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Abstract. In [12], authors introduced some geometric concepts such as (al-
most) product, para-complex, para-Hermitian and para-Kéhler structures for
hom-Lie algebras and they presented an example of a 4-dimensional hom-Lie al-
gebra, which contains these concepts. In this paper, we classify two-dimensional
hom-Lie algebras containing these structures. In particular, we show that there
doesn’t exist para-Kéahler proper hom-Lie algebra of dimension 2.
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1. Introduction

Recently, hom-structures including hom-algebras, hom-Lie algebras, hom-
coalgebras, hom-bialgebra were widely studied. The concept of hom-Lie al-
gebras was firstly introduced by Hartwig, Larsson, and Silvestrov in [8], when
they are developing an approach to deformations of the Witt and Virasoro alge-
bras based on o-derivations. In other words, the structure of Hom-Lie algebras
was used to study the deformations of Witt and Virasoro algebras [8, 9]. As
this algebraic structure has close relation to discrete and deformed vector fields
and differential calculus, it plays important role among some mathematicians
and physicists [8, 11]. For example, some authors have studied cohomology
and homology theories in [1, 7, 15], and representation theory in [13].
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An almost product structure on a manifold M is a field K of involutive
endomorphisms, i.e., K2 = Idry. When the eigendistributions T M with
eigenvalues +1 have the same constant rank, then K is called almost para-
complex structure. An almost para-Hermitian structure is an almost para-
complex structure endowed with a pseudo-Riemannian metric g such that
g(+,-) = —g(K-, K-). A manifold M is called almost para-Hermitian manifold
if it is endowed with an almost para-Hermitian structure (K,g). An almost
para-Hermitian manifold (M, K, g) is called para-Kéhler, if its Levi-Civita con-
nection V satisfies VK = 0 (see [10], for more details).

Recently, studying of geometric concepts over Lie groups and Lie algebras
has been done by many researchers. For example, complex product structures
have studied in [2], complex and Hermitian structures have studied in [3, 4],
contact geometry have studied in [6] and para-Kéhler and hyper-para-Kéahler
have studied in [5]. Inspired by these papers, Peyghan and Nourmohammad-
ifar introduced in [12] some geometric concepts on hom-Lie algebras such as
(almost) product, para-complex, para-Hermitian and para-Kéhler structures.

The aim of this paper is the classification of (almost) product, para-complex
and pseudo-Riemannian structures on two-dimensional hom-Lie algebras. Also,
we prove that there exists no non-abelian para-Hermitian and para-K&hler
proper hom-Lie algebras of dimension 2. In particular, we classify non-abelian
para-Hermitian and para-Kahler Lie algebras of dimension 2.

2. Preliminaries

In this section, we present geometric concepts on hom-Lie algebra (see [12],
for more details).

Definition 2.1. [14] A hom-Lie algebra is a triple (g,[, ], ®) consisting of
a linear space g, a bilinear map (bracket) [-,-] : g x g — g and an algebra
morphism ¢ : g — g satisfying

[u,v] = — [v, 4],
[¢(u)v [va]] + [¢(v)’[w7u“ + [¢(w)v [ua v]] =0,

for any u,v,w € g. The hom-Lie algebra (g,[-,-],¢) is called reqular (involu-
tive), if ¢ is non-degenerate (satisfies ¢* = 1).

It is known that a Lie algebra (g, [, -]) is a hom-Lie algebra with ¢ = id. We
call (g, [, ], ®) proper hom-Lie algebra if ¢ # Id.

Definition 2.2. An almost product structure on a hom-Lie algebra (g, [, -], @),
is a linear endomorphism K : g — g satisfying

K?=1d, ¢oK=Ko¢p, ¢*=Id.
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The above equations deduce

(po K)?* = Id.

1

Thus g decomposes to g' @ g—', where

o' = ker(po K — Id),
g ' = ker(¢po K + Id).

If g' and g~! have the same dimension n, then K is called almost para-complex
structure on g (in this case the dimensional of g is even). The Nijenhuis torsion
of ¢ o K is defined by

4Ngok (u,v) = [(¢ 0 K)(u), (¢ 0 K)(v)] = ¢ 0 K[(¢ 0 K)(u), ]
—¢o Klu, (¢ 0 K)(v)] + [u, ], (2.1)

for all u,v € g. An almost product (almost para-complex) structure is called
product (para-complex) if Nyorx = 0. In the following for simplicity, we set
N = Nd)oK-

Let (g, [, ], ) be a finite-dimensional hom-Lie algebra endowed with a bilin-
ear symmetric non-degenerate form <, > such that for any v, v € g the following
equation is satisfied

< p(u), p(v) >=< u,v > .
In this case, (g, [+, ], ¢, <, >) is called pseudo-Riemannian hom-Lie algebra. The
associated hom-Levi-Civita product on g is the product . : g x g — g, (u,v) —
u.v, which is given by Koszul’s formula

2 <u-v,o(w) >=< [u,v], plw) >+ < [w,v], p(u) >

+ < [w,u], p(v) > . (2.2)
The hom-Levi-Civita product is determined entirely by the following relations
[u,v] =u-v—v-u, (2.3)

and
<u-v,p(w) >=— < d(v),u-w >, (2.4)

for any u,v,w € g (note that the hom-Levi-Civita product there exists, if ¢ is
an isomorphism).

