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Abstract. In this paper, we study generalized symmetric Finsler spaces with special (α, β)

-space. In fact, we study this spaces with square-root metric and we prove that generalized

symmetric (α, β) -spaces with square-root metric must be Riemannian.
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1. Introduction

Finsler geometry is just Riemannian geometry without quadratic restriction

[2]. Finsler geometry is a natural generalization of Riemannian geometry. It is

wider in scope and richer in content than Riemannian geometry. A Riemannain

metric is quadratic in the fiber coordinates y while a Finsler metric is not

necessary be quadratic in y.

In 1941, Randers metrics were first studied by the physicist G. Randers,

from the standpoint of general relativity [14]. Further, in 1957, R. S. Ingarden

applied Randers metrics to the theory of the electron microscope and named

them Randers metrics. A Finsler manifold (M,F ) is of Randers type if F =

α + β, where α =
√
αij(x)yiyj is a Riemannian metric and β = bi(x)dx

i is

a 1-form on M with ∥β∥α =
√
αij(x)bi(x)bj(x) < 1. As a generalization of

Randers metric, Matsumoto introduced (α, β)-metrics in [13].

An important class of Finsler metrics is the family of (α, β)-metric. An

(α, β)-metric is a Finsler metric of the form F = αφ(s), s = β
α where α =√

ãij(x)yiyj is induced by a Riemannian metric ã = ãijdx
i ⊗ dxj on a con-

nected smooth n-dimensional manifold M and β = bi(x)y
i is a 1-form on M .

Some important (α, β)-metrics are Randers metric, infinite metric, Matsumoto

metric, Kropina metric, rth series metric, square metric, square-root metric,
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etc.

The class of p-power (α, β)-metrics on a manifold M is in the following form

F = α
(
1 +

β

α

)p
,

where p ̸= 0 is a real constant, α =
√
aij(x)yiyj is a Riemannian metric and

β = bi(x)y
i is a 1-form on M . If p = 1/2, we have

F =
√
α(α+ β),

which is called a square-root metric.

The notion of symmetric spaces is due to Cartan. In 1967, A.J. Ledger [11]

initiated the study of generalized Riemannian symmetric spaces. These spaces

are Riemannian manifolds (M, g) which admit at each point p inM an isometry

sp with p as an isolated fixed point. The definition of these spaces arises

as a natural extension of symmetric spaces of Cartan. In fact, a generalized

Riemannian symmetric space must be homogeneous [12]. Furthermore, if a

regularity condition (trivially satisfied by globally symmetric spaces) is imposed

on the isometries (sp), then they can be chosen to have the same order n [6].

In this case, the spaces are said to be Riemannian regular n-symmetric spaces.

Symmetric Finsler spaces were first proposed and studied by Z.I. Szabó and

the second author. A Finsler space (M,F ) is called globally symmetric if any

point of M is an isolated fixed point of an involutive isometry. If we drop the

involution property in the definition of symmetric Finsler spaces but keep the

property that sx ◦ sy = sz ◦ sx, z = sx(y), we get a broader class of Finsler

spaces called generalized symmetric spaces [5].

Let (M,F ) be a connected Finsler manifold. A symmetry at x ∈ M is an

isometry of (M,F ) for which x is an isolated fixed point. A s−structure on

(M,F ) is a family {sx}x∈M such that sx is a symmetry at x ∈ M , for each

x ∈ M . An s−structure is called regular if for any two points x, y ∈ M

sx ◦ sy = sz ◦ sx, z = sx(y).

An s−structure {sx}x∈M is called of order k if (sx)
k = idM for all x ∈ M and

k is the minimal number with this property. It is well known that if (M,F )

admits an s−structure, then it always admits an s−structure of finite order.

In particular if (M,F ) admits an s−structure of order two then it is a usual

symmetric Finsler space. For more details see [1, 3, 4, 8, 9].

