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Abstract.In this paper, we study conformal transformations in Finsler man-

ifolds. Let (M,g) be a Finsler manifold. Suppose that F admits a conformal

transformation that is concircular. We characterize a Finsler manifold ad-

mitting a conformal transformation such that the difference of the two Ricci

tensors is a constant multiple of the metric. Furthermore, we find some results

on Finsler manifolds with constant flag curvature admiting a special conformal

transformation.

Keywords: Finsler metric, geodesic circle, Concircular transformation, Ricci

tensor.

1. Introduction

A geodesic circle in an Euclidean space is a straight line or a circle with finite

positive radius, which can be generalized naturally to Riemannian or Finsler

geometry. Firstly, in 1940, Yano introduced concircular transformations on Rie-

mannian manifolds [29]. Exactly, a geodesic circle in a Riemannian manifold,

as well as in a Finsler manifold, is a curve with constant first Frenet curvature

and zero second one. In other words, a geodesic circle is a torsion free curve
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with constant curvature. A concircular transformation on a Riemannian man-

ifold is a conformal transformation which preserves geodesic circles ([13], [29]).

Many researchers have developed the theory of concircular transformations to

different contents ([14, 15, 26]). In 1970, Vogel showed that every concircular

transformation on a Riemannian manifold is conformal [27]. This notion has

been extended to Finsler geometry by Agrawal and Izumi [1]. Also, a similar

result is proved by Bidabad-Shen in 2012 [6]. That is, every transformation

which preserves geodesic circles reduces to a conformal transformation. So,

by the modified definition, a diffeomorphism φ, between two Finsler manifolds

(M,F ) and (M̄, F̄ ), is said to be concircular if it maps geodesic circles to ge-

odesic circles. Also, two Finsler metrics defined on a manifold are said to be

concircular if they have the same geodesic circles.

In [16], Kuhnel-Rademacher studied about the conformal transformation of

semi-Riemannian manifolds. They showed that semi-Riemannian manifolds

admitting a global conformal transformation such that the difference of the

two Ricci tensors is a constant multiple of the metric.

For a Finsler metric F = F (x, y) on a manifold M , the fundamental metric

tensor gij(while g
ij is its inverse), the Cartan torsion Ci

jk and the mean Cartan

torsion Ii (respectively) will be defined as follow:

gij:= ∂̇i∂̇j

(F 2

2

)
, 2Cijk:= ∂̇kgij , Ii:= gjkCijk = Cr

ir,
(
∂̇i =

∂

∂yi

)
. (1.1)

Clearly, a Finsler metric will be a Riemannian metric if its Cartan torsion

or mean Cartan torsion is null ([12]). In this paper, we consider concircular

transformations on a Finsler manifold, where the difference of whose Ricci

tensors are a constant multiple of the Finsler metric F̄ . We obtain Theorems

4.2 and 4.3.

2. Preliminary

Let M be an n−dimensional manifold of class C∞. We denote by π : TM →
M the bundle of tangent vectors and by π0 : TM0 → M the fiber bundle of non-

zero tangent vectors. A Finsler structure on M is a function F : TM → [0,∞),

with the following properties:

I) F is differentiable (C∞) on TM0;

II) F (x, y) is positively homogeneous of degree one in y, i.e. F (x, λy) =

λF (x, y),∀λ > 0, where we denote an element of TM by (x, y).

III) The Hessian matrix of F 2

2 is positive definite on TM0; gij:=
1
2

∂2F 2

∂yi∂yj .

A Finsler manifold (M, g) is a pair of a differential manifold M and

a tensor field g = (gij) on TM defined by a Finsler structure F. The

spray of a Finsler structure F is a vector field on TM :

G = yi
∂

∂xi
− 2Gi ∂

∂yi
. (2.1)
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where Gi are called the spray (or geodesic) coefficients

Gi =
1

4
gil{F 2

xmyly
m − F 2

xl} (2.2)

and (gij) := (gij)
−1.

We denote here by Gi
j the coefficients of nonlinear connection on TM , where

Gi
j = ∂Gi

∂yj . By means of this nonlinear connection the tangent space can be

split into the horizontal and vertical subspaces with the corresponding basis

{ δ
δxi ,

∂
∂yi }, which are related to the typical bases of TM , { ∂

∂xi ,
∂

∂yi }, by

δ

δxi
:=

∂

∂xi
−Gj

i

∂

∂yj
,

where

Γi
jk =

1

2
gil(

δgjl
δxk

+
δgkl
δxj

− δgjk
δxi

).