Definition 2.3. An almost para-Hermitian structure of a hom-Lie algebra

(g,[,],®) is a pair (K, <,>) consisting of an almost para-complex structure
and a pseudo-Riemannian metric <,>, such that for each u,v € g
< (Ko¢)(u),(Kop)(v) >=— <u,v>. (2.5)

Also, the pair (K,<,>) is called para-Hermitian structure if N = 0. In this
case, (g, [, ], ¢, K, <,>) is called para-Hermitian hom-Lie algebra.
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Definition 2.4. A para-Kdhler hom-Lie algebra is a pseudo-Riemannian hom-
Lie algebra (g, [,], ) endowed with an almost product structure K, such that
¢o K is skew-symmetric with respect to <,>, and ¢po K 1is invariant with respect
to the home-Levi-Civita product, i.e., L,o¢po K = ¢o K o L, for any u € g.

Note that condition u.(¢ o K)(v) = (¢ o K)(u - v) equivalent with
(9o K)(u) - (¢o K)(v) = (po K)((¢o K)(u)-v), (2.6)

or
u-v=(¢poK)u-(¢oK))), (2.7)
for all u,v € g. The following statements are held for a para-Kéhler hom-Lie
algebra (g, [, ], ¢, <, >, K) (see [12]):
i) (g,[,],®,Q) is a symplectic hom-Lie algebra, where
Qu,v) =< (po K)u,v >, (2.8)

ii) g' and g=! are subalgebras isotropic with respect to <, >, and Lagrangian
with respect to €2,

iii) (g,[,],¢,<,>,K) is a para-Hermitian hom-lie algebra,
iv) foranyu € g, u-g' Cglandu-g=! Cg~! (the dot is the Levi-Civita
product),

v) for any u € g, ¢(u) € g* and for any w € g~!, ¢(u) € g~ .

3. Main results

In this section, we study (almost) product, para-complex, pseudo-Riemannian,
para-Hermitian and para-Ké&hler structures on two-dimensional hom-Lie alge-
bras.

Proposition 3.1. All non-abelian hom-Lie algebra of dimension 2 are as
(gv ['7 ]a¢) with

(¢(e1) = e1+Bez, d(ea) =Cea) or (¢(e1) = Aer+Bea, ¢(e2) =0), (3.1)
where C # 0 and {e1,ea} is a basis of g such that [e1, ea] = ea.

Proof. Let (g, [, ], ¢) be a two-dimensional hom-Lie algebra. It is easy to see
that there exists a basis {e1,ea} of g such that

[e1, ea] = ez
If {z,y} is a basis of g, then we have [z,y] = ax + by, where a and b are not
both zero. Without loss of generality it can be assumed that a # 0 and so it
follows that [e1, es] = ea, where e; = —a~ty and e3 = x + a~!by. In this basis,
we can write
pe1) = ciey + clea,  d(ex) = cher + caes.
Condition ¢leq, ea] = [@(e1), d(e2)] implies

1_ 12 _ 2
¢y =0, cjc;=cj.
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If ¢2 = 0, then we get the second relation of (3.1), but if ¢3 # 0 then we obtain
c1 =1 and we deduce the first relation of (3.1). O

Corollary 3.2. All non-abelian involutive hom-Lie algebra of dimension 2 are
as (g, [ ], ¢g) with

(Pler) =e1, olez) =Fez) or (dler) =e1+ Bea, ¢(ez) = —€2), (3.2)
where B # 0.
Proof. Obviously, the second relation of (3.1) can not be involutive. Thus, we
only study the first relation of (3.1). Condition ¢? = Id implies C = 41 and

B(1+C)=0. If B =0, then we get the first relation of (3.2). But if B # 0,
then we conclude C' = —1, which gives the second relation of (3.2). O

Proposition 3.3. All non-abelian pseudo-Riemannain hom-Lie algebra of di-
mension 2 are as (ga ['7 ']7 ¢7 < >)’ (97 ['7 ']7$a =<, >_) and (ga [a ]a ¢7 <, >>); where
(6ler) = e1, Blea) = ea), (Bler) = e1, Glez) = —e2),

(p(e1) = e1 + Bez, ¢(e2) = —ea, B #0),

and <, > is an arbitrary bilinear symmetric non-degenerate form and <, >, K
,> are bilinear symmetric non-degenerate forms with the following conditions

