تعداد نشریات | 27 |
تعداد شمارهها | 352 |
تعداد مقالات | 3,028 |
تعداد مشاهده مقاله | 4,475,710 |
تعداد دریافت فایل اصل مقاله | 3,053,954 |
Some volume comparison theorems on Finsler manifolds of weighted Ricci curvature bounded below | ||
Journal of Finsler Geometry and its Applications | ||
دوره 3، شماره 2، اسفند 2022، صفحه 1-12 اصل مقاله (106.24 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2022.11723.1072 | ||
نویسندگان | ||
Xinyue Cheng* ؛ Hong Cheng؛ Xibin Zhang | ||
School of Mathematical Sciences, Chongqing Normal University, Chongqing, China | ||
چکیده | ||
This paper mainly studies the volume comparison in Finsler geometry under the condition that the weighted Ricci curvature Ric∞ has a lower bound. By using the Laplacian comparison theorems of distance function, we characterize the growth ratio of the volume coefficients. Further, some volume comparison theorems of Bishop-Gromov type are obtained. | ||
کلیدواژهها | ||
: volume comparison؛ the weighted Ricci curvature؛ Laplacian comparison theorem؛ distance function؛ volume coefficient | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 189 تعداد دریافت فایل اصل مقاله: 233 |