تعداد نشریات | 27 |
تعداد شمارهها | 364 |
تعداد مقالات | 3,223 |
تعداد مشاهده مقاله | 4,741,107 |
تعداد دریافت فایل اصل مقاله | 3,238,521 |
On the spectral geometry of 4-dimensional Lorentzian Lie group | ||
Journal of Finsler Geometry and its Applications | ||
دوره 3، شماره 2، اسفند 2022، صفحه 99-118 اصل مقاله (210.36 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2022.11917.1080 | ||
نویسنده | ||
Davood Seifipour* | ||
Department of Mathematics, Abadan Branch, Islamic Azad University, Abadan, Iran | ||
چکیده | ||
The main focus of this paper is concern to the study on the point-wise Osserman structure on 4-dimensional Lorentzian Lie group. In this paper we study on the spectrum of the Jacobi operator and spectrum of the skew-symmetric curvature operator on the non-abelian 4-dimensional Lie group G, whenever G equipped with an orthonormal left invariant pseudo-Riemannian metric g of signature (-;+;+; +), i.e, Lorentzian metric, where e1 is a unit time-like vector. The Lie algebra structure in dimension four has key role in our investigation, also in this case we study on the classification of 1-Stein and mixed IP spaces. At the end we show that G does not admit any space form and Einstein structures. | ||
کلیدواژهها | ||
Codazzi space؛ statistical manifold؛ Lie group | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 146 تعداد دریافت فایل اصل مقاله: 228 |