Journal of Finsler Geometry and its Applications
Vol. 4, No. 1 (2023), pp 55-68
https://doi.org/10.22098 /jfga.2023.13069.1091

Local gradient estimate for Finsler p-eigenfunctions on Finsler
manifolds with Ricy,, > — K

Zhifan Chen®, Xinyue Cheng® '@ and Yalu Feng®

%School of Mathematical Sciences,
Chongqing Normal University,
Chongging 401331, P. R. of China

E-mail: =zhifan.chen@qq.com
E-mail: chengxyQ@cqnu.edu.cn
E-mail: fengyl2824Q@qq.com

Abstract. We establish a local gradient estimate for positive Finsler p-eigenfu-
nctions on a complete non-compact Finsler measure space M with its weighted
Ricci curvature Ricy, bounded from below by a non-positive constant. As an
application, we obtain the corresponding Harnack inequality.
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1. Introduction

In Riemannian geometry, the study of harmonic functions is one of the center
topics in geometric analysis. It is well known that Yau’s gradient estimate
and Cheng-Yau’s local gradient estimate for positive harmonic functions under
the condition that Ricci curvature has a lower bound are important results in
Riemannian geometry ( [2], [15]), which have had profound influences on the
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follow-up research about gradient estimate for harmonic functions and have
been generalized in different setting by many mathematicians.

In Finsler geometry, by using the Bochner-Weitzenbdck inequality given by
Ohta-Sturm ( [3]), C Xia generalized Cheng-Yau’s result to Finsler manifolds
and proved the local gradient estimate for positive harmonic functions on for-
ward complete non-compact Finsler measure spaces under the condition that
Ricy > —K for some real numbers N € [n,4+o00) and K > 0 ( [12]). Fur-
ther, Q. Xia proved local and global gradient estimates for positive Finsler p-
eigenfunctions on forward complete non-compact Finsler measure spaces with
the weighted Ricci curvature Ricy bounded from below by a non-positive con-
stant ( [13]). As the applications, C. Xia and Q. Xia obtained some Harnack in-
equalities, Liouville type theorems and an upper bound of the first p-eigenvalue
A1, for Finsler p-Laplacian, respectively.

In this paper, we always denote a Finsler manifold (M, F') equipped with a
smooth measure m by (M, F,m) , which we call a Finsler measure space. A
Finsler measure space is not a metric space in usual sense because Finsler metric
F may be nonreversible, that is, F(z,y) # F(x, —y) may happen. This non-
reversibility cause the asymmetry of the associated distance function. In order
to overcome this defect, Ohta extended the concepts of uniform smoothness
and the uniform convexity in Banach space theory into Finsler geometry and
gave their geometric interpretation ( [6]). The uniform smoothness and uniform
convexity mean that there exist two uniform constants 0 < k* < 1 < Kk < ©
such that for x € M, V € T,M \ {0} and W € T, M, we have

K*F2(z, W) < gy (W, W) < kF%(z, W), (1.1)

where gy is the weighted Riemann metric induced by V.

The weighted Ricci curvature Ricy (N € (—o0, 00)\{n}) and Ric in Finsler
geometry were defined via Ricci curvature Ric and S-curvature S by S. Ohta
in [5]. Here, n = dim M. By the definition and compared with Riemannian
case, it is natural to characterize functional and geometric properties on Finsler
measure spaces under the condition about the weighted Ricci curvature Rice,
and the condition about Ricy, is usually weaker than the condition about Ricy.
Besides, the role played by Ricy and the role played by Ric., in geometry and
geometric analysis are usually quite different. Actually, in the studies of many
problems, the results under the condition about Ric, can not be obtained from
the corresponding results under the condition about Ricy by letting N — oo.

