space.

1. Introduction

Various special forms of h(hv)—curvature tensor P}y, and v(hv)—torsion
tensor Pjy which are called P2—like space, P*—space and P—reducible space
have been studied by scientists of Finsler geometry. A review of literature for
some special Finsler spaces introduced by Dubey [9]. Tripathi and Pandey
[23] discussed a special form of h(hv)—torsion tensor P;j; in different Finsler
spaces. Wosoughi [24] introduced a new special form in Finsler space and ob-
tained the condition for Finsler space to be a Landsberg space. Furthermore,
Narasimhamurthy et al. [2, 16] studied hypersurfaces of special Finsler spaces.

The properties of P2—like space, P*—space and P—reducible space in the
generalized B P—recurrent space have been discussed by [2, 4]. Also, Alaa et
al. [3] introduced P2-like—BC — RF,,, P* — BC — RF,, and P—reducible
—BC — RF,.

Qasem and Hadi [19] and Assallal [7] studied the properties of P2—like space
and P*—space in generalized 8 R—birecurrent space and generalized P"— bire-
current space, respectively. Otman [15] introduced the P2—like —P" —birecurrent
space and P* — P"—birecurrent space.

Dwivedi [10] obtained every C'—reducible Finsler space is P—reducible and
converse is not necessarily true. Zamanzadeh et al. [25] introduced a general-
ized P—reducible Finsler manifolds. In this paper, we merge the generalized
B P—birecurrent space with special spaces in Finser space to get new spaces
contain the same properties of the main space.

2. Preliminaries

In this section, some preliminary concepts which are necessary for the
discussion of the following sections. An n—dimensional space X, equipped
with a function F(z,y) which denoted by F,, = (X, F(z,y)) called a Finsler
space if the function F(z,y) satisfying the request conditions [1, 2, 6, 8, 17, 22].

The covariant vector y; is defined by

Yi = gz‘j(% y)yj (2.1)

where the metric tensor g;;(z,y) is positively homogeneous of degree zero in y°
and symmetric in its indices which is defined by

1. .
9ij (957?/) = iaiaj}ﬂ (a:,y).
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The metric tensor g;; and its associative g% are related by

=it =y

In view of (2.1) and (2.2), we have
a) 6;gir =gjr, D) 6§yi =y; and ¢) 5;yj = (2.3)
Matsumoto [I4] introduced the (h)hv—torsion tensor Cj;j, that is positively

homogeneous of degree -1 in y* and defined by
Comn = 28, gix = ~0:0,5; F2.
ij 591 9 1919%
This tensor satisfies the following

a) Clyi =0, b) Cl =g"Cyp, ¢) Cl=C,, d) Cijp = gn;Cly, (2.4)

i %

e) 6:Cirt = Cjrr, f) 5§Cih =Cjy, and  g) Cijey' = Crijy' = Ciriy’ =0,

where C;k is called associate tensor of the (h)hv—torsion tensor Cjj.
The unit vector [* and associate vector I; with the direction of 3* are given
by

a)li:yfandb)liz%.

Cartan h—covariant differentiation with respect to z* is given by [20]

Xy = X' — (0r2")G} + XTI

(2.5)

The h—covariant derivative of the vector 3* and associate metric tensor g*/ are
vanish identically i.e.

a) y‘ik =0, and b) glzfc = 0. (2.6)
Berwald covariant derivative SBij of an arbitrary tensor field T; with re-
spect to x* is given by [20]
B, Tj = KT, — (0, T))G}, + Tj Gy — T, G
Berwald covariant derivative of the vector y* vanish identically i.e.
Bry' = 0. (2.7)

The tensor P;kh is called hv—curvature tensor (Cartan’s second curvature
tensor) which is positively homogeneous of degree -1 in y* and defined by

P;kh = ahr;;i + C;rpkrh - C;h|k

and satisfies the relation

P;khyj = F;Iichyj = Plih = Clich|ryr7 (2.8)
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where P}, is called the (v)hv—torsion tensor. This tensor and its associative
tensor P,k are related by