(< ep,e1 > <ep, ey >
[<,>] = b DE2 7 <l e ><eg,e0 > — < ep, ey 240,
< ep, e > < ez e >
[< e1,€e1 >~ 0
<. v = <ep,er =#0, <ez,e0 =#0
[7 ] I 0 <€2,€2>-:|, 1,€1 7é7 2,62 7é7
B
K e, e > —5 K eg,e9 >
< >]=| 5 "7 2 S22 }
|—5 K ez, e > < eg,e9 >
B2
LK ep, e >X eg,e9 > —T < €2, €2 >>27'é 0.
Proof. Let (g, ][], ¢, <,>) be a two-dimensional pseudo-Riemannian hom-Lie

algebra. Then we have
< ¢le;), dlej) >=<e;e; >, i,j=12.

According to Proposition 3.1, ¢ satisfies in (3.1). If we consider the second

relation of (3.1), then we deduce <, >= 0, that is contradiction with the non-

degenerate property of <,>. Thus ¢ only satisfies in the first relation of (3.1).
Using < ¢(e;), ¢(ej) >=<e;,e; >, 4,j = 1,2, we get

B(2<ej,ea>+B <eger>)=0, (1-C? <ey,en>=0, (3.3)

(C — 1) < ey, e0 >+BC < ez, eq >=0. (34)
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According to the above equation, we consider two cases:
Case 1. B=0.

In this case, (3.3) reduce to the following
(1-0C%) <egen>=0, (C—1)<ep,ey>=0. (3.5)

If C' =1, then the above equations are hold and so <, > is arbitrary. Therefore
we have the pseudo-Riemannain hom-Lie algebra (g, [, -], 5, <,>) given by the
assertion. If C' = —1, then the first equation of (3.5) holds and from the second
equation we deduce
<ep, e >=0.

Therefore we obtain the pseudo-Riemannain hom-Lie algebra (g, [, -], ¢, <, >)
given by the assertion. But if C' # +1, (3.5) gives < e1,e2 >=< ea,e9 >= 0,
which is a contradiction.

Case 2. B # 0.

In this case, we consider the possible cases for C' and we study equations of
(3.3) (note that according to Proposition 3.1, C' is nonzero). If C' = 1, the third
equation of (3.3) yields < eq, ea >= 0. Setting this in the first equation of (3.3)
we get < ey, eq >= 0. Therefore we have < ey, ey >=< eg,e9 >= 0, which is
a contradiction. Similarly, if C # +1, we obtain < ej,es >=< eg,e5 >= 0,
which is a contradiction. But if C = —1, then the second equation of (3.3)
holds and the first and third equations of (3.3) reduce to

2<ep,e0>+B < ey, e >=0,
which gives

B
< ep,eg >= —5 < eg,eg > .

Therefore we obtain the pseudo-Riemannain hom-Lie algebra (g, [, ], 059, <>
given by the assertion.
Since ¢? = 62 = gbg = idg, these structures are involutive. O

Proposition 3.4. The hom-Levi-Civita product on the pseudo-Riemannain
hom-Lie algebra (g, [, -], ¢, <,>) is

< eg,e9 >
61'6120 61'6220 €9 €1 = —€2 €g g = ——€1 3.6
) ) ) < 61761 > ) ( )
if <ep,ea >=0, and
< e1,6ey >2 <ep, e >< eg,eg >
€1 €61 = €] — €2, (37)

det[<, >] det[<, >]
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< €g,e9 > < ey, ey >

are= det[<, >] a- det[<, >] 2 (3.8)
< eg,eg > det[<, >+ < e1,eq >
2T Get[<, 5] det[<, >] 2 (39)
< e, ey >2 < eg,€9 >
ey - ey =

- , 3.10
det[<,>] < e ez > 1 det]<,>] 2 (3.10)

if <eyp,ea >#0.
Proof. Using Koszul’s formula we have
2 < e e, Pler) >=< [ese5], dlen) > + < lex, ej], dles) >
+ < [en, e, d(ej) > . (3.11)
where 4, j,k = 1,2. Putting i = j =k =1 in (3.11), we get
<ejp- el,qAﬁ(el) >=0.
Let
e1-ep = Ajjer + A?jes. (3.12)
Then using the above equation we have
Al <er,er > +A2 <ep,eq >=0. (3.13)
On the other hand, considering i = j = 1 and k = 2 in (3.11), we imply
< el.el,g(eg) >=— < e, e >.
Applying (3.12) one can write
Ah < e, eg > —I—A%l < eg,eg >= — < er,eg > . (3.14)
Let
e1-ey = Alyer + Ase.
Then using (3.11) and similar calculations as the above, we obtain
Al, <er,e; > +AL, <ej,eg >=< e, en >, (3.15)
Aly < eq,e9 > +A3, < eg,e9 >=0. (3.16)
Similarly, if we consider
ey - ey = Ajser + Adsen,
then using (3.11) we deduce
Ay < e e1 > +A2, <ep,e0 >=< eg,e5 >, (3.17)
Ay < er,e0 >+ A3, < eg,e9 >= 0. (3.18)

For the above equations we can consider the following possible cases :

Case 1. < eq,e0 >=0.
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In this case we have < e1,e; ># 0 and < eg,e9 ># 0. Thus from (3.13) and
(3.14) we obtain A}, = A2, = 0, and consequently we get the first equation of
(3.6). Similarly, (3.15) and (3.16) imply

Al, = A2, = 0.