Similar to the argument about uniform smoothness constant S(x) of Theo-
rem 4.2 in [6], we set

§= sup [S(z,y)l. (1.2)
(z,y)eTM\{0}

Our main result is the following theorem.
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Theorem 1.1. Let (M, F,m) be an n(> 2)-dimensional forward complete
and noncompact Finsler measure space equipped with a uniformly convexr and
uniformly smooth Finsler metric F' and a smooth measure m. Assume that
Rice > —K for some K > 0 and § > 1. Let u be a positive p-eigenfunction
corresponding to the eigenvalue Xy, that is,

Apu = =Xy |ulP~?u
in a weak sense in a forward geodesic ball B;‘R(q) C M for any g € M. Then

there exists a positive constant C = C (n,p, k, k™) depending on n, p, the uni-
form constants k and k*, such that

1+(\/I7+5)R
- .

sup {F(z,Vlogu(z)), F(x,V(=logu(z)))} <C

z€B} (q)

As a direct consequence of Theorem 1.1, we have the following corollary.

Corollary 1.2. Let (M, F,m) and Rics, and § be as in Theorem 1.1. Assumen
that u be a positive p-harmonic function in geodesic ball B;’R(q) C M. Then
there exists some constant C' = C (n,p, k, k™), depending on n, p, the uniform
constants k and k*, such that

1+(x/F+5)R

sup {F(z,Viogu(z)), F(z, V(= logu(z)))} < C 7

zGB;(q)

Following the standard arguments in [12] and by Theorem 1.1, one can obtain
the folowing Harnack inequality.

Corollary 1.3. Let (M, F,m) and Ricy, and § be as in Theorem 1.1 and u be
a positive harmonic function in geodesic ball B;R(q) C M. Then there exists
some constant C = C (n, k, k*), depending on n, the uniform constants x and
K*, such that

sup u < eC(H(RM)R) inf w.

B (9) Br(a)

In the remaining part of this paper, we will first recall some necessary basis of
Finsler manifolds in Section 2. Then we will give the detailed proof of Theorem
1.1 in Section 3.

2. Preliminaries

In this section,we briefly recall the fundamentals of Finsler geometry and give
some necessary definitions. For more details, we refer to [1], [5], [7] and [10].

Let (M, F) be a Finsler n-manifold with Finsler metric F : TM — [0,00).
Denote the elements in TM by (z,y) with y € T, M. Let TMy := TM\{0}
and 7 : TM\{0} — M be the natural projective map. The pull-back 7*TM is
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an n-dimensional vector bundle on T'My. The fundamental tensor g;; of F' is
defined by:

1 0°F?(z,y)
2 dyidyl

For a non-vanishing vector field V', one introduces the weighted Riemannian

gij(w,y) ==

metric gy on M given by
gv (Y, w) = gij(x, Va)y'w?, Vy,w e T, M.

In particular, gy (V,V) = F*(V,V). The pull-back 7*TM admits a unique
linear connection, which is called the Chern connection. The Chern connection
D is determined by the following equations

DYY - Dy X = [X,Y],
Zgv(X,Y) = gv(D7 X,Y) + gv(X,DzY) +2Cv(DyV, X,Y) (2.2)
for Ve TM\ {0} and XY, Z € TM, where
1 O3F%(x,V)
49VidVigVE
is the Cartan tensor of F' and D{Y is the covariant derivative with respect to
the reference vector V.

Given a non-vanishing vector field V' on M, the Riemannian curvature R"
is defined by

Ov(X,Y,Z) := Cijp(2, V)X'YIZF = Xiyiz*

RY(X,Y)Z = DxDy Z — DY DX Z — D{x y,Z

for any vector fields X, Y, Z on M. Further, given two linearly independent
vectors V, W € T, M\ {0}, the flag curvature is defined by

gv (RV(V, W)W, V)
gv (V,V)gy (W, W) — gy (V, W)’