In [15], we study generalized symmetric Finsler spaces with Matsumoto met-

ric, infinite series metric and exponential metric. In [10], the author study

generalized symmetric Finsler spaces with square metric. In this paper, we

study generalized symmetric Finsler spaces with square-root metric and prove

that generalized symmetric (α, β) -spaces with square-root metric must be Rie-

mannian. Also, we show some results.
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2. Preliminaries

Let M be a n- dimensional C∞ manifold and TM = ∪x∈MTxM the tangent

bundle. A Finsler metric on a manifold M is a non-negative function F :

TM → R with the following properties:

(1) F is smooth on the slit tangent bundle TM0 := TM \ {0}.
(2) F (x, λy) = λF (x, y) for any x ∈ M , y ∈ TxM and λ > 0.

(3) The n× n Hessian matrix

[gij ] =
1

2

[ ∂2F 2

∂yi∂yj

]
is positive definite at every point (x, y) ∈ TM0.

The following bilinear symmetric form gy : TxM × TxM −→ R is positive

definite

gy(u, v) =
1

2

∂2

∂s∂t
F 2(x, y + su+ tv)|s=t=0.

We recall that, by the homogeneity of F we have

gy(u, v) = gij(x, y)u
ivj , F =

√
gij(x, y)uivj .

Definition 2.1. Let α =
√

ãij(x)yiyj be a norm induced by a Riemannian

metric ã and β(x, y) = bi(x)y
i be a 1−form on an n−dimensional manifold M .

Let

∥β(x)∥α :=
√
ãij(x)bi(x)bj(x). (2.1)

Now, let the function F is defined as follows

F := αϕ(s) , s =
β

α
, (2.2)

where ϕ = ϕ(s) is a positive C∞ function on (−b0, b0) satisfying

ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0 , |s| ≤ b < b0. (2.3)

Then F is a Finsler metric if ∥β(x)∥α < b0 for any x ∈ M . A Finsler metric in

the form (2.2) is called an (α, β)−metric.

We note that, a Finsler space having the Finsler function:

F (x, y) =
√
α(α+ β)

is called a square-root space.

The Riemannian metric ã induces an inner product on any cotangent space

T ∗
xM such that ⟨dxi(x), dxj(x)⟩ = ãij(x). The induced inner product on T ∗

xM

induces a linear isomorphism between T ∗
xM and TxM . Then the 1-form β

corresponds to a vector field X̃ on M such that

ã(y, X̃(x)) = β(x, y). (2.4)
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Also we have ∥β(x)∥α = ∥X̃(x)∥α . Therefore we can write (α, β)−metrics as

follows:

F (x, y) = α(x, y)ϕ
( ã(X̃(x), y)

α(x, y)

)
, (2.5)

where for any x ∈ M ,
√
ã(X̃(x), X̃(x)) = ∥X̃(x)∥α < b0 .

Symmetric Finsler spaces form a natural extension to the symmetric spaces

of Cartan. A symmetric Finsler spaces is a Finsler space (M,F ) such that for

all p ∈ M there exist an involutive isometry sp ∈ M such that p is an isolated

fixed point of sp [7].

Definition 2.2. Let (M,F ) be a connected Finsler space and I(M,F ) be the

full group of isometries of (M,F ). An isometry of (M,F ) with x as an isolated

fixed point is called a symmetry at x, and will usually be denoted as sx. A

family {sx : x ∈ M} of symmetries on a connected Finsler manifold (M,F ) is

called an s-structure on (M,F ).

An s-structure {sx : x ∈ M} is called of order k(k ≥ 2) if (sx)
k = id for all

x ∈ M and k is the least integer of satisfying the above property. Obviously a

Finsler space is symmetric if and only if it admits an s-structure of order 2. An

s-structure {sx} on (M,F ) is called regular if for every pair of points x, y ∈ M ,

sx ◦ sy = sz ◦ sx, z = sx(y).

Definition 2.3. A generalized symmetric Finsler space is a connected Finsler

manifold (M,F ) admitting a regular s-structure. A Finsler space (M,F ) is

said to be k-symmetric (k ≥ 2) if it admits a regular s-structure of order k.