Plih = giTPrkir (29)
The associate tensor Py is given by

Plin = 9" Pijin. (2.10)
The P—Ricci tensor Pj, curvature vector P, and curvature scalar P are given
by

a) Pjx = Py;, b) P, = Pj; and ¢) P = PyF (2.11)

respectively. Cartan’s second curvature tensor P;kh satisfies the identity

7 7 _ 7 r
ijh - Pjhk = _Sjkh\ry 5

where SJ"- wp, 1s called v—curvature tensor (Cartan’s first curvature tensor) which
is defined by [20]

S]i'kh = Cikcgh - Cyy, e (2.12)

The associate curvature tensor Sp;xp of v—curvature tensor S;kh is given by

Spjkh = gipS]i‘kh- (213)
In contracting the indices ¢ and h in (2.12), we get

S = Six = C.Cjy — C,.Cy. (2.14)

Definition 2.1. A Finsler space F,, is called a P2—Ilike space if the Cartan’s
secend curvature tensor P}kh is characterized by the condition [15]

P;kh = ¢;Cin = ¢'Cjkn, (2.15)

where @; and @' are non - zero covariant and contravariant vectors field, re-

spectively.

Definition 2.2. A Finsler space F,, is called a P*—Finsler space if the (v)hv-
torsion tensor Pi, is characterized by the condition [13]

where Ply,y’ = Py, = C’,ihlsy .

Definition 2.3. A Finsler space F), is called a P—reducible space if the asso-
ciate tensor Pjg of (v)hv—torsion tensor P, is characterized by one of the
following conditions [10, 21]

Pjin = ACjn + @(hjkch + hnCj + hhjck)z (2.17)
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where X and ¢ are scalar vectors positively homogeneous of degree one in 3’
and hji, is the angular metric tensor.

1
ijh == m(hjkph + hthj + thPk)a (218)

where ijh = Cjkh|mym; Piik = Pk and hij = gij — ZZZJ

Definition 2.4. Let the current coordinates in the tangent space at the point
xo be x', then the indicatriz I,y is a hypersurface defined by F(xo,2') =1 or
by the parametric form defined by x* = x* (u®) ,a = 1,2, ..., n— 1.

The projection of any tensor T; on indicatrix I, is given by [11]

p.T} = Thih, (2.19)
where
Rt = 6L —1'l,. (2.20)

Then, the projection of the vector ¥, unit vector {* and metric tensor gi; on the
indicatrix are given by p.y* = 0, p.I* = 0 and p-gij = hij, where hy; = g;; — ;1.

Alaa et al. [5] introduced the generalized 2B P—Dbirecurrent space which Car-
tan’s second curvature tensor P;kh satisfies the condition

%l%mP;kh = almP;kh + blm((sj'gkh — 5293‘}1) — 2ytum%t(5§6’khl — 5IZthlX221)

This space is denoted by G(BP) — BRF,.

Let us consider a G(BP) — BRF,.
Transvecting the condition (2.21) by y7, using (2.1), (2.3), (2.4), (2.7) and (2.8),
we get

BB Pl = aim Pl + bim (V' gen — 61yn) — 29" B (y' Cront).- (2.22)

Contracting the indices ¢ and h in the condition (2.21), using (2.3), (2.4) and
(2.11), we get

BB Pjk = aim P (2.23)

Contracting the indices ¢ and h in (2.22) and using (2.1), (2.3), (2.4) and (2.11),
we get

BB, P = ain P (2.24)
Transvecting (2.24) by y*, using (2.7), (2.11) and put (yxy* = 1), we get

%l%mp = almP. (225)
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Berwald’s covariant derivative of first and second order for the (h)hv—torsion
tensor C;, and its associative C}k satisfy [3, 12]

a) B Chiy = AnChy + i (8Lyn — 65 yk)
) B Cikn = AnCikn + tm (9jkYn — 9inYr)
) BB, Cly = armChy + bim (5Lyn — 64 yk)
d) B1B,,Cikn = armCikn + bim (gjkYn — ginYs)-

=

(2.26)

3. A P2—Like—Generalized B P—Birecurrent Space

Definition 3.1. The generalized B P—birecurrent space which is P2—like space
i.e. satisfies the condition (2.15), will be called a P2—like generalized B P—birecurrent

space and will be denoted briefly by P2 — like — G(BP) — BRF,,.