KY(v,W) =

Then the Ricci curvature is defined by
Ric(V ZICV (V,e;), (2.3)

where e1,...,en_1, % form an orthonormal basis of T, M with respect to

gv- —
We define the reverse metric F of F by F'(z,y) := F(z,—y) for all (z,y) €

TM. 1t is easy to see that F' is also a Finsler metric on M. A Finsler metric F'
on M is said to be reversible if F(x y) = F(z,y) for all y € TM. Otherwise,
we say F' is nonreversible. In this case, we define the reversibility A of F' by

F(z,y)

A= sup
(z,y)eTM\{0} [E* :E y
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Obviously, A € [1,00] and A = 1 if and only if F is reversible ( [9]). If F
satisfies the uniform smoothness and uniform convexity (see (1.1)), then A is

finite with
1<AL min{\/E7 \/1//1*}.

F is Riemannian if and only if £ = 1 if and only if x* =1 ( [6] [7]).
For x1, x5 € M, the distance from z; to zs is defined by

dp (21, 22) = inf /0 FO(8)dt,

Y

where the infimum is taken over all C! curves 7 : [0,1] — M such that ~(0) =
z1 and (1) = x2. Note that dp (z1,z2) # dp (x2,21) unless F' is reversible.
A C®°-curve v : [0,1] = M is called a geodesic (of constant speed) if F(v,%)
is constant and it is locally minimizing. The forward and backward geodesic
balls of radius R with center at z are defined by

Bfi(x):={y € M |d(z,y) <R},  Bp(z):={ye M]|d(y,z) <R}

The exponential map exp, : T,M — M is defined by exp,(v) = (1) for
v € Ty M if there is a geodesic v : [0,1] — M with (0) = 2 and 4(0) = v.
A Finsler manifold (M, F) is said to be forward geodesically complete if the
exponential map is defined on the entire TM. By Hopf-Rinow theorem ( [1]),
any two points in M can be connected by a minimal forward geodesic and

the forward closed balls B;g (p) are compact. For a point p € M and a unit
vector v € T, M, let p(v) = sup {t > 0 | the geodesic exp,(tv) is minimal }. If
p(v) < 0o, we call exp, (p(v)v) a cut point of p. All the cut points of p is said
to be the cut locus of p, denoted by Cut(p). The cut locus of p always has null
measure (see [1], [10]).

Given a Finsler structure F on M, there is a natural dual norm F™* on the
cotangent bundle T* M, which is defined by

F*(z,8):= sup &(y) for any £ € T M.
F(z,y)<1

One can show that F'* is also a Minkowski norm on T*M and

50,9 = 3 (5o ) (.0
2 \ 0§,0¢;
is positive definite for every (z, &) € T* M\{0}.
Define a map £: TM — T*M by

ey, yv#0,
L(y) == {0’ Y= 0.

One can verify that

F(z,y) = F*(z,L(y)) and g¢"(z,y) = g" (z, L(y)),
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where (g% (x,y)) = (gij(2,y))”". We call L the Legendre transformation on
Finsler manifold (M, F) ( [10]). From the uniform smoothness and convexity
(1.1) one easily see that g/ is uniform elliptic in the sense that there exists
two constants & = (k*)~!, &* = k! such that for x € M,¢ € Ty M\{0} and
n € Ty M, we have

FF*(xz,n) < g*7 (x, &nin; < RF*(x,n).

Given a smooth function v on M, the differential du, = %(m)dwl is a 1-
form on M. The gradient vector Vu(x) of u at € M is defined by Vu(z) :=
L7 Y(du(x)) € T,M. In a local coordinate system, we can express Vu as

g* (z, du) g;‘i %, x € M,,
0, x € M\M,,

Vu(x) =

where M, = {x € M | du(z) # 0}( [10]).
The Hessian of u is defined by using Chern connection as

Vu(X,Y) = gvu (DX"Vu,Y).

One can show that V2u(X,Y) is symmetric, see ( [3], [11]).