The components of the hh-curvature of Chern connection are expressed here

by

Ri
jkl =

δΓi
jl

δxk
+

δΓi
jk

δxl
− Γi

hkΓ
h
jl − Γi

hlΓ
h
jk.

The geodesics of F are characterized by the second order differential equation:

d2ci

dt2
+ 2Gi(c(t), ċ(t)) = 0.

The Riemann curvatureRy : TpM → TpM is a linear transformation on tangent

spaces, which is defined by

Ry = Ri
kdx

k ⊗ ∂

∂xi
(2.3)

Ri
k := 2

∂Gi

∂xi
− yj

∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
. (2.4)

For a two-dimensional plane P ⊂ TpM and y ∈ TpM \ {0} such that P =

span{y, u}, the pair {P, y} is called a flag in TpM . The flag curvature K(P, y)

is defined by

K(P, y) :=
gy(u,Ry(u))

gy(y, y)gy(u, u)− gy(y, u)2
.

We say that F is of scalar curvature if for any y ∈ TpM \{0} the flag curvature

K(P, y) = λ(y) is independent of P containing y. This is equivalent to the

following condition in a local coordinate system (xi, yi) in TM :

Ri
k = λF 2{δik − F−1Fykyi}.

If λ is a constant, then F is said to be of constant curvature.

The trace of the Riemann curvature

Ric(y):= (n− 1)R(y) = Rm
m(y) (2.5)
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is called the Ricci curvature and

R(y):=
1

n− 1
Ric(y)

is called the Ricci scalar.

Due to different Ricci tensors defined for a Finsler metric, there are various

methods to present the concept of Einstein-Finsler space. One of the prominent

Ricci tensors in Finsler geometry is defined by H. Akbar-Zadeh, cf., [2] as follows

(Ric)ij:=
1

2

∂2Ric

∂yi∂yj
. (2.6)

The tensor (Ric)ij is symmetric and homogeneous of degree zero in y. A Finsler

manifold (M, g) is said to be Einstein if

Ric(x, y) = (n− 1)k(x)F 2

or equivalently

(Ric)ij(x, y) = (n− 1)k(x)gij ,

where function k is a scalar function on manifold M .

Let F̄ and F be two Finsler metrics on an n-dimensional manifold M . There

is a relation between the geodesic coefficients Ḡi and Gi as follows:

Ḡi = Gi +
F̄;ky

k

2F̄
yi +

F̄

2
ḡil{F̄;k.ly

k − F̄;l}. (2.7)

If F̄ = ec(x)F then we have

Ḡi = Gi + (cky
k)yi − F 2

2
ci,

where ci = gilcl.

Let c : [0, L] → (M, g) be a smooth curve, parameterized by arc length,∇ the

Levi-Civita-connection. We denote its derivatives by ċ, c̈ = ∇ċċ,
...
c = ∇ċ∇ċċ

and so on. If these derivatives are linearly independent we can define the Frenet

frame e1, ..., ek and the geodesic Frenet curvatures k1, ..., kk−1 in the usual way

[17]:

ė1 = k1e2

ėi = −ki−1ei−1 + kiei+1, i = 2, · · · , k − 1.

where ėi is the covariant derivative of ei along c and ki:= gċ(ėi, ei+1) is called

i-th Frenet curvature. This system of equations is called Frenet equations. c

is called geodesic if k1 = 0 , and it is called a geodesic circle if k1 is constant

and k2 = 0 (a geodesic is also a geodesic circle). If k1 ̸= 0 for such a geodesic

circle then we have the beginning e1, e2 of the Frenet frame. If k2 = 0 then it
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follows that e2 lies in the (e1, e2)-plane. In the following examples we write k

instead of k1. Examples of geodesic circles are small circles on the sphere. It

is not required that a geodesic circle is a closed curve. It might be something

like a spiral even if the length is infinite.

Proposition 2.1. (Yano [29]) c is a geodesic circle in Riemannian space if

and only if
...
c is a scalar multiple of ċ. In this case necessarily

...
c = −⟨c̈, c̈⟩.ċ .

If c = c(t) is a parametrized curve by an arbitrary parameter, regarding

c = c(s(t)) we obtain the following relations:

c′ = ∥c′∥ · ċ

c′′ = ∥c′∥2 · c̈+ ⟨c′, c′′⟩
∥c′∥

· ċ

c′′′ = ∥c′∥3 · ...c + 3⟨c′, c′′⟩c̈+
(
⟨c′, c′′⟩
∥c′∥

)′

· ċ. (2.8)

Corollary 2.2. c is a geodesic circle if and only if c′′′−3 ⟨c′,c′′⟩
∥c′∥2 c′′ is a multiple

of ċ (or of c).