Remark 3.2. It will be sufficient to call the tensor which satisfies the condition
of P2—like—G(*BP) — BRF,, as a generalized B—birecurrent.

Let us consider a P2 — like — G(BP) — BRF,.
In next theorem we obtain the tensor (¢;C, —¢'Cjp) satisfies the generalized
birecurrence property.

Theorem 3.3. The tensor (p;C};, — ¢'Cjkn) is generalized B—birecurrent in
P2 — like — G(®BP) — BRF,,.

Proof. Taking B—covariant derivative for the condition (2.15) twice with re-
spect to ™ and 2!, respectively, using the condition (2.21), we get

BB (0;Chn, — ' Cirn) = @m P, + bim (55950 — 6,95n)
2" 11 B4 (85Chnt — 6,.Cm1).

Using the condition (2.15) in above equation, we get

BB (0;Chr, — ' Cin) = aim(@;Chp — ©'Clkn) + bim (5591n — 6.95n)
—QytpmiBt(5;Ckhl — 5;;thl)~ (31)
Hence, we have proved this theorem. O

Now, we infer a corollary related to the previous theorem.

Contracting the indices ¢ and h in the condition (2.15), using (2.4) and (2.11),
we get

Pji = ¢;Cr — ¢'Ciiki. (3:2)
Taking B—covariant derivative for (3.2) twice with respect to 2™ and z!, re-
spectively, using (2.23), we get

BB (0;Ck — ¢ Ciki) = aim Pji

Using (3.2) in above equation, we get

BB (0;Ck — ¢'Clini) = am(9;Cr — 0" Cii) (3.3)
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Thus, we conclude the following corollary:

Corollary 3.4. In P2 — like — G(BP) — BRF,, the behavior of the tensor
(p;Cr — goiCj;ﬂ-) as birecurrent .

4. A P*—Generalized 8 P—Birecurrent Space

Definition 4.1. [17] The generalized B P—birecurrent space which is P*—space
i.e. satisfies the condition (2.16), will be called a P*— generalized B P—birecurrent
space and will be denoted briefly by P* — G(BP) — BRF,,.

Remark 4.2. All results in P2—like—G(BP) — BREF,, which obtained in the
previous section are satisfied in P* — G(*BP) — BRF,.

Let us consider a P* — G(BP) — BRF,.
In next theorem we obtain the Berwald’s covariant derivative of second order
for some tensors are non - vanishing.

Theorem 4.3. Berwald’s covariant derivative of second order for the tensors

(©Ci,), (9Ck) and (¢C) are non-vanishing in P* — G(BP) — BRE,.

Proof. Taking B—covariant derivative for the condition (2.16) twice with re-
spect to ™ and z!, respectively, using (2.22), we get

BB (9Chn) = aimPiy, + bim (Y Gkn — 6,yn) — 25" 1m B4 (y' Cont)-
Using the condtion (2.16) in above equation, we get
BB (¢Chp,) = aim (#Chp) + bim (Y’ gin — 54yn) — 29" 11 B (y' Cinr). (4.1)

Contracting the indices ¢ and h in the condition (2.16), using (2.4) and (2.11),
we get

Taking B—covariant derivative for (4.2) twice with respect to 2™ and z!, re-
spectively, using (2.24), we get

BB (0Ck) = aim Py
Using (4.2) in above equation, we get
BB (9Cr) = aim (¢Ch). (4.3)
Transvecting (4.2) by y*, using (2.11) and put (Cyy* = C), we get
P =C. (4.4)

Taking B—covariant derivative for (4.4) twice with respect to 2™ and z!, re-
spectively, using (2.25), we get

%l%m(gﬁC) = almP.
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Using (4.4) in above equation, we get

BB, (pC) = apm (C). (4.5)
The equations (4.1), (4.3) and (4.5) prove that the tensors (pC}, ), (¢C) and
(¢C) are non-vanishing. Hence, we have proved this theorem. O

Also, in next theorem we discuss the relationship between Cartan’s first

curvature tensor S;kh and associate tensor C;k of the (h)hv—torsion tensor
Cijk-

Theorem 4.4. The behavior of Cartan’s first curvature tensor S;‘km its as-

sociative curvature tensor Spjkn and S—Ricci tensor S, as birecurrent in
P* — G(BP)— BRF,.

