Journal of Finsler Geometry and its Applications Vol. 3, No. 2 (2022), pp 13-19 DOI: 10.22098/jfga.2022.11879.1075

Some results in generalized symmetric square-root spaces

Milad L. Zeinali^a*

^aUniversity of Mohaghegh Ardabili, p.o.box. 5619911367, Ardabil-Iran. E-mail: miladzeinali@gmail.com

ABSTRACT. In this paper, we study generalized symmetric Finsler spaces with special (α, β) -space. In fact, we study this spaces with square-root metric and we prove that generalized symmetric (α, β) -spaces with square-root metric must be Riemannian.

Keywords: (α, β) -spaces, generalized symmetric spaces, square-root metric, symmetric Finsler spaces.

1. Introduction

Finsler geometry is just Riemannian geometry without quadratic restriction [2]. Finsler geometry is a natural generalization of Riemannian geometry. It is wider in scope and richer in content than Riemannian geometry. A Riemannian metric is quadratic in the fiber coordinates y while a Finsler metric is not necessary be quadratic in y.

In 1941, Randers metrics were first studied by the physicist G. Randers, from the standpoint of general relativity [14]. Further, in 1957, R. S. Ingarden applied Randers metrics to the theory of the electron microscope and named them Randers metrics. A Finsler manifold (M, F) is of Randers type if $F = \alpha + \beta$, where $\alpha = \sqrt{\alpha_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)dx^i$ is a 1-form on M with $\|\beta\|_{\alpha} = \sqrt{\alpha^{ij}(x)b_i(x)b_j(x)} < 1$. As a generalization of Randers metric, Matsumoto introduced (α, β) -metrics in [13].

An important class of Finsler metrics is the family of (α, β) -metric. An (α, β) -metric is a Finsler metric of the form $F = \alpha \varphi(s)$, $s = \frac{\beta}{\alpha}$ where $\alpha = \sqrt{\tilde{a}_{ij}(x)y^iy^j}$ is induced by a Riemannian metric $\tilde{a} = \tilde{a}_{ij}dx^i \otimes dx^j$ on a connected smooth *n*-dimensional manifold M and $\beta = b_i(x)y^i$ is a 1-form on M. Some important (α, β) -metrics are Randers metric, infinite metric, Matsumoto metric, Kropina metric, r^{th} series metric, square metric, square-root metric,

AMS 2020 Mathematics Subject Classification: 53C35, 53C60

etc.

The class of p-power (α, β) -metrics on a manifold M is in the following form

$$F = \alpha \left(1 + \frac{\beta}{\alpha}\right)^p,$$

where $p \neq 0$ is a real constant, $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form on M. If p = 1/2, we have

$$F = \sqrt{\alpha(\alpha + \beta)},$$

which is called a square-root metric.

The notion of symmetric spaces is due to Cartan. In 1967, A.J. Ledger [11] initiated the study of generalized Riemannian symmetric spaces. These spaces are Riemannian manifolds (M, g) which admit at each point p in M an isometry s_p with p as an isolated fixed point. The definition of these spaces arises as a natural extension of symmetric spaces of Cartan. In fact, a generalized Riemannian symmetric space must be homogeneous [12]. Furthermore, if a regularity condition (trivially satisfied by globally symmetric spaces) is imposed on the isometries (s_p) , then they can be chosen to have the same order n [6]. In this case, the spaces are said to be Riemannian regular n-symmetric spaces.

Symmetric Finsler spaces were first proposed and studied by Z.I. Szabó and the second author. A Finsler space (M, F) is called globally symmetric if any point of M is an isolated fixed point of an involutive isometry. If we drop the involution property in the definition of symmetric Finsler spaces but keep the property that $s_x \circ s_y = s_z \circ s_x, z = s_x(y)$, we get a broader class of Finsler spaces called generalized symmetric spaces [5].

Let (M, F) be a connected Finsler manifold. A symmetry at $x \in M$ is an isometry of (M, F) for which x is an isolated fixed point. A s-structure on (M, F) is a family $\{s_x\}_{x \in M}$ such that s_x is a symmetry at $x \in M$, for each $x \in M$. An s-structure is called regular if for any two points $x, y \in M$

$$s_x \circ s_y = s_z \circ s_x, \quad z = s_x(y).$$

An *s*-structure $\{s_x\}_{x\in M}$ is called of order k if $(s_x)^k = id_M$ for all $x \in M$ and k is the minimal number with this property. It is well known that if (M, F) admits an *s*-structure, then it always admits an *s*-structure of finite order. In particular if (M, F) admits an *s*-structure of order two then it is a usual symmetric Finsler space. For more details see [1, 3, 4, 8, 9].