3. Circles in Finsler Manifolds

Let (M, g) be a Finsler manifold of class C∞ and use a Chern connection ∇.

A smooth curve c : I ⊂ R → M parameterized by arc length s is called a circle

if there exist a unitary vector field Y = Y (s) along c and a positive constant k

such that

∇ćX = kY, (3.1)

∇ćY = −kX, (3.2)

where X:= ć = dc
ds is the unitary tangent vector field at each point c(s).

The number 1
k is called the radius of the circle.

Comparing this definition of circle with definition of a geodesic circle in

Finsler geometry, we find out that if in the definition of a geodesic circle we

exclude the trivial case, k1 = 0, that is, if we remove geodesics, then we obtain

the definition of a circle in a Finsler manifold.

In [24], Shen-Yang found a necessary and suficient condition for a conformal

transformation to be concircular. On a Finsler manifold, a conformal vector

field with the conformal factor u is concircular if and only if u satisfies,

ui|j = λgij , urCk
ri = 0, (3.3)

where

ui := uxi , ui := girur, (3.4)
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and λ = λ(x) is a scalar function onM and the symbol “|” means the horizontal

covariant derivative of Cartan (or Chern) connection.

4. Transnormal Functions

Let (M, g) be a Finsler manifold and u:M → R smooth function, if there

exists a continuous function b :u(M) → R such that

g(gradu,gradu) = bou, (4.1)

then u is called a Finsler transnormal function.

A critical point is a point o such that u′(o) = 0, we define a regular point as

a point of M which is not critical. The regular and critical values are images

of regular and critical points, respectively, under u. Given a Finsler manifold

(M, g) and any two points p, q ∈ M, the Finsler distance from p to q is defined

as

d(p, q) := infγ

∫ b

a

√
g(γ′(t), γ′(t))dt, (4.2)

where the infimum is taken over all piece-wise smooth curves γ : [a, b] → M

joining p to q. One special example of Finsler transnormal functions is the

Finsler distance function.

Proposition 4.1. [3] Let (M, g) be a connected complete Finsler manifold of

dimension n ≥ 2 and u : M → R a transnormal function on it. Then,

a) If u has one critical point, M is conformal to an n-dimensional Eu-

clidean space.

b) If u has two critical points, M is conformal to an n-dimensional unit

sphere in an Euclidean space.

Theorem 4.2. Let (M,F ) be a Finsler metric and admitting a conformal

transformation F̄ = u−1F , F̄ concircular to F satisfying

Ricḡ −Ricg = (n− 1)cF 2 (4.3)

for constant c. If λ is a linear function of u with constant coefficients, Then

we have the following:

1. The conformal transformation is homothetic.

2. M is conformal to a unit sphere in an Euclidean space.
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Proof of Theorem 4.2. It is known that if two sprays Ḡi and Gi satisfy

equation Ḡi = Gi +Hi, then their Reimann curvature tensors satisfy

R̄i
k = Ri

k + 2Hi
;k − ymHi

;m.k + 2HmHi
.m.k −Hi

.mHm
.k (4.4)

where the symbol “;′′ denotes the horizontal covariant derivative of Berwald

connection of Gi [24].

Now, since F̄ = u−1F, the sprays Ḡi and Gi (related to F̄ and F , respectively)

satisfy the following equalities:

Ḡi = Gi − 1

u
u0y

i +
1

2u
F 2ui, (4.5)

Ḡi
j = Gi

j −
1

u
(ujy

i + u0δ
i
j − yju

i + F 2Ci
jru

r) (4.6)

taking Hi

Hi = − 1

u
u0y

i +
1

2u
F 2ui (4.7)

and plugging (4.7) into (4.4), we obtain

R̄i
k = Ri

k +
uu0;0 − (umum)F 2

u2
δik +

1

u
F 2ui

;k +
umum

u2
yiyk − 1

u
(yiuk;0 + yku

i
;0)

−umur

u2
F 2(yiCkmr + ykC

i
mr) +

1

u2
F 2(uur

;0 − 3u0u
r)Ci

kr +
1

u
F 2urCi

kr;0

+
urum

u2
F 4(Ci

prC
p
km − Ci

mr.k).