Proof. Taking B—covariant derivative for (2.12) twice with respect to 2™ and

x!, respectively, we get

BiBnSin = (BiBnCr)Cp + (BrmCri) (BiCfp) + (BiCri) (B Ci)
+Cl 4 (BB, ) — (BB Cr) e~ (%mcih)(%lcﬁc)
_(%lcﬁh)(%m ng) - ih(%l%mc;k)'
Using (2.26) in above equation, then use (2.4), we get
iBl%mS;‘kh = 2(alm + )‘lAm)(Cik ;h - Cﬁhc;k) + 2,Ulﬂmyj(5ligyh - 5Zyk)
Using (2.12) in above equation, we get

BB Shin = WmSpn, (4.6)

where oy, = 2(am + MiAm) and 8Ly, = 65y

Transvecting (2.12) by g;p, using (2.4) and (2.13), we get
Spjk:h == Cprkc’;‘h - Cprho;k. (47)

Taking B—covariant derivative for (4.7) twice with respect to 2™ and x!, re-
spectively, we get

B1BrSpjkn = (BiBmCpri)Cjp, + (BmCpri) (BiC) + (BiCprie)(BmCiy)
+Cprk(Bi1BmCjp,) — (B1BmCrorn ) Cliy — (B Cprn ) (Bi1C)
—(B1Cprn) (B Cjy) — Cprn(B1BmCly).

Using (2.26) in above equation, then use (2.4), we get

BB Spikn = 2(aim + NAm) (CpriCl, — CprnCly) + 2pupmy; (Yngpk — Ykgph)-

Using (4.7) in above equation, we get

BB, Spjkh = QUmSpjkh- (4.8)
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where o, = 2(alm + >\l>\m) and Yngnk = YkGnh-
Contracting the indices 4 and h in (4.6), using (2.14), we get

%l%m‘sjk = almSjk- (49)

The equations (4.6), (4.8) and (4.9) show that the tensors 8%, Spjrn and Sk
behave as birecurrent. Hence, we have proved this theorem. ([l

5. A P— Reducible—Generalized ‘B8 P—Birecurrent Space

Definition 5.1. The generalized B P—birecurrent space which is P— reducible
space i.e. satisfies one of the conditions (2.17) or (2.18), will be called a
P—reducible generalized B P—birecurrent space and will be denoted briefly by
P — reducible — G(BP) — BRF,.

Remark 5.2. It will be sufficient to call the tensor which satisfies the condition
of P — reducible — G(BP) — BRF,, as a generalized B—birecurrent.

In P—reducible space, the associate tensor P;j,;, of hv—curvature tensor
P}y, 1s given by [10]

Pijkn = (@jcikh + UhinCi + Eyjhin + Brjhi — Z/J) — ASijkn, (5.1)

a) ©; =\ —9C;
b) Ey; = Cp¥; + 90;Cy + 9FH(L;Cy, + LyC})
) Brj = Cp0j + 9Ch ; + 9F~H(LyCj + L;iCh)
Aj = i\,
¥ = 0,9,
f) F~' =1/F, F is the fundamental function of Finsler space.

Let us consider a P — reducible — G(*8P) — BRF,,.
In next theorem we obtain the tensor g* {(Gj Cirn+9henCi+Erjhin+Brjhi—

i/ j) — )\Sijkh} satisfies the generalized birecurrence property.