In [15], we study generalized symmetric Finsler spaces with Matsumoto metric, infinite series metric and exponential metric. In [10], the author study generalized symmetric Finsler spaces with square metric. In this paper, we study generalized symmetric Finsler spaces with square-root metric and prove that generalized symmetric (α, β) -spaces with square-root metric must be Riemannian. Also, we show some results.

14

2. Preliminaries

Let M be a n- dimensional C^{∞} manifold and $TM = \bigcup_{x \in M} T_x M$ the tangent bundle. A Finsler metric on a manifold M is a non-negative function $F : TM \to \mathbb{R}$ with the following properties:

- (1) F is smooth on the slit tangent bundle $TM^0 := TM \setminus \{0\}$.
- (2) $F(x, \lambda y) = \lambda F(x, y)$ for any $x \in M, y \in T_x M$ and $\lambda > 0$.
- (3) The $n \times n$ Hessian matrix

$$[g_{ij}] = \frac{1}{2} \left[\frac{\partial^2 F^2}{\partial y^i \partial y^j} \right]$$

is positive definite at every point $(x, y) \in TM_0$.

The following bilinear symmetric form $g_y:T_xM\times T_xM\longrightarrow R$ is positive definite

$$\mathbf{g}_{y}(u,v) = \frac{1}{2} \frac{\partial^{2}}{\partial s \partial t} F^{2}(x, y + su + tv)|_{s=t=0}.$$

We recall that, by the homogeneity of F we have

$$\mathbf{g}_y(u,v) = g_{ij}(x,y)u^i v^j, \quad F = \sqrt{g_{ij}(x,y)u^i v^j}.$$

Definition 2.1. Let $\alpha = \sqrt{\tilde{a}_{ij}(x)y^iy^j}$ be a norm induced by a Riemannian metric \tilde{a} and $\beta(x,y) = b_i(x)y^i$ be a 1-form on an *n*-dimensional manifold *M*. Let

$$\|\beta(x)\|_{\alpha} := \sqrt{\tilde{a}^{ij}(x)b_i(x)b_j(x)}.$$
(2.1)

Now, let the function F is defined as follows

$$F := \alpha \phi(s) \quad , \quad s = \frac{\beta}{\alpha}, \tag{2.2}$$

where $\phi = \phi(s)$ is a positive C^{∞} function on $(-b_0, b_0)$ satisfying

$$\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0 \quad , \quad |s| \le b < b_0.$$
(2.3)

Then F is a Finsler metric if $\|\beta(x)\|_{\alpha} < b_0$ for any $x \in M$. A Finsler metric in the form (2.2) is called an (α, β) -metric.

We note that, a Finsler space having the Finsler function:

$$F(x,y) = \sqrt{\alpha(\alpha + \beta)}$$

is called a square-root space.

The Riemannian metric \tilde{a} induces an inner product on any cotangent space T_x^*M such that $\langle dx^i(x), dx^j(x) \rangle = \tilde{a}^{ij}(x)$. The induced inner product on T_x^*M induces a linear isomorphism between T_x^*M and T_xM . Then the 1-form β corresponds to a vector field \tilde{X} on M such that

$$\tilde{a}(y, X(x)) = \beta(x, y). \tag{2.4}$$

Also we have $\|\beta(x)\|_{\alpha} = \|\tilde{X}(x)\|_{\alpha}$. Therefore we can write (α, β) -metrics as follows:

$$F(x,y) = \alpha(x,y)\phi\Big(\frac{\tilde{a}(X(x),y)}{\alpha(x,y)}\Big),$$
(2.5)

where for any $x \in M$, $\sqrt{\tilde{a}(\tilde{X}(x), \tilde{X}(x))} = \|\tilde{X}(x)\|_{\alpha} < b_0$.

Symmetric Finsler spaces form a natural extension to the symmetric spaces of Cartan. A symmetric Finsler spaces is a Finsler space (M, F) such that for all $p \in M$ there exist an involutive isometry $s_p \in M$ such that p is an isolated fixed point of s_p [7].

Definition 2.2. Let (M, F) be a connected Finsler space and I(M, F) be the full group of isometries of (M, F). An isometry of (M, F) with x as an isolated fixed point is called a symmetry at x, and will usually be denoted as s_x . A family $\{s_x : x \in M\}$ of symmetries on a connected Finsler manifold (M, F) is called an s-structure on (M, F).

