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Abstract- Nowadays, the use of electric vehicles (EVs), in the form of distributed generation, as an appropriate solution 

is considered to replace combustion vehicles by reducing fuel consumption and supplying needed power. In this regard, 

the incorporation of EVs charging stations (EVCSs) in the power network can affect the distribution networks in 

different ways. On the other hand, the location of EVCS in distribution networks changes operational parameters 

includes electrical losses, and voltage deviations. Also, the probabilistic and uncertain behaviour of the loads and their 

daily changes can play a significant role on power distribution networks. To this end, in this paper, first, the modelling 

of the EVCSs affected by the behaviour of the EVs’ owner in a power distribution network is discussed. Then, the 

optimal location and size of EVCSs to reduce their negative effects on the network, including network losses (active and 

reactive) and voltage deviations are addressed in the presence of uncertain loads. The probabilistic model is 

investigated based on using the Monte Carlo simulation (MCS) method . The simulation results in MATLAB software 

environment show a 10% increase in active and reactive power losses in most hours of the day, due to increased power 

flow, when EVCSs are located in the optimal placement. The power losses at 24:00-7:00. when the EVs load is very 

low, are reduced due to decreased power flow across the lines. The results also show that if the EVCSs are not 

optimally located, the voltage deviation will increase by an average of 30% over a day, while by optimal placement of 

EVCSs, the voltage deviation increases to a maximum of 8% of the nominal value. 

Keyword: Charging station, Electric vehicle, Load uncertainty, Optimal placement. 

 

1. INTRODUCTION 
The use of electric vehicles and their charging stations 

in distribution networks can have significant systemic 

effects, including increasing electrical losses, changing 

the voltage profiles, and cause the lines to be congested 

In this regard, modelling the EVCSs and considering 

different governing constraints has been addressed 

based on some technical and economic optimization 

methods,  such as economic load dispatch, demand-side 

management, energy management, reactive power 

planning, and power system stability studies  [1]. 

Adverse system effects of electric vehicles in the 

network are mainly due to their probable presence in 

charging stations. These effects are mainly to changing 

behaviour of stations in the distribution network and, for 

example, can increase the peak hours of the day.  

Electrical losses increasing and reductions in voltage 

magnitude in some parts of the network impose some 

challenges to the system operation. These challenges 

include: increased peak load, increase of power losses, 

negative impact on voltage profile, reducing power 

quality, and possible overloading of distribution 

transformers, distribution lines, and cables. In particular, 

EV penetration has significant adverse impacts on 

voltage profiles and distribution network losses [2]. 

Therefore, analysing the use of appropriate strategies, 

techniques, and tools to control and operate the EVCSs 

are needed. These solutions are including storage 

devices, load sharing, voltage controllers, and network 

reconfiguration. Therefore, many studies and research 

have been done, with the aim of optimal location and 

reduction of negative effects. In Ref. [3], a new time 

management strategy for coordinating multiple EVCSs 

to reduce power losses and improve voltage profile is 

suggested. The RT-SLM (real-time intelligent load 

management) algorithm makes it possible to charge 

PEVs as soon as possible based on real-time (for 

example, every 5 minutes). In Ref. [4], a multi-objective 

method for planning EVCSs is presented, which 

improves the reduction of losses and voltage deviations. 

http://joape/
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In Ref. [5], the use of EVs has shown to be more 

profitable for their owners in frequency control 

programs than peak reduction programs by considering 

the battery life reduction parameter as a determining 

factor. In Ref. [6], EVs have been addressed to change 

the daily energy demand, and their economic benefits 

on the power system have been discussed. In Ref. [7], 

the initial challenges of EVs have been investigated. 

Also, in Ref. [8] an unconstrained traffic assignment 

model (UTAM), utilizing the Nesterov & de Palma 

(NdP) model, is suggested based the relaxation of road 

capacity constraints. Also, an EVCS location model 

(ECSLM) considering the EV driving range and traffic 

flow equilibrium is proposed, based on a mixed-integer 

linear programming (MILP) model. A multi-objective 

optimization problem framework for optimal allocation 

and sizing of EVCSs and renewable energy sources 

(RES) and managing vehicle charging process is 

suggested in Ref. [9], to reduce voltage fluctuations, 

power losses, demand and charging supplying costs, and 

EV battery cost. The Genetic Algorithm-Particle Swarm 

Optimization (GA-PSO) hybrid improved optimization 

algorithm is proposed to solve the problem in different 

scenarios of the IEEE 33-bus system. Awasthi et al. 

[10], have proposed the optimal planning of charging 

stations, including siting and sizing in the city of 

Allahabad, India, by applying a combination of genetic 

algorithm and improved particle swarm optimization. 