By a Finsler measure space we mean a triple (M, F,m) constituted with a
smooth, connected n-dimensional manifold M, a Finsler structure ' on M and
a measure m on M. Associated with the measure m on M, we may decompose
the volume form dm of m as dm = e®dx'dz? - - - dz". Then the divergence of a
differentiable vector field V on M is defined by

oV , 00 ; 0
_Bcci+v8:c“ V_Vaxi'
One can also define div,, V in the weak form by following divergence formula

/M ¢ divy, Vdm = — /M dp(V)dm

for all ¢ € C§°(M). Now we define the Finsler Laplacian Au by

div,, V :

Ay = divy, (V).

We remark that the Finsler-Laplacian is better to be viewed in a weak sense
due to the lack of regularity, that is, for u € W12(M) and all ¢ € C§°(M),

/M oAudm = — /M do(Vu)dm. (2.4)

One can also define a weighted Laplacian on M. Given a weakly differen-
tiable function v and a vector field V' which does not vanish on M,,, the weighted
Laplacian is defined on the weighted Riemannian manifold (M, gy, m) by

AV = div (Vvu) ,
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where

TV e g9 (x, V) g; % for x € M, \{0},
0 for « ¢ M,.
Similarly, the weighted Laplacian can be viewed in a weak sense. We note that
VViy = Vu and AV% = Au.
Likewise, the Finsler p-Laplacian is defined by
/ eApudm = 7/ FP=2(Vu)dp(Vu)dm. (2.5)
M M

It follows from the variation of the energy functional. It is easy to check that

Apu = div[FP~3(Vu)Vu] = FP~2(Vu)[Au + (p — 2)H,]

on M, where H, := %&X”X We say that u is p-harmonic function on
M if u is weak solution of A,u = 0. Obviously, if p = 2, then A, is the Finsler
Laplacian A, u is a normal harmonic function on M ( [12], [L0]).

For any n € C?(M), the linearization of A, on M, is given by
Lu(n) = div{FP>(Vu) [VV+ (p— 2)F*(Vu)du(VV"n)Vu] }

= div [FP2(Vu)h(VV")], (2.6)
where h,, = id+ (p—2) %?Vvu“)( [14]). Obviously, L, (u) = (p—1)Apu. If p =2,

then L, is reduced to the weighted Laplacian AVY,
For any nonzero function u € W?(M)\{0}, we define the energy of u by

 JylF (@, du)]Pdm
E(u) == MfM ulpdm

Note that &(u) is C* on WLP(M)\{0}. It is easy to check that d,€ = 0 if and
only if

(2.7)

Apu = =X |ulP~?u

in a weak sense, that is,
/ do [FP7%(Vu)Vu] dm = )\p/ olu|P~2udm, (2.8)
M M

where A\, = £(u). In this case, A, is called an eigenvalue of A, and w is called
an eigenfunction of A, corresponding to Ap.

Now, write the volume form dm of m as dm = o(z)dz'dx? - - - da™. Define

1. Vdet (gij(z,y))
7(z,y) :=1n ol (2.9)
We call 7 the distortion of F.

It is natural to study the rate of change of the distortion along geodesics.
For a vector y € T,M\{0}, let o0 = o(t) be the geodesic with ¢(0) = = and
6(0) = y. Set

S(a,y) = Slr(o0).60)]|

t=0
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where S is called the S-curvature of F ( [10]). It is easy to see that Au =
trooVZu — S(Vu) on M, ( [4] [11]).
Let Y be a C'*° geodesic field on an open subset U C M and § = gy. Let

dm :=e ¥ Vol;, Vol = \/det (g;; (2,Yy))dz" - - - da™.

It is easy to see that v is given by
det (gi; (x,Yz))

=1 = Y, )
(o) = In VL (2 Y2)
which is just the distortion along Y, at z € M ( [3] [4]).
Definition 2.1. ( [5] [7]) Given a unit vector V € T, M, let n : [—¢,e] = M

be the geodesic such that 1(0) = V. Decompose m as m = e~ ¥ Vol along 7,
where Voly, is the volume form of g; as a Riemannian metric. Then

Ricy(V) = Ric(V)+ (¥on)'(0)— w, for N € (n,c0);
Ricoo (V) = Ric(V)+ (¥on)’(0).
For ¢ >0 and N € [n,], Ricy(cV) := ¢ Ricy (V).