Thus we deduce the second equation of (3.6). From [e1,es] = e1-e3 —es- €
we obtain the third equation of (3.6). Finally (3.17) and (3.18) give

Thus we have the fourth equation of (3.6).
Case 2. < ey,e3 ># 0.

In this case, (3.13) gives
<ep, e >
A§1 = _A%17~
< er, ey >

Setting it in (3.14) yields

1 < e, €9 >2
A= det[<, >]
and so
A% _ _< e1,e1 >< ep,eg >
det[<, >]
Thus we have (3.7). Similarly, we can obtain (3.8)-(3.10). O

Proposition 3.5. The hom-Levi-Civita product on pseudo-Riemannain hom-
Lie algebra (g, [, -], ¢, <>) is as follows
< €g,€ >
cree; =ec1oe3 =0, eyee=—ey, er0ep=——T"T —¢;
< e1,e1 ~

Proof. Using Koszul’s formula we have
2 < eioej dler) === [ei ej], dler) =
+ < [er, 5], ples) = + < lex, e, p(ej) =, d,5,k=1,2. (3.19)
Let
cioe; = A}jel + A?jeg.
Using the above equation and definition of ¢, we get
< ey eer,dle)) == 0.

Since < e1,es == 0, we get A}, < ej,e; == 0 and consequently A}, = 0.
Similarly, we obtain < e; ® 1, ¢(es) == 0 which gives A%, = 0. Therefore, we
have e; @ e; = 0. Similarly, using (3.19) we get

<ejeeg,pler) ==<eyoez,e7 ==0
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which implies A}, = 0. Also (3.19) gives < e1 ® e3,e3 == 0 and consequently
A2, = 0. Thus e; ® e = 0. Since [e1, ez] = eo, using [e1,e2] = €1 0e3 — ey @€
we deduce

€2 @@€1 = —€9.
Again, using (3.19) we get

2<eyeeq,Ple) == —2 < eg,e9 =
which gives
< €g,e >
AéQ — _ 2,62 .
< ep,e1 =

Also, we obtain
2 < ey ey ¢(en) ==0,
which implies A%, = 0. Thus we have
= eg,e2 ~
€y @ ey = —mel.

This completes the proof. (]

Proposition 3.6. The hom-Levi-Civita product on the pseudo-Riemannain
hom-Lie algebra (g, [-, -], ¢g, <,>) is as follows

—B? < ey, €9 >>e 4 2B < eq,e1 > —B? < eg, €9 >>€

e1xe = 1A 1 A 2, (3.20)
B < eg,e9 > BQ<<62,€2 >

€1 %X €y = oA el IA €9, (3.21)
B B2 -2

en %€y = <<§iiez >>61+ < eg,e9 >;A <K ep,el >>627 (3.22)
— B

e key = —= ej{ >, _Z< Ztez 2 o, (3.23)

where A =< eq,e1 > —%2 < eg,e9 >,
Proof. Using Koszul’s formula, we have
2 < eixej, dler) >=< i e;], plex) >
+ < fers o], Blen) > + < [ex, el Bley) >, i jik=1,2.  (3.24)
Setting i = j =k =1 in (3.24), we deduce
< ep ey, dley) >=0.

If we consider
eLxep = Ahel + A%lez, (325)
then (3.24) and the definition of <, > imply

B
Ah < €1,€1 > +5(A%1 — BAh) < €9, €2 >=0. (326)
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Again, putting i = j =1 and k = 2 in (3.24), we deduce
< ep *6175(62) >=— <K eg,e1+ Beg > .
So using (3.25) we can write
B B
(—EAi1 + A3) < eg,e0 >= 5 ez,

which gives

B B
Setting (3.27) in (3.26) we get
B2 B?
Al (< er,e1 > — <ee >) + - <e20>=0. (3.28)

If A}, = 0, then the above equation gives < eg, €3 >= 0, which is a contradic-

tion. Moreover, since the determinant of [, >>] is non-zero, then
B2
<L ep, e > *T < €2, €2 >>7é 0.