An s-structure $\{s_x : x \in M\}$ is called of order $k(k \ge 2)$ if $(s_x)^k = id$ for all $x \in M$ and k is the least integer of satisfying the above property. Obviously a Finsler space is symmetric if and only if it admits an s-structure of order 2. An s-structure $\{s_x\}$ on (M, F) is called regular if for every pair of points $x, y \in M$,

$$s_x \circ s_y = s_z \circ s_x, \quad z = s_x(y).$$

Definition 2.3. A generalized symmetric Finsler space is a connected Finsler manifold (M, F) admitting a regular *s*-structure. A Finsler space (M, F) is said to be *k*-symmetric $(k \ge 2)$ if it admits a regular *s*-structure of order *k*.

3. Generalized symmetric square-root spaces

According to preliminaries section, note that a square-root metric can be written as

$$F(x,y) = \sqrt{\alpha(x,y) \left(\alpha(x,y) + \widetilde{\alpha}(X_x,y) \right)}, \quad x \in M, y \in T_x M,$$

where α is a Riemannian metric, X_x is a smooth vector field whose length with respect to α is less than 1 everywhere and \tilde{a} is the inner product on the tangent space $T_x M$ induced by α .

Lemma 3.1. Let (M, F) be a generalized symmetric square-root space with F defined by the Riemannian metric \tilde{a} and the vector field X. Then the regular s-structure $\{s_x\}$ of (M, F) is also a regular s-structure of the Riemannian manifold (M, \tilde{a}) .

Proof. Let s_x be a symmetry of (M, F) at x and $p \in M$. Then for any $Y \in T_pM$ we have

$$F(p,Y) = F(s_x(p), ds_x(Y)).$$

Therefore,

$$\begin{split} \sqrt{\widetilde{a}\left(Y,Y\right)} &+ \sqrt{\widetilde{a}\left(Y,Y\right)}\widetilde{a}(X_p,Y) \\ &= \sqrt{\widetilde{a}\left(ds_xY,ds_xY\right)} + \sqrt{\widetilde{a}\left(ds_xY,ds_xY\right)}\widetilde{a}(X_{s_x(p)},ds_xY) \end{split}$$

Then we have,

$$\begin{split} \widetilde{a}\left(Y,Y\right) &+ \sqrt{\widetilde{a}}\left(Y,Y\right) \widetilde{a}\left(X_{p},Y\right) \\ &= \widetilde{a}\left(ds_{x}Y,ds_{x}Y\right) + \sqrt{\widetilde{a}\left(ds_{x}Y,ds_{x}Y\right)} \widetilde{a}(X_{s_{x}(p)},ds_{x}Y). \end{split}$$

Applying the above equation to -Y, we get

$$\begin{split} \widetilde{a}\left(Y,Y\right) &- \sqrt{\widetilde{a}\left(Y,Y\right)} \widetilde{a}\left(X_p,Y\right) \\ &= \widetilde{a}\left(ds_xY,ds_xY\right) - \sqrt{\widetilde{a}\left(ds_xY,ds_xY\right)} \widetilde{a}(X_{s_x(p)},ds_xY). \end{split}$$

By Adding and Subtracting of two above equations, we get

$$\widetilde{a}(Y,Y) = \widetilde{a}(ds_xY, ds_xY),$$

$$\widetilde{a}(X_p,Y) = \widetilde{a}(X_{s_x(p)}, ds_xY).$$

Then s_x is a symmetry with respect to the Riemannian metric \tilde{a} .

Proposition 3.2. Let (M, \tilde{a}) be a generalized symmetric Riemannian space. Also suppose that F is a square-root metric introduced by \tilde{a} and a vector field X. Then the regular s-structure $\{s_x\}$ of (M, \tilde{a}) is also a regular s-structure of (M, F) if and only if X is s_x -invariant for all $x \in M$.