Note that the quantity (¥ o n)’(0) = S(x, V'), which is just the S-curvature
with respect to the measure m and (¥ o 7)”(0) = S(z,V) = S (z, V)V,
where “|” denotes the horizontal covariant derivative with respect to the Chern
connection ( [1], [7]). We say that Ricy > K for some K € R if Ricy(v) >
KF?(v) for all v € TM.

3. Proof of the main theorem

In this section, we will mainly give the proof of Theorem 1.1.

Let u be a positive p-eigenfunction in the forward geodesic ball Bop :=
B, ( ) for any ¢ € M, namely, (2.8) holds on Bagr. Then u € C1® (Bag) N
Wloc (Bag) if p > 2 and u € C1* (Bag) N V[/lof (Bag) if 1 < p < 2. Moreover,
u € L (Bag) and u is smooth on the set M, N Bag.

Denote v = (p — 1)logu, then M, = M, and Vv = %VU. For any
¢ € WP (Bag) N L™ (Bag), we have —£+ € Wy? (Bag) N L™ (Bag) from the
regularity and boundness of u.

Let f(z) := F?(x,Vv). Then f € VVl})f (B2r) N C*(Bag) if p > 2 and

fe VVl{)cp (B2r) NC* (Bag) if 1 < p < 2. Moreover, f is smooth on M, N Bag.
By (2.8) and the above argument, in the weak sense, we have

Av= 3= 2 (Vo) — £~ (p—1)P7a, fE

In order to prove Theorem 1.1, we first give following lemma about the
linearization operator £, of the Finsler p-Laplacian.
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Lemma 3.1. Given f € Wlif (Bar) N C* (Bag). Assume that |S| < 6. Then
we have

1,»_ v rll2 p_ . 2 .p 2 P
Lo(f) = =5 FE IV s vy + 205 Ricoo (Vo) + = f5H = =53
pn—2)+4 .»_
—%fz df (Vo) (3.1)
) , 2
point-wise on M, N Bagr, where vafoHS(Vv) = gvv (Vvvf, Vvvf).
Proof. From (2.6) and the Bochner-Weitzenbock formula ( [8])
. (F2(Vv . 2
AY (g)) = d(Av)(V) + Ricoe (V0) +[| V20| g9 »
it is easy to see
c _ ! NFE2 vV s 251w
o(f) = g(p— )2 fHHS(Vv) +2f27 | UHHS(VU)
+2f5 71 Ricoo (Vo) — pf 27 1df (Vo). (3.2)
Note that
2 2 2 1 2 \2 1 A 2
HV UHHS(W)) = Zviﬁ' > - (trgw v v) = ﬁ[ v+ S(Vv)]”, (3.3)
4,J

where (v;;) denotes the Hessian of v with respect to Chern connection. Further,
by (2.8), we can derive the following

Av = *%(p —2)f M df (Vo) — f = (p— P Af 2T

by A, > 0 and using the inequality (a + b)? > a® + 2ab, we know that

2
[Av+8(Vo)]? = %(p —2)f M f (Vo) + [+ (p— 1P I A P2 — S(Vv)}
- 2

> (74 50— (90 - 8(7)

> |2 (G- 20w 870

= [P+ (- 2)df (Vo) - 2/S(Vv)]

> [f2+ (p—2)df(Vv) —2fd]. (3.4)
Then plugging (3.3) and (3.4) into (3.2) yields (3.1). O

From now on, we assume that Ric,, > —K and |S| < ¢ for some real numbers
K > 0. For any nonnegative smooth function ¢ with a compact support in
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Bor N M, from (2.6) and by integrating (3.1) by parts, one obtains
B_ 1 p_ 2
/ dp [fZ th (vvvf)} dm < 5/ pfe? vav'fHHS(V’U) dm
BorNM,, BorNM,,

+2(K +9) / o fP%dm
BarNM,,

_g/ (pfgﬂdm
" JByrnM,

+01/ of 27Ldf (Vo)dm, (3.5)
BQROMU

_9 4 . L. .
where ¢ := % is a positive constant since n > 2.