Also, the multi-criteria decision-making (MCDM) 

method is applied to EVCS problem in Ref. [11], by 

using the fuzzy Technique for Order of Preference by 

Similarity to Ideal Solution (TOPSIS) to decide on 

environmental, economic and social criteria associated 

with a total of 11 sub-criteria. Also, in Ref. [12], an 

artificial neural network (ANN) technique is suggested 

to estimate the capacity fade in lithium-ion (Li-ion) 

batteries for EVs, to improve the state-of-charge (SOC) 

estimation accuracy over the life-time of the battery, 

and accurate prediction of the battery remaining service 

time. 

In Ref. [1], the stochastic unit commitment problem 

is investigated in a 10-unit case study system integrated 

with an EVCS, a solar farm and a wind farm over a 24-h 

time horizon, based on using scenario generation with 

Monte Carlo simulation technique. Also, reducing 

consumers cost and fossil fuel consumption in a smart 

grid equipped with hybrid EVs, is addressed in Ref. [2], 

by using the game theory and non-cooperative game. In 

[13] a novel decision-making framework, based on two-

stage programming, in a bilateral-pool market for an 

electricity retailer to procure the electric demand 

considering the charging and discharging of EVs is 

suggested. The authors applied a bi-level programming 

to maximize the retailer profit in upper sub-problem, 

and to minimize the aggregated EVs charging and 

discharging costs in the lower sub-problem, by using 

Monte Carlo Simulation (MCS). A two-stage scenario-

based model to obtain optimal decision making of an 

EV aggregator has been proposed in Ref. [14]. They 

used the conditional value at risk (CVaR) method to 

handle different uncertainties. The energy management 

in the presence of electric vehicles for production and 

storage resources is addressed in Ref. [15]. Also, some 

uncertainties in market price of energy, and the prices 

quoted by distributed generation sources, are mentioned 

integrated with responsive loads. The load response 

programs used include the time of use and direct load 

control. The proposed linear mixed-integer planning 

was simulated in the GAMS software. In Ref. [16] a 

multi-objective optimization formwork is proposed for 

optimal placement of EVCSs by minimizing electrical 

grid loss, and EVs' power loss during travel towards CS. 

A probabilistic load modelling (PLM) approach is used 

to model the uncertain demand and EV behavior. Also, 

a two stages model for optimal allocation of PEVCSs is 

suggested in Ref. [17] considering Trip Success Ratio 

(TSR) to enhance CS accessibility for PEV drivers. 

Different driving habits, diversity of usage, and 

different trip types include In-city, and highway are 

modelled. A bi-level programming model for the 

coordinated DG and EVCSs planning problem, by 

maximizing the annual overall profit and applying the 

improved harmonic particle swarm optimization 

algorithm has been presented in Ref. [18]. Ref. [19] 

addressed a stochastic framework based on the Queuing 

Theory (QT) to the optimal allocation and sizing of the 

fast-charging stations by considering the traffic flow of 

EVs using the User Equilibrium-based Traffic 

Assignment Model (UETAM). Minimizing the annual 

investment cost, and the energy losses are considered as 

the objective functions. The authors applied the Gram-

Charlier expansion and point estimation method to 

model the problem. Optimal siting and sizing of plug-in 

hybrid electric vehicles charging stations (CSs) based 

on a mathematical method has been presented in [20]. 

The rate of customers’ participation in demand response 

programs (DRPs) and uncertainties associated with the 

load values and electricity market price are considered. 

The GA with embedded MCS is used to solve the 

optimization problem in 9-bus and 33-bus networks. 

In this paper, at first, modelling the EVCSs affected 

by the behaviour of EV owners in terms of load 

https://www.sciencedirect.com/topics/engineering/genetic-algorithm
https://www.sciencedirect.com/topics/engineering/genetic-algorithm
https://www.sciencedirect.com/topics/engineering/particle-swarm-optimization
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uncertainty using the MCS technique, which has been 

neglected in previous studies, is presented. Then, the 

optimal location and capacity of EVCSs in the 33-bus 

distribution network to reduce the negative effects on 

the network performance, including increasing network 

losses (active and reactive) and voltage deviation in 

different buses using gravitational search algorithm 

(GSA) is examined. 

The most important contributions of this paper are as: 

1. Considering an appropriate traffic model for 

EVCSs. A traffic model requires input data such 

as consumption rate, charge capacity, location and 

time, and types of charges with variable 

penetration coefficients for passenger cars. 

2. Because in traffic analysis, a variety of random 

parameters are responsible, the answers are 

uncertain and some of them are more likely than 

others. Therefore, the answers are processed by 

MCS method and finally a probabilistic load 

model will be introduced in a 24-hour period. 

3. Introducing the random load flow analysis in the 

presence of EVCSs and some methods of 

calculating the average power losses and voltage 

deviations using Expected value methods and 

alpha cutting. 

