- 1. H. An and S. Deng, Invariant (α, β)− metrics on homogeneous manifolds, monatsh.
Math., 154 (2008), 89-102.
- 2. P. Bahmandoust and D. Latifi, Naturally reductive homogeneous (α, β) spaces, Int. J.
Geom. Methods Mod. Phys. 17(8) (2020), 2050117.
- 3. D. Bao, S. S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry,
Springer-Verlag, New-York, 2000.
- 4. L. Berwald, Uber die ¨ n-dimensionalen Geometrien konstanter Kr¨ummung, in denen die
Geraden die k¨urzesten sind. Math. Z. 30(1929), 449-469.
- 5. S. S. Chern and Z. Shen, Riemann-Finsler geometry, World Scientific, Nankai Tracts in
Mathematics, Vol. 6 (2005).
- 6. S. Deng and Z. Hou, Invariant Randers metrics on homogeneous Riemannian manifolds,
J. Phys. A: Math. Gen. 37 (2004), 4353-4360.
- 7. Hashiguchi, H. and Ichijyo, Y., Randers spaces with rectilinear geodetics, Rep. Fac. Sci.e
Kagoshima Univ. (Math. Phys. Chem.)., 13 (1980), 33-40.
- 8. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57
(2007) 1421-1433.
- 9. D. Latifi and A. Razavi, Bi-invariant Finsler metrics on Lie groups, Austral. J. Basic
Appl. Sci., 5(12) (2011), 507-511.
- 10. D. Latifi, Bi-invariant (α, β)− metrics on Lie groups, Acta. Uni. Apulensis, 65 (2021),
121-131.
- 11. Matsumoto, M., On Finsler spaces with Randers metric and special forms of important
tensors, J. Math Kyoto Univ., 14 (1975), 477-498.
- 12. M. Parhizkar and D. Latifi, On the flag curvature of invariant (α, β)− metrics, Int. J.
Geom. Methods Mod. Phys., 13 (2016), 1650039, 1-11.
- 13. T. Puttmann, Optimal pinching constants of odd dimensional homogeneous spaces, Invent. Math., 138 (1999), 631-684.
- 14. G. Shanker and K. Kaur, Naturally reductive homogeneous space with (α, β)− metric,
Lobachevskii J. of Math., 40(2) (2019), 210-218.
- 15. Shibata, C., On invariant tensors of β-changes of Finsler metrics, J. Math. Kyoto
Univ., 24 (1984), 163-188.
|