Choose ¢ = f#n? as the test function in (3.5), where 8 > 1 is to be deter-
mined later. Then we have

B fEP72df [hy (VY1) dm+2/ nf 2 dn [y (VYU F)] dm

Bar Bar

1 b T s .
= 5/ e ||Vv f||HS(V'U) dm+2(K+5)/ n?fetPdm
Bar Bog

2 b p
_7/ n2f5+5+1dm+cl/ P f2HPLaf (Vo)dm. (3.6)
" JBsyr Bar

Assume that the Finsler metric F satisfies the uniform convexity and uniform
smoothness. Then, by (1.1), we have

B, V1) <[V o = 97 (@, V0) fif; < RFX(2,V6). (3.7)
For the first term of the LHS of (3.6), since
ho (VYOF) = VY f+ (p—2)f 'dv (VYY) Vo,
we have
df [ (VY F)] = g9 (V) fifs + (0 — 27 (97 (V) fivy)

{ 9" (V) fi f iftp>2 (3.8)
> coR*F2(Vf).

v

Here, co = min{1l,p — 1}. By a similar argument and by (3.7), we have

2dn [hy (VY f)] =2 [g7 (Vo) fin; + (p = 2)f " (g (Vo) fivy) (97 (Vo)vim,)]

< _{ 20p— DEF(V)F(Vn) ifp=>2
=\ 2B =p)RF(V/)F(Vy) if1<p<?2

> —c3iF(Vf)F(Vn),

\
v
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where ¢5 = max{2(p — 1),2(3 — p)}. By (3.7)-(3.9) and choosing a sufficiently
large 5 > &/ (coR*) > 1, (3.6) can be rewrite as

nzf%+B’2F2(Vf)dm < 63/:6/ nf%Jrﬁ*lF(Vf)F(vn)dm

1 ~ %
—Ca2k
5C2R" B -

Bar

—|—2(K+6)/ fEPdm
Bar

2

_7/ n2f%+ﬁ+1dm
" JBar

) / n2f = B E(V f)dm. (3.10)
Bar
Let ¢q := 2 (c3i)? /ey and c5 := 2¢2/c,. By using the fundamental inequality
2ab < a? + b2 and letting

V2 (cofi*f)?

the first term of the RHS in (3.10) is less than or equal to

1 Py B_ pyB
a=3 nfit2'R(Vf), b= fit2F(Vn),

Cq

CFB [ g2 2y i + PO (Tn)dm,  (3.11)

8 B2R "%*6 BZR
and the fourth term of the RHS in (3.10) is less than or equal to

B[ i i+ <2 [ g am, (3.12)

8 Baogr KJ*B Bar

Now, we take 8 > max {&/ (c2k*),csn/K*} > 1 large enough. Then (3.12) is
less than or equal to

Cgk*ﬁ

8 Bar

P 1 z
W FEPTRA(V fdm + — / W fE T dm, (3.13)
N JBag

It follows from (3.10)-(3.13) that

P 4 P
oitB | PRETPEAV)dm < —% [ fEBE2(Un)dm
BQR K ﬂ BZR
+8(K+6)/ 2 Pdm
Bar

4 p
—— / e dm.  (3.14)
" JBag

Recall that F(Vf) = F*(df) and F*(§ +n) < F*(§) + F*(n). From (3.14),
there exist positive constants ¢; = ¢; (p, &, 5*,n) (i = 6,7,8) depending only
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on p, Kk, k*,n such that
/ e <d ("f%g)) dm < o [ [EPE(dn)dm
BQR B2R

ter(K+0)8 [ n*f Pam
Bar

—cgf3 n? 2T, (3.15)
Bar
The following Sobolev inequality is necessary because of the need for Moser’s
iteration in the proof of Theorem 1.1.