Thus, from (3.28) we deduce

Al . 7B2<<€2,62>>
U g e e > — B <egeg )

Applying (3.27) and the above equation, we get

s _2B<Le,e1 > —BP<ey e >
U g e e > B <ege )

Two above equations give (3.20). If we consider
€1 %X € = A%Qel + A%262,

then using (3.24) and similar calculations as the above, we obtain

B B
Al, < e, e > —5(314{2 — A% 1) < eg e >=0, A2, = EA}Q,

which give
A%z _ B < e, 69>
2(< e er > -8B <epen )
42 B? < ey e0 >
12 —

A< e e > -8 <epen>)

and consequently (3.21). Also, using [e1,e2] = €1 x e2 — e2 * €1 we get (3.22).
To prove (3.23), we consider

1 2
€9 x €9 = A22€1 + A2262.
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Similarly, using (3.24) we get
Al < ep,e1 > +§(A§2 — BAL) < ez, 60> + < eg,e0 >=0,
A3, =B Ab,

which imply (3.23). O

Proposition 3.7. All non-abelian almost product hom-Lie algebra of dimen-
sion 2 are as (gv ['7 ']a (ba K)7 (ga ['7'/]\a ¢37K) ang (97 ['a '}7 ¢97K)) where ¢; ¢7 ¢g
are given by Proposition 3.8 and K, K and K have the following matriz pre-
sentations:

R O s R i B B A P R i

&=y M]om=[y 5

where a® +bc=1, A\ = %1, e = +1 and B # 0.

Proof. Let (g, [, ], ¢4, K) be an almost product hom-Lie algebra. Conditions
K2(e1) =e1, K?(e3) =ey
give

(PD)? +pips =1, pi(pi+p3) =0, p3(pi+p3) =0, (p3)*+ pips=1.
(3.29)

Now we consider two cases:
Case 1. p3 = —pi.

In this case, the second and third equations of (3.29) hold and the first and the
fourth equations of (3.29) reduce to (p1)? + p2ps = 1.

Case 2. p3 # —pi.

In this case, the second and third equations of (3.29) give p? = p3 = 0, and so
(p1)? = (p3)? = 1, from the first and the fourth equations of (3.29).

From two above cases, we deduce that K has the following matrix presentation:

{a b}, P 0], a+be=1, A=+1, €=+l (3.30)
c —a 0 €
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If we consider (E = Id, then (g, [,],gg, IA() with K given by two matrices of
(3.30) is an almost product (hom-)Lie algebra. Now, we consider ¢. If the
matrix presentation of K is as the second matrix of (3.30), then it is easy to
see that K o ¢ = ¢ o K. But if the matrix presentation of K is as the first
matrix of (3.30), then condition (K o ¢)(e;) = (¢ o K)(e;) implies b = 0 and
(K o ¢)(e2) = (¢ o K)(ez) yields ¢ = 0. Consequently, we get a®> = 1. Finally,
we consider (;NSQ. If the matrix presentation of K is as the first matrix of (3.30),
then condition (I?oqg) (e2) = (ao K)(es) implies ¢ = 0 and consequently, a% = 1.
Therefore we have
a =\,

where A = £+1. Also, condition (f(og)(el) = (gof()(el) implies b = AB. But if
the matrix presentation of K is as the second matrix of (3.30), then condition
I?o%:&o[?gives)\:e. (]

Proposition 3.8. All non-abelian almost para-complex honz—LNie algebra of di-
mension 2 are as (g, [-,-], 6, K), (g,[-,"], 6, K) and (g,[-,"], 6, K), where ¢, ¢,

ot
~

¢ are given by Proposition 3.3 and K, K and K have the following matrix
presentations:

=[5 m=[ O] =] ] e
m= 3 w=) 3 (5.9

where d,h # 0, a®> +dh =1 and X\ = +1. Moreover, all of these structures are
integrable.

Proof. At first, we consider (g, [+, -], (E, K ) with the first matrix of Proposition
3.7, i.e.,
IA((el) = aeq + bes, }?(62) =ce; —aey, a®>+be=1.
If this structure is an almost para-complex, then we must have a basis {f1, f2}
such that K(f1) = f1 and K(f2) = —f2 ( note that ¢ = id). We can write
fi= c%el + c%eg, fo= c%el + c%eg.

Condition K(f;) = f1 implies

(a—1)cf +cci =0, bej — (14 a)ct =0. (3.33)
Similarly, K(f2) = —f» yields
(1+a)cs +cc3 =0, beh+(1—a)cs=0. (3.34)

Now, we consider possible cases for (3.33) and (3.34) with respect to a, b and
c.
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Case 1. ¢ = 0.

In this case, from equation a? + bc = 1 we deduce a = +1. Now we con-
sider the following cases:

Case 1.1. a = 1, b = 0. In this case, from (3.33) and (3.34) we deduce

¢? = ¢} = 0 and so we obtain the almost para-complex structure

~ 1 0
w-t 0]
Case 1.2. a = 1, b # 0. In this case, (3.33) and (3.34) give ¢; = 0 and
2= %c%, which deduce the almost para-complex structure

= 1 b

K] = .