Theorem 5.3. In P — reducible — G(®BP) — BRF,,, the tensor g'" [(@jCik;h +
VhenCi + Egjhin + Bpjhig — Z/]) — /\Sijkh] is a generalized B—birecurrent.

Proof. Transvecting (5.1) by ¢*", using (2.10), we get

Phn=9" K@jcikh + 9henCi + Eyjhin + Brjhii — i/j) - ASijkh}. (5.2)
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Taking B—covariant derivative for above equation twice with respect to =™
and ', respectively, using the condition (2.21), we get

BB, (9" [(ejcikh + UhinCi + Eijhin + Brjhi — Z/]) - ASijkh])
= am Py, + bim (5;‘919}; - 5;igjh) — 2" p1n By <5;‘Ckhl - 5;@th1)-
Using (5.2) in above equation, we get
BB, (9” [(Qjcikh + UjhnCi + Eijhin + Brjhi, — z/]) - )\Sz‘jth
= aim (9” [(ejcikh + 9;hinCi + Exjhin + Brjhi, — i/j) - ASijth
i (5;1 Gkh — 5;;gjh) — 2yt 11 B (5;’.ckhl . 5;;th1). (5.3)
Hence, we have proved this theorem. (I

Now, we infer a corollary related to the previous theorem.
Transvecting (2.17) by g%, using (2.9) and (2.4), we get

Py, = AChy, + 9(hi.Ch + hinC* + hj, Cl) (5.4)

where ht = g"hj, and C* = g C;.
Taking B—covariant derivative for (5.4) twice with respect to 2™ and a!,
respectively, using (2.22), we get

BB [N+ (WO + hinC 4 B Ch) | = am Py + i (980 — S )
—2y" 1 By (yickhl)-
Using (5.4) in above equation, we get
BB, [Ac,ih + ﬁ(h;;ch + hnC + hﬁlck)}
= aim [Ac,ih n ﬁ(h;;ch + hn O+ h;;()k)} (5.5)
+bim (y' g — 51@%) — 29 1 By (yickhl)
Also, transvecting (2.18) by ¢/, using (2.9), we get
Pl = 5 (WP + b P+ B ), (5.6)
where hi, = g hj,; and P* = g P;.

Taking B—covariant derivative for (5.6) twice with respect to 2™ and z,
respectively, using (2.22), we get

1 A , A , . ,
BB, [m (hZPh + hpn P + hZPk)} = P, +bim (ylgkh - 512%)

=2yt By (yickhl) .
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Using (5.6) in above equation, we get

1
n-+1
1
n+1
+bim (yigkh - 51@%) — 2y By <yickhl)~

BB, [ (h;;Ph + b PP+ h;‘lpk)]

= apm [ (h;;Ph + hn P+ hgpk)} (5.7)

Thus, we conclude the following corollary:

Corollary 5.4. P — reducible — G(BP) — BRF,,, Berwald’s covariant deriv-
ative of second order for the tensors [)\C,ih + ﬁ(h};Ch + hppCF + hﬁLCk>] and

[%ﬂ (h};Ph + hin PP+ h}LPk)] are given by (5.5) and (5.7), respectively.

6. Examples

Some examples related to the previous mentioned theorems will be dis-
cussed to clarify the proved findings.

Example 6.1. The behavior of Cartan’s first curvature tensor S;kh as bire-
current if and only if the projection on indicatriz for S;kh is birecurrent.

Firstly, since Cartan’s first curvature tensor S;kh behaves as birecurrent,
then the condition (4.6) is satisfied. In view of (2.19), the projection of Cartan’s
first curvature tensor S; &, O indicatrix is given by

P-Sj‘kh = Sl()lcdhfzh?hzh(sz' (6.1)
By using B—covariant derivative for (6.1) twice with respect to ™ and x!,
respectively, using (4.6) and the fact that h§ is covariant constant in above
equation, we get

BB (p-Siin) = um (SpeahohjhihR) -

Using (6.1) in above equation, we get

Equation (6.2) refers to the projection on indicatrix for Cartan’s first curvature
tensor S, behaves as birecurrent.
Secondly, let the projection on indicatrix for Cartan’s first curvature tensor