Lemma 3.2. ([3]) Let (M, F,m) be a forward complete Finsler manifold with
finite reversibility A. Assume that Rice, > K and S > —§ for some K € R
and 0 > 0. Then, there exist constant v > 2 and positive constants ¢ = c¢(n, )
depending on n and the reversibility A of F' such that

([ - am) ™ < DD 2 [

D
3.16
foru e VVI})(?(M) and Br = B} (z0) is the forward geodesic ball of radius R(<

us

T\ "zt if K > 0) for any xo € M, where a := m [5,, udm. Consequently,

(/ u| 72 dm) o < ec(1+(6+m)R>m(BR)_%R2/ (F*2(du) + R~2u?) dm.
o o (3.17)

Next, let 7 := —*5. Taking u = nf%Jrg in (3.17) and using (3.15), one

obtains

NIM

1
(/ TIQTfT(gJ“B)dm) T < ec(1+(\/f+6)R>m(B2R)— >
Bar

{06R2 f%"’BF*Q(dn)dm — csBR? / n2f%+5+1dm
Bar B

2R

2 Y2
+max {c7,1} 8 [1+(VK+5)R} / 772f2+5dm} . (3.18)
Bar
Here, in the last row of (3.18), we have used the fact that

K+5§(\/E+\f5)2§<x/f+5)2

because 6 > 1 and K > 0.

On the other hand, the following lemma is also indispensable to prove our
result. One can follow the same argument of Lemma 4.1 in C. Xia [12] by
setting By = ¢ (1 + (VK + 6)R> and 81 = (Bo + §)7 to prove the following
lemma.
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Lemma 3.3. There exits a positive constant ¢ = ¢ (p, Kk, k*,n) such that for
Bo = cg (1 + (VK + 5)R) and 1 =T (% + ,6’0), we have f € L% (B%R) with

5 R)? 1
Hf”Lﬂl <B§ ) < C(1+(\/]€§+ )R) m (Bag)?1

where cg := max {K/ (cak*),csn/RK*} > 1.

Now we are in the position to prove Theorem 1.1.
Proof of Theorem 1.1. We will start from (3.18) and use the standard Moser
iteration to prove Theorem 1.1. Let Ry = R+ 2% and 7y, € C§°(Bg, ) satisfying

2k,
0< Nk < 1, Nk = le BRk+17 F*(m7dnk) < EE

Let Bo, /1 be the numbers in Lemma 3.3 and Biy1 = 70; for £ > 1. one can
deduce from (3.18) with 8 + & = B, and n = 7, that

a __2 a
||f||LBk+1(BRk+1) < (c11€19P0) B m(Bag) 7Pk (4’“+B§Bk) Pr ||f||Lﬂk(BRk)

1

__2 _ L
_ (Cllecloﬁo)ﬁkm(BQR) vBL (4k+ﬂg’rk 1/31)5k ||f||LBk(BRk)'

Note that 8, = 7%~18; , 7 = 5 , then ), ﬂik = ﬁ, and then

. E\* ) 1 1 2
lim | — =lm —w——=-=1--<1.
k—o0 ﬁk k—o0 51E7—T T v
Thus ), % converges. By using Lemma 3.3, we get

L _2 L L
||f||L°°(BR) < ClQ(Cuecwﬁo)Zk Bem(Bag) ¥ Xk By (ﬁS)Zk B Hf”L/’l (Br,)

o ol (\/524- 6)R)27

which implies that

(1+ (VK +96)R)
R

| F'(z, Viogu)|| e (pr) < C

For F(z,V(—logu)), the same argument works. Thus we finish the proof of
Theorem 1.1. g
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