4. Simulation case study on a standard 33-bus 

network for optimal placement of EVCSs and 

investigating power losses and voltage deviations 

in a 24-hour period. 

The reminder of this paper is organized as follows. 

Section 2 presents modelling the charging mode of 

EVCSs. In section 3, objective function formulation 

detailed. Simulation results are addressed in section 4, 

and in the final section of the paper conclusions are 

drawn. 

2. MODELLING THE CHARGHING MODE OF 

ELECTRIC VEHICLE CHARGHING STATION 

As mentioned earlier, EVCSs are suitable places to 

integrate EVs into the distribution network and act as 

one-time supply and receive electrical energy from the 

network. Therefore, the charging status of these vehicles 

plays an important role in the indicators and parameters 

of a distribution network. Also, in this section, a suitable 

model is introduced for planning and placement analysis 

to determine the charging status of these vehicles. In the 

proposed method, each EV is modelled as a voltage 

source converter (VSC) during charging process 

according to Figs. 1 and 2. Therefore, the power 

received by the EV from the network in the charging 

mode is obtained from Eq. (1) [21]: 

𝑃𝐸𝑉
𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) = 𝑃𝐸𝑉𝑚𝑎𝑥

(1 − 𝑒−𝛼𝑡 𝑡𝑚𝑎𝑥⁄ ) + 𝑃𝐸𝑉0              (1) 

Which, 𝑃𝐸𝑉0introduces the initial charging power of 

EVs, 𝛼 is the EV battery charging time constant, 

𝑡𝑚𝑎𝑥  presents the total time required to charge EV 

battery from zero charge to maximum charge, and 

𝑃𝐸𝑉𝑚𝑎𝑥
describes the maximum EV charging capacity. 

Fig. 1. Schematic of an EV connected to the network 

 
Fig. 2. Equivalent circuit of an EV connected to power grid 

2.1. Probabilistic modelling of EV charging mode 

As shown in Fig. 3, EVs are electrically connected to 

the network in series and parallel while charging . 

Therefore, the total power consumption of EVCSs is 

calculated by Eq. (2) [21]: 

𝑃𝐸𝑉
𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝑃𝐸𝑉,𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

                                                       (2) 

The presence of EVs in charging stations is a function 

of the behaviour of EV owners, also the time required to 

charge EVs. Therefore, the active power received from 

the network by charging stations has a random and 

probabilistic nature that needs to be considered in 

modelling of Eq. (2). As mentioned earlier, charging 

stations are divided into three groupings slow, medium 

(battery switch), and fast stations based on the charging 

time. In this paper, the fast-charging method is used to 

model the charging behaviour of charging stations with 

the Markov probabilistic model. The diagram of the 

Markov probabilistic model for a rapid EVCS is shown 

in Fig. 4 [21]: 
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Fig. 3. How to connect electric vehicles to a charging station 

 
Fig. 4. Markov probabilistic model diagram for a fast EVCS 

In Fig. 4, ƛ is the success rate of a vehicle to access 

the charge transfer converter,  is also the success rate 

of a vehicle to complete the charging of its battery and 

finally, 𝛾 is the completion rate of charging the battery 

of an EV and going to the preparing stage for charging . 

Therefore, according to Fig. 4, the probable coefficient 

of power consumption in an electric vehicle charging 

station is obtained from Eqns. (3) and (4) as [22]: 

𝑝𝑁 =

(𝑐𝜌)𝑁

(𝑁)!

∑  
1

𝑖!
(

𝜆

𝜇
)

𝑖
+∑

1

𝑐𝑗−𝑐×
1

𝑐!
×(

𝜆

𝜇
)𝑁

𝑗=𝑐+1

𝑗
𝑐
𝑖=0

: 𝑁 < 𝑐                     (3)   

𝑝𝑁 =

(𝑐𝜌)𝑐

(𝑐)!
(𝑁−𝑐)

∑
1

𝑖!
(

𝜆

𝜇
)

𝑖
+∑

1

𝑐𝑗−𝑐×
1

𝑐!
×(

𝜆

𝜇
)𝑁

𝑗=𝑐+1

𝑗
𝑐
𝑖=0  

: 𝑁 < 𝑐                      (4)  

Which, 𝑝𝑁presents the possible coefficient of power 

consumption in an electric vehicle charging station, c
is the number of charging devices to charge electric 

vehicles, and 𝜌 =
𝜆

𝑐𝜇
 is the traffic intensity rate. 

Therefore, using Eqns. (2-4), the potential power 

consumption of charging station is rewritten as Eq. (5). 