Proof. Let X be s_x -invariant. Therefore, for any $p \in M$, we have $X_{s_x(p)} = ds_x X_p$. Then for any $y \in T_p M$ we have

$$F(s_x(p), ds_x y_p) = \sqrt{\widetilde{a}(ds_x y_p, ds_x y_p)} + \sqrt{\widetilde{a}(ds_x y_p, ds_x y_p)} \widetilde{a}(X_{s_x(p)}, ds_x y_p)$$
$$= \sqrt{\widetilde{a}(y, y)} + \sqrt{\widetilde{a}(y, y)} \widetilde{a}(X_p, y)$$
$$= F(p, y).$$

For the converse part, let s_x be a symmetry of (M, F) at x. Then for any $p \in M$ and $y \in T_pM$ we have

$$F(p,y) = F(s_x(p), \ ds_x y_p).$$

Then,

$$\widetilde{a}(y,y) + \sqrt{\widetilde{a}(y,y)}\widetilde{a}(X_p,y)$$

= $\widetilde{a}(ds_x y_p, ds_x y_p) + \sqrt{\widetilde{a}(ds_x y_p, ds_x y_p)}\widetilde{a}(X_{s_x(p)}, ds_x y_p).$

So, we have

$$\widetilde{a}\left(ds_x X_p - X_{s_x(p)}, \ ds_x y_p\right) = 0.$$

Therefore $ds_x X_p = X_{s_x(p)}.$

Theorem 3.3. A generalized symmetric square-root space must be Riemannian.

Proof. Let (M, F) be a generalized symmetric square-root space with F defined by the Riemannian metric \tilde{a} and the vector field X, and let $\{s_x\}$ be the regular s_x -structure of (M, F). Let s_x be a symmetry of (M, F). Then by lemma 3.1, s_x is also a symmetry of (M, \tilde{a}) . Thus we have

$$F(x, ds_x(y)) = \sqrt{\widetilde{a}(ds_x y, ds_x y)} + \sqrt{\widetilde{a}(ds_x y, ds_x y)} \widetilde{a}(X_x, ds_x y)$$
$$= \sqrt{\widetilde{a}(y, y)} + \sqrt{\widetilde{a}(y, y)} \widetilde{a}(X_p, y)$$
$$= F(x, y).$$

Therefore,

$$\widetilde{a}(X_x, ds_x y) = \widetilde{a}(X_x, y), \quad \forall y \in T_x M$$

Since x is an isolated fixed point of the symmetry s_x , the tangent map $S_x = (ds_x)_x$ is an orthogonal transformation of $T_x M$ having no nonzero fixed vectors. So, we have

$$\widetilde{a}(X_x, (S-id)_x(y)) = 0, \quad \forall y \in T_x M.$$

Since $(S - id)_x$ is an invertible linear transformation, we have $X_x = 0$, $\forall x \in M$. Hence F is Riemannian.

References

- P. Bahmandoust, D. Latifi On Finsler s-manifolds, European Journal of Pure and Applied Mathematics, Vol 10, 5, (2017), 1099-1111.
- S. S. Chern, Finsler geometry is just Riemannian geometry without quadratic restriction, Notices AMS, 43(9), (1996), 959963.
- 3. M. Ebrahimi, D. Latifi, Geodesic vectors of Randers metric on generalized symmetric spaces, global J. of Adv. Res. on class and Mod. Geom , Vol 10, (2021), 153-165.
- M. Ebrahimi, D. Latifi, Homogeneous geodesics on five-dimensional generalized symmetric spaces, Int. J. of Geom, Vol 11, 1, (2022), 17-23.
- P. Habibi, A. Razavi, On generalized symmetric Finsler spaces, Geom. Dedicata, 149, (2010), 121-127.
- O. Kowalski, Riemannian manifolds with general symmetries, Math. Z. 136, (1974),137-150.
- D. Latifi, A. Razavi, On homogeneous Finsler spaces, Rep. Math. Phys, 57, (2006) 357-366. Erratum: Rep. Math. Phys. 60, (2007), 347.

18

- D. Latifi, Berwald manifolds with parallel s-structures, Acta Universitatis Apulensis, 36, (2013), 79-86.
- D. Latifi, M. Toomanian, On Finsler s-spaces, J. Contemp. Math. Anal , 50, (2015), 107-115.
- D. Latifi, On generalized symmetric square metrics, Acta Universitatis Apulensis, 68, (2021), 63-70.
- A. J. Ledger, Espaces de Riemann symmetriques generalises, C. R. Acad. Sci. Paris 264, (1967),947-948.
- A. J. Ledger, M. Obata, Affine and Riemannian s-manifolds, J. Differ. Geom. 2, (1968),451-459.
- 13. M. Matsumoto, On C-reducible Finsler-spaces, Tensor, N. S. 24, (1972),2937.
- G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev. 59, (1941),195199.
- 15. M. L. Zeinali, On generalized symmetric Finsler spaces with some special (α, β) -metrics, Journal of Finsler Geometry and its Applications , $\mathbf{1}(1)$, (2020), 45-53.

Received: 03.11.2022 Accepted: 15.12.2022