&=l 2

Case 1.3. a = —1, b = 0. In this case, (3.33) and (3.34) imply ¢} = ¢Z = 0,
which imply the almost para-complex structure

= -1 0
(K] = .
0 1

Case 1.4. a = —1, b # 0. In this case, (3.33) and (3.34) imply ¢} = 0 and
3= —gcé, which give the almost para-complex structure

~ -1 b

K] = .

&=
According to the cases 1.1 to cases 1.4, we deduce that in Case 1, the almost
para-complex K has the matrix presentation [I? | = B )J , with respect to

basis {e1,e2}, where A = 1 and b is arbitrary.
Case 2. b =0.

Similar to Case 1, in this case we have a = +1. If ¢ = 0, then we derive
again Cases 1.1 ans 1.3. Thus we only consider ¢ # 0 and we study the follow-
ing cases:

Case 2.1. a = 1. In this case, (3.33) and (3.34) give ¢} = 0 and ¢} = —%¢3,
which give the almost para-complex structure

w-[: 1)
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Case 2.2. a = —1. In this case, (3.33) and (3.34) imply ¢3 = 0 and ¢} =
which imply the almost para-complex structure

a-[2]

c

2
€1

<
2¢1>

According to the cases 2.1 to cases 2.2, we deduce that in Case 2, the almost
para-complex K has the matrix presentation

Lm—[A%]

c
with respect to basis {e1,e2}, where A = £1 and ¢ is arbitrary.

Case 3. b,c # 0.

In this case, from condition a® + bc = 1, it follows that a # +1. Also, from
(3.33) and (3.34) we derive that

~ b .
Thus, we get the almost para-complex structure [K] = [a } with respect
c —a

to basis {e1, ez}, where a®+bc = 1 and b, ¢ # 0. Here, we consider (g, [+, ], o, IA()
with the second matrix of Proposition 3.7, i.e., K(e1) = Ae; and K(e2) = ees.
These equations give (K o ¢)(e1) = Ae; and (K o ¢)(e2) = €ep. Thus dimg! =

dimg~"' if and only if ¢ = —\. Thus K reduce to [())\ 0}\], which is the
particular case of the second matrix of the assertion.
Now, we consider (g, [,], ¢, K) with the third matrix of Proposition 3.7, i.e.,

K(e1) = dey, K(ez) = —Xeq. It is easy to see that
®oB)(er) =rer, (Kod)ea) = e

These equations show that dim g # dimg~! and so (g,][,], ¢, K) can not be
an almost para-complex hom-Lie algebra in this case. But if we consider
(8,],], 4, K) with the fourth matrix of Proposition 3.7, i.e., K(e;) = ey,

K(e3) = €ey, we get
(Kog)(er) =Xer, (Kog)(ea) = —ecea.

These equations show that dimg' = dimg~! if and only if A = e. Thus K
reduce to the fourth matrix of the assertion.
Here, we consider (g, [,], ¢, K) with the fifth matrix of Proposition 3.7, i.e.,

K(e1) = Ae1 + ABea, K(ea) = —Xea. It is easy to see that
(Kog)(er) =Aer, (K og)(ex) = Aea.
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These equations show that dimg!' # dimg~' and so (g,[-,"], ¢, K) can not
be an almost~ para-complex hom-Lie algebra in this case. But if we con-
sider (g, [, ], ¢, K) with the sixth matrix of Proposition 3.7, i.e., K(e1) = ey,
K(ea) = Aea, we get
(K o¢)(er) = Ner + ABes
and
(K o ¢)(ea) = —Aea.
B 1

If A =1, it is easy to see that f; and f with condition ¢} = 0 and ¢ = 501

satisfies in
(Kog)(fi)=fi, (Kog)(f2)=—f2
and so dimg! = dimg~!. Similarly, if A = —1, then f; and f» with condition

c} =0 and ¢ = £l satisfies in

2
(Kod)(f1) =fi, (Kod)(fo)=—f

and so dimg' = dimg~!. Therefore (g,[,],, K) with K given by the fifth
matrix of the assertion is an almost para-complex hom-Lie algebra.
It is easy to see that

Nf(oa = N?og = Nf(ozg = O’
i.e., these structures are para-complex. O

Proposition 3.9. All non-abelian para-Hermitian hom-Lie algebra of dimen-
sion 2 are as (g, [, -], ¢, Kiy <,>:), i = 1,2,3,4, where ¢ is given by Proposition
3.8 and K; and <, >; have the following matriz presentations:

Ri=[y O] wa= ) O wa=]) g wa= A

d
(3.35)
—/\b<61,€2 >1 <ep,ez >
= 3.36
<l = [ S e 7. (3.36)
0 < e1,€y >9
< > = 3.37
[ ’ 2] |:< €1,€2 >2 C)\<€1,€2 >2:| ’ ( )
< e1,e1 >3 0
<, >3] = , 3.38
sl =[Sy (3.39)
<ep,e1 >4 *%<€17€1 >4
< >4 = , 3.39
[ 4 LZ <eper >4 B <ee >4] (3:39)
where a,d,h # 0, a®> +dh =1 and \ = +1.
Proof. In Proposition 3.8, it is shown that (g, [-, },(;5) admits three different

types of para-complex structures that we denoted them by K. Here we must
study condition (2.5) for them. We consider the first matrix, i.e., [K] =
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[3 _b)\] From < (I/(\' o q@)(eg),(f? o QAS)(GQ) >= — < eg,es > we conclude

< eg,e9 >=0. Also, < (K o $)(61), (K o0 d)(e1) >= — < e1,e1 > gives
<ep,e; >1=—-Ab<ep,ep >q.

These relations deduce condition

< (Kod)(er), (K od)(es) >=— < eq,es > .

We denote these structures in the assertion with index 1 in the below.

~ A0
We choose the second matrix i.e., [K] = /\} . The condition
c —

<(Ko¢)(er), (K od)(er) >=— < er,er >

implies < ey, e; >= 0. Also
< (Kod)(e2), (K 0 9)(e2) >= — < ez, € >

deduces < e, e2 >= cA < e1,e9 >. Moreover the above conditions lead to
< (Koo)(er), (Kop)(ez) >= — <er,en>.

We denote these structures in the assertion with index 2 in the below.
For the third matrix i.e., [IA(} = {Z d
—a

Case 1. a # 0. In this case < (I?oa)(el), (I?Ogg)(el) >= — < eq,e; > implies

, we consider the following cases

241 d
@t < ey, e > —— < €g,6y >. (340)

< er,eg >= —
12 2ad 2a

-~

The condition < (K o (;5)(62), (K 0 ¢)(eg) >= — < e, €5 > gives

a2

h
<ey,eg >= — < ej,e; >+ < eg,eg > . (3.41)

2a 2ah

From < (K o ¢)(e1), (K o ¢)(e2) >= — < e1, €2 > we deduce

a a
<ep, ey >= _ﬁ<61761 >+%<62,62>. (342)
(3.40) and (3.41) imply
h
< eg,e9 >= *8 <ep,ep >. (343)

Setting (3.43) in (3.42), we obtain
< ep,eg >= —% <ep,ep >.

We denote these structures in the assertion with index 3 in the below.
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Case 2. a = 0. In the case hd = 1 and consequently the third matrix re-

~ 0 d| .. . .
duce to [K] = [1 0]. Similar calculates give
d
1
< eg,e9 >= 7 <ep,er >, <ep,es >=0.
We denote these structures in the assertion with index 4 in the below.
Here we study para-Hermitian properties for (g, [, -], #). In Proposition 3.8,

it is shown that this hom-Lie algebra admits only para-complex structure K.
Also in Proposition 3.3 we show that the pseudo-Riemannian metric <, > has
the matrix presentation

<e1,e1 - 0

<, = .
[’ ] 0 < e, €69 >+

The condition < (Kog)(e1), (Kog)(e1) == — < e1,e1 = implies < ey, e1 == 0.
Also from < (Ko¢)(ea), (Kog)(ez) == — < ez, 2 = we deduce < eg, e == 0,
and this is not possible. Since in this case pseudo-Riemannian metric is not
defined.

Pseudo-Riemannian metric <,>> in Proposition 3.3 has the matrix presen-

tation
L e, e > —i<<e,e>>
[<<,>>] _ N 1,¢1 B 2,62
~B < eg,e9 > < eg,e9 >
The condition

< (K od)(e2), (K 0 d)(ez) >= — < eg,e5 >

implies < es,e5 >= 0. This means that in this case, pseudo-Riemannian
metric is not defined. Therefore does not exist para-Hermitian structure on

(9 [, ], b)- O

Corollary 3.10. There not exists non-abelian para-Hermitian proper hom-Lie
algebra of dimension 2.

Proposition 3.11. All non-abelian para-Kdahler hom-Lie algebra of dimension
2 are as (g, [, ], ¢, Ki, <,>;), i = 1,2,3,4, where ¢ is given by Proposition 3.3
and K; and <,>; have the following matriz presentations:

= 1 b -b 1

[K11] = [0 _1], [<,>11] = L 0} (3.44)

€y e :62-62:07 61'61:_61_b627 e1- ey = eo, (345)
PS A0 0 1

[K12] = {0 _J , (< >10] = [1 0] (3.46)

62‘61:62'62:0, €1 €1 = —€1, €1 €y = €9, (347)
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fa- [l 0] 1l 1)

3.48
e1-e1=—ey, €1-e3=—Acey+ey, eg9-e1=—MAceq, ( )
ey - €9 = —C2e; + Acea,
= 0 d <ep,e1 >3 0
[K3] = |:1 0:| ) [<7 >3] = |: 0 _<61,€1>3 ?
d d? (3.49)
ez-e1=—e3, e-e; =er-ey=0,
€z - €2 = *%61,
~ d —4 1
[K4] = ¢ , [<o>a =1 2 4|, e1-e1 =—a’e; —ades,
h —Qa 1 o (3 50)
ey - ea = —ahe; + a’eq, ey -e1 = —ahe; + (a® — 1)eq, '
ey - €9 = —h2e; + ahes,

where a,d # 0, a®> + Aad = 1 and \ = +1.

Proof. In Proposition 3.9, we presented all two-dimensional para-Hermitian
hom-Lie algebras, that are non-proper. Now we study the para-Kéahlerian prop-
erties of them. In Proposition (3.4), we obtain the hom-Levi-Civita product for
the pseudo-Riemannian hom-Lie algebra (g, [-, ], (}S\) Now we must check that
one of the structures determined in Proposition 3.9 is compatible with these

products. We consider two cases as follows:
Case 1. < eq,e5 >=0.

In this case, we can consider <, >3, because <,>;, ¢ = 1,2,4, are not pseudo-
Riemannian metrics, when < ej,es >;= 0, ¢ = 1,2,4. In this case, the product
(3.6) reduce to

(3.51)

61‘61:61'6220, €g €1 = —€9, 62~62=—ﬁ61.

It is easy to see that (2.7) is held for (g, [,], <Z, IA(;),, <,>3) with the above prod-
uct. So this structure is para-Kahler.

Case 2. < ej,ep ># 0.

In this case, at first we consider K 1 and <, > with the hom-Levi-Civita prod-
uct given by (3.7)- (3.10). It is easy to see that
. det[<, >1]—|— < ep,eg9 >1

Ki(ez - Ki(er)) = det[<, >1] ”

and so ey - e; = IA(l(eg . IA(l(el)) if and only if < ej,es >1= 1, which gives
det[<,>1] = —1. Thus (3.7)- (3.10) reduce to

62‘61:62'62:0, 61'61:—61—>\b€2, €1 - €y = €9.
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Also, easily we can check that
62'62:}?1(62‘_[?1(62)), 61‘62:.[?1(61'.[?1(62)).

Moreover, we can see that ey - e; = I?l(el -IA(l(el)) if and only if b = 0 or
A = 1. Therefore we get the para-Kéhler structures (3.44) and (3.46). Now,
we consider K» and <, >» with the hom-Levi-Civita product given by (3.7)-
(3.10). It is easy to see that

~ ~ (< e1,e2 >2)2 < ey,62 >3
K - K =\ -
2(e1 - Ki(e2)) ¢ det[<, >3] €1 det[<, >9]

€2,

and so e1 - ey = 1?2(61 . I?g(eg)) if and only if < ej,es >9= 1, which gives
det[<, >2] = —1. Thus (3.7)- (3.10) reduce to

e1-e1 = —ey, e1-ex = —Aceyi+ea, eg-e; = —Acey, e€g-€9 = —c%e1 + Aces.

Direct calculations show that e; -e; = 1?2(61 'I?g(el)), €y -y = 1?2(62 . 1?2(62))
and es - 1 = Kao(ea - Ka(e1)). Finally we consider K4 and <,>, given by
Proposition 3.9. In this case, (3.7)-(3.10) reduce to

6L2<61€1>2 a<6161>2
e ) ) , 3.52
T T e[, 5] T ddet]<, 5] (3:52)
—h <ej, el > a<e, e >
cey = 3.53
e ddet[<, >] “ ddet[<, >] 2 (8:53)
—h <ep e > det[<,>] — 4 < e, e1 >
es-e1 = el — es, 3.54
2T T ddet[<,>] det[<, >] 2 (3:54)
h2<61,€1> h<61,€1>
-eg = — . 3.95
22T T ddet<, >] T Tddet[<, >] 2 (8:55)
Direct calculations together a® + hd = 1 give
a? < eq,ep >2 <ep el >
K(er - k(er)) = ! s .
(er- k) = —Fqic. o] @~ Qo< 5] 2
So, condition e; - e; = K(ey - K(e1)) gives < ej,eq >= —g. In this case,
det[<,>4] = — 2% and so [<,>4] and the Levi-Civita product reduce to (3.50).

Using it we get also
K(ey - K(eg)) = —ahe; + a’ex = e - e,
K(ey - K(e1)) = —ahe; — hdeg = —ahe; + (a2 —1eg = ey - e,
K(ey - K(ep)) = —h*e; + ahey = ey - ea.
So (2.7) holds. O
From Corollary 3.10, we deduce the following

Corollary 3.12. There exists no non-abelian para-Kdhler proper hom-Lie al-
gebra of dimension 2.
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