(4.8)

Then by (4.8), the Ricci curvatures R̄ic := R̄m
m and Ric := Rm

m are related by

R̄ic = Ric+
n− 2

u
u0;0 +

1

u2

[
uum

;m − (n− 1)umum + ur(uIr;0 − 3u0Ir)

= +uIrur;0

]
F 2 − 1

u2
urum(Ci

jmCj
ir − 2IiCimr + Im.r)F

4. (4.9)

Now suppose F and F̄ are concircular. Then by Lemma 2 in [24], we have

ui|j = λgij , u
rCk

ri = 0, (ui := uxi , ui := girur), (4.10)

where λ = λ(x) is a scalar function on M and the symbol “|” means the

horizontal covariant derivative of Cartan (or Chern) connection of F. Plugging

(4.10) into (4.8) and (4.9), we respectively have

R̄i
k = Ri

k + u−2(2λu− umum)(F 2δik − yiyk), (4.11)

Ricḡ = Ricg + (n− 1)u−2(2λu− umum)F 2 (4.12)

Substituting (4.3) into (4.12) yields

umum − 2λu+ cu2 = 0 (4.13)
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If u is linear function of u with constant coefficients, then we say that u is a

special solution of (4.13). Hence, any solution of equation (4.13) can be written

in the form

umum − 2(Ku+B)u+ cu2 = 0 (4.14)

where K and B are constants. The equation (4.14) along any geodesic with

arc-length t reduces to the ordinary differential equation

(
du

dt
)2 − 2(Ku+B)u+ cu2 = 0 (4.15)

Now for the special case K = c21 > 0 and B = 0, we have

(u′)2 − c21u
2 + cu2 = 0 (4.16)

By a suitable choice of the arc-length t, a solution (4.16) is given by

(u′)2 = u2(c21 − c)

u′ = ±uc2

then we get

u = c3e
±c4 (4.17)

Therefore the conformal transformation is homothety.

Also in equation (4.16) differentiating once more we have

2u′u′′ + 2(c− c21)uu
′ = 0

u′′ + (c− c21)u = 0 (4.18)

we get

u(t) = A cos(c− c21)t, (4.19)

u′(t) = −A(c− c21) sin(c− c21)t. (4.20)

Equation (4.18) has two critical points corresponding to t = 0 and t = π
c−c21

Then, M is conformal to an n-dimensional unit sphere in an Euclidean

space. □

Theorem 4.3. Let (M, g) be a Finsler manifold and admitting a concircular

transformation F̄ = u−1F. Assume that K and K̄ are scalar flag curvature of

F and F̄ such that K and K̄ are constant with condition λ = A1u+B1, Then

M is conformal to a unit sphere in an Euclidean space.

Proof. Suppose F and F̄ are concircular. we have the equation

R̄ic−Ric = (n− 1)F 2(K̄u−2 −K) (4.21)

Plugging (4.12) into (4.21) implies

(n− 1)u−2F 2(2λu− umum) = (n− 1)F 2(
K̄

u2
−K)
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then we have

u−2(2λu− umum)− K̄u−2 +K = 0

Ku2 + 2λu− umum − K̄ = 0.

In the case of λ = A1u+B1, where A1, B1 are constants. we have,

Ku2 + 2(A1u+B1)u− umum − K̄ = 0. (4.22)

The equation (4.22) along any geodesic with arc-length t reduces to the ordinary

differential equation

Ku2 + 2(A1u+B1)u− (
du

dt
)2 − K̄ = 0.

Now, for the special case B1 = 0, we get

Ku2 + 2A1u
2 − (

du

dt
)2 − K̄ = 0

in the equation above, differentiating we can get the following

u′′ − (K + 2A1)u = 0.

We can obtain

u(t) = C1 cos(K +A1)t

where C1 is a constant. We obtain two critical points, t = 0 and t = π
K−K1

.

According to proposition 4.1, M is conformal to a unit sphere in an Euclidean

space. □

5. Example

Assume a two dimensional Euclidean coordinate system on the surface M.

Let D = {(x, y) ∈ R2|x2 + y2 < T} the open disk, where T is big enough

such that D covers the surface. The only force perturbing surface is the wind

W(x,y). The associated metric to this problem is a special case of Finsler

metric which is called Randers metric and is given by

F (y) =

√
h2(y,W ) + λ1h(y, y)

λ2
1

− h(y,W )

λ1
,

where h is the canonical Euclidean metric and λ1 = 1−h(W,W ). We consider

the function u : D → R defined by u(x, y) = x2 + y2. We have

g(grad u, grad u) = 2u,

where g is the metric with components (gij) = ( 12 [
∂2F 2

∂yi∂yj ]) in the following

equation

umum − 2λu+ cu2 = 0 (5.1)

2u− 2λu+ cu2 = 0 (5.2)
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We consider λ = K1u+B, we can get

2u− 2(K1u+B)u+ cu2 = 0 (5.3)

In the special case B = 0, we have u = 0 then the conformal transformation is

an isometry.
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