𝑃𝐸𝑉,𝑁
𝑡𝑜𝑡𝑎𝑙 = 𝑃𝐸𝑉

𝑡𝑜𝑡𝑎𝑙 × 𝑃𝑁                                                           (5) 

3. OBJECTIVE FUNCTION FORMULATION 

3.1. Loss function modelling 

One of the significant parameters in a system is power 

loss, which determines the degree of optimization, 

efficiency, and long-term costs of operating the system, 

so reducing it as much as possible is always one of the 

main goals of distribution network operators. In this 

paper, the total network losses are obtained by applying 

backward-forward load flow method and are used as 

one of the objective functions, which are obtained by 

using Eqns. (6-7), respectively, for active and reactive 

power losses: 

𝑃𝐿𝑜𝑠𝑠
𝑎𝑐𝑡𝑖𝑣𝑒 = ∑ 𝑅𝑒(𝐼𝑖)2 ×  𝑅𝑖                                               (6)

𝑛𝑙

𝑖=1

 

𝑃𝐿𝑜𝑠𝑠
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 = ∑ 𝐼𝑚(𝐼𝑖)2 ×  𝑋𝑖                                            (7)

𝑛𝑙

𝑖=1

 

3.2. Modelling the voltage deviation function 

One of the overriding indicators and parameters of 

power quality analysis is the voltage deviation index . 

This index indicates the voltage profile smoothness. It is 

defined as one of the most important objectives of this 

research in locating and determining the optimal 

capacity of EVCSs, as:  

𝐹 = ∑(1 − 𝑉𝑖)
2                      

𝑛

𝑖=1

                                         (8) 

It should be noted that the lower the voltage deviation 

in a network, the more uniform and smooth the voltage 

profile of that network. 

3.3. Voltage stability index 

Voltage stability in a distribution network is the 

maximum electrical loading that can be applied to a 

network as long as the voltage across the bus is within 

the allowable range and does not suddenly become zero . 

Therefore, the voltage stability index in a distribution 

network whose lines and electrical loading are modelled 

according to Fig. 5 is obtained using Eq. (9). 

𝑉𝑆𝐼 = 𝑉𝑠
4 − 4𝑉𝑠

2(𝑅𝑃𝐿 + 𝑋𝑄𝐿) − 4(𝑅𝑃𝐿 + 𝑅𝑄𝐿)2    (9) 

In the above relation, if the VSI value is closer to 

zero, the voltage stability margin decreases, and also the 

system enters the instability, and if this index becomes 

larger, the system is more stable. 

 
Fig. 5. Equivalent circuit of the distribution system to analyse 

voltage stability index 
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Table 1. Coded mode for gravity algorithm 

Nominal values (pu) Location (bus number)  

0.25 2 EVCS no. 1 

0.36 33 EVCS no. 2 

Table 2. Specifications of the EVs used in this study 

EV Type 

Usable 
battery 

capacity 

(kWh) 

Weight 

(Kg) 

Distance 
declared by 

EPA 

institute 

Mileage 

per kW 
(Km) 

Battery 

Type 

Nissan 
Leaf 

21.3 1493 95 4.46 Li-Ion 

Chevrolet 

Volt 
17 1721 60 3.53 Li-Ion 

Toyota 

Perius 
4.4 1420 20 4.54 Li-Ion 

 
Fig. 6. IEEE Standard 33-bus standard network schematic 

3.4. Problem constraints 

To solve the problem, it is necessary to consider needed 

constraints, which are introduced below. By changing 

the manoeuvre points in the distribution network, a new 

configuration is created. However, it cannot be said that 

every new configuration obtained is necessarily 

acceptable. a feasible configuration must observe the 

following limitations: 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥                                                              (10) 

𝐼𝑚𝑖𝑛 ≤ 𝐼𝑖 ≤ 𝐼𝑚𝑎𝑥                                                                (11) 

Eq. (10) indicates the allowable voltage range of the 

bus bars, and Eq. (11) shows the acceptable flowing 

current across the lines. But the network should remain 

radial after reconfiguration. The radius of the network is 

such that, firstly, are created no loops in the network 

and secondly, no bus in the network is without 

electricity. For this purpose, two simple calculations 

(necessary and sufficient conditions) have used to 

satisfy these conditions. The first constraint (required 

condition) is that the number of lines in the network 

circuit must be one number less than the number of 

buses. The second calculation (sufficient condition) 

performed using the determinants of the branch and 

node matrix to prevent buses isolation after evaluating 

the first calculation, which shown in Eq. (12). 

det(𝐴) = 1 𝑜𝑟 − 1                                                           (12) 

det(𝐴) = 0                                                                       (13)  

Since electrical lines have limited heat capacity, their 

temperature increases with increasing power flow 

through transmission lines. Therefore, one of the 

constraints that should be considered in problem-solving 

is the power flow constraint through the transmission 

lines, which is defined as: 

𝑃𝑇,𝑗
𝑚𝑖𝑛 ≤ 𝑃𝑇,𝑗 ≤ 𝑃𝑇,𝑗