3. Generalized symmetric square-root spaces

According to preliminaries section, note that a square-root metric can be

written as

F (x, y) =
√
α(x, y)

(
α(x, y) + ã(Xx, y)

)
, x ∈ M,y ∈ TxM,

where α is a Riemannian metric, Xx is a smooth vector field whose length with

respect to α is less than 1 everywhere and ã is the inner product on the tangent

space TxM induced by α.

Lemma 3.1. Let (M,F ) be a generalized symmetric square-root space with F

defined by the Riemannian metric ã and the vector field X. Then the regu-

lar s-structure {sx} of (M,F ) is also a regular s-structure of the Riemannian

manifold (M, ã).
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Proof. Let sx be a symmetry of (M,F ) at x and p ∈ M . Then for any Y ∈ TpM

we have

F (p, Y ) = F
(
sx (p) , dsx (Y )

)
.

Therefore,√
ã (Y, Y ) +

√
ã (Y, Y )ã(Xp, Y )

=

√
ã (dsxY, dsxY ) +

√
ã (dsxY, dsxY )ã(Xsx(p), dsxY ).

Then we have,

ã (Y, Y ) +
√
ã (Y, Y )ã (Xp, Y )

= ã (dsxY, dsxY ) +
√
ã (dsxY, dsxY )ã(Xsx(p), dsxY ).

Applying the above equation to −Y , we get

ã (Y, Y )−
√
ã (Y, Y )ã (Xp, Y )

= ã (dsxY, dsxY )−
√
ã (dsxY, dsxY )ã(Xsx(p), dsxY ).

By Adding and Subtracting of two above equations, we get

ã (Y, Y ) = ã (dsxY, dsxY ) ,

ã (Xp, Y ) = ã
(
Xsx(p), dsxY

)
.

Then sx is a symmetry with respect to the Riemannian metric ã. □

Proposition 3.2. Let (M, ã) be a generalized symmetric Riemannian space.

Also suppose that F is a square-root metric introduced by ã and a vector field

X. Then the regular s-structure {sx} of (M, ã) is also a regular s-structure of

(M,F ) if and only if X is sx-invariant for all x ∈ M .

Proof. Let X be sx-invariant. Therefore, for any p ∈ M , we have Xsx(p) =

dsxXp. Then for any y ∈ TpM we have

F
(
sx (p) , dsxyp

)
=

√
ã (dsxyp, dsxyp) +

√
ã (dsxyp, dsxyp)ã

(
Xsx(p), dsxyp

)
=

√
ã (y, y) +

√
ã (y, y)ã(Xp, y)

= F (p, y) .

For the converse part, let sx be a symmetry of (M,F ) at x. Then for any

p ∈ M and y ∈ TpM we have

F (p, y) = F (sx (p) , dsxyp).

Then,

ã (y, y) +
√

ã (y, y)ã (Xp, y)

= ã (dsxyp, dsxyp) +
√
ã (dsxyp, dsxyp)ã

(
Xsx(p), dsxyp

)
.
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So, we have

ã
(
dsxXp −Xsx(p), dsxyp

)
= 0.

Therefore dsxXp = Xsx(p). □

Theorem 3.3. A generalized symmetric square-root space must be Riemann-

ian.

Proof. Let (M,F ) be a generalized symmetric square-root space with F defined

by the Riemannian metric ã and the vector field X, and let {sx} be the regular

sx-structure of (M,F ). Let sx be a symmetry of (M,F ). Then by lemma 3.1,

sx is also a symmetry of (M, ã). Thus we have

F (x, dsx (y)) =

√
ã (dsxy, dsxy) +

√
ã (dsxy, dsxy)ã (Xx, dsxy)

=

√
ã (y, y) +

√
ã (y, y)ã (Xp, y)

=F (x, y) .

Therefore,

ã (Xx, dsxy) = ã (Xx, y) , ∀y ∈ TxM.

Since x is an isolated fixed point of the symmetry sx, the tangent map

Sx = (dsx)x is an orthogonal transformation of TxM having no nonzero fixed

vectors. So, we have

ã
(
Xx, (S − id)x (y)

)
= 0, ∀y ∈ TxM.

Since (S − id)x is an invertible linear transformation, we have Xx = 0,

∀x ∈ M . Hence F is Riemannian.

□
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