S’y is birecurrent i.e. satisfy (6.2). Using (2.19) in (6.2), we get

BBy (Speg i hhEhiL) = cum (Speq WL AIAERLL) .
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By using (2.20) in above equation, we get

%l%m |:S;kh - S;kdldlh - S;Chlclk; + S;cdlclkldlh - Szkhlbl]
Sl 1 + Shen L1l — Shogl® L1  — SSplila
550 al lal Uy + SEp U161l — S5egl 11Ul + Spipl161%1;

— Sl 11110, — S 1111100, + Sgcdzizazszzczkldzh]

J J
+Shal Ll + Shpl’lil U — Spogl® L1 lel Uy — Sl
+8%al Lol + S8 U1l Uy — Sgl lal Wl + Sgipl'1a1%1;

— S U L1011, — SE U110, + Sgcdzizazszlczkzdzh]

= atm [Stin = Sirallh = Shenll + StealWlly = Sl

In view of (2.5) and if S& . = S&,u° = S& ¢ = S ,y? = 0, then above
equation becomes

%l%mS;kh - almS;kh'

Above equation means the Cartan’s first curvature tensor S; x5, behaves as bire-
current.

Example 6.2. The associate curvature tensor Spjkn behaves as birecurrent if
and only if satisfies
BB, (D-Spjkn) = Qm (P-Spjkn) -

Firstly, since the associate curvature tensor Sp;rn, behaves as birecurrent,
then the condition (4.8) is satisfied. In view of (2.19), the projection of associate
curvature tensor Sy, on indicatrix is given by

P-Spikh = Savcahlh3hihi. (6.3)

Using B—covariant derivative for (6.3) twice with respect to 2™ and z!, respec-
tively, using (4.8) and the fact that hf is covariant constant in above equation,
we get

BB (p-Spjkn) = tm (Savcahyhihihyy) .
Using (6.3) in above equation, we get
BB, (p-Spjkn) = um (P-Spjkn) - (6.4)

Equation (6.4) means the projection on indicatrix for associate curvature ten-
sor Spjrn behaves as birecurrent.

Secondly, let the projection on indicatrix for associate curvature tensor Sp;xn
is birecurrent i.e. satisfy (6.4). Using (2.19) in (6.4), we get

BB (Savea highihihit) = i (Savca hghShihit) .
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By using (2.20) in above equation, we get

BB, [Spjkh — Spikal “h = SpjenlU + Spjcal Ul — Spprnl’l;
+Spbkdl’ L1 + Sppenl®ill — Sppeal® LI, — Sajinl®ly
+8aikal Lty + Sajenl®Uplly — Sajeal Wl Ul + Sapknl®,1%;
—Sabkal “Upl"1i1% — Sapenl LIl + Sapeal“lplP1;111%),

= Qi |:Spjkh — Spikal®lh — Spjenll + Spjeal Uel®ly, — Spprnl®l;
+Sporal il + Sppenl®Lil e — Sppeal ;11 — Sajenl®l,
+Saikal Uty + Sajenl®Uplly — Sajeal Wl Ul Uy + Sapknl®1,1°;
Skl “LplPLi1, — SapenlLo1P11% + Sapeal“LpIPL1 1, |

In view of (2.5) and if Supcay® = Sapeay” = Sabeay® = Sapveay® = 0, then above
equation can be written as

BB, Spjkh = 0UmSpjkh-

Last equation refers to the associate curvature tensor S,;in behaves as bire-
current. Also, we can apply same technique for proving the S—Ricci tensor
S,k is birecurrent if and only if the projection on indicatrix for it behaves as
birecurrent.

7. Conclusion

We extended the generalized 8 P—birecurrent space by using the proper-
ties of P2—like space, P*—space, P—reducible space in the above mentioned
space to obtain new spaces related to it. Also, the relationship between Car-
tan’s first curvature tensor S;-kh and associate tensor C;k of the (h)hv—torsion
tensor Cy; has been discussed.
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