| تعداد نشریات | 30 |
| تعداد شمارهها | 434 |
| تعداد مقالات | 3,802 |
| تعداد مشاهده مقاله | 6,065,427 |
| تعداد دریافت فایل اصل مقاله | 4,172,722 |
On the spectral geometry of 4-dimensional Lorentzian Lie group | ||
| Journal of Finsler Geometry and its Applications | ||
| دوره 3، شماره 2، اسفند 2022، صفحه 99-118 اصل مقاله (210.36 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22098/jfga.2022.11917.1080 | ||
| نویسنده | ||
| Davood Seifipour* | ||
| Department of Mathematics, Abadan Branch, Islamic Azad University, Abadan, Iran | ||
| چکیده | ||
| The main focus of this paper is concern to the study on the point-wise Osserman structure on 4-dimensional Lorentzian Lie group. In this paper we study on the spectrum of the Jacobi operator and spectrum of the skew-symmetric curvature operator on the non-abelian 4-dimensional Lie group G, whenever G equipped with an orthonormal left invariant pseudo-Riemannian metric g of signature (-;+;+; +), i.e, Lorentzian metric, where e1 is a unit time-like vector. The Lie algebra structure in dimension four has key role in our investigation, also in this case we study on the classification of 1-Stein and mixed IP spaces. At the end we show that G does not admit any space form and Einstein structures. | ||
| کلیدواژهها | ||
| Codazzi space؛ statistical manifold؛ Lie group | ||
| مراجع | ||
| ||
|
آمار تعداد مشاهده مقاله: 267 تعداد دریافت فایل اصل مقاله: 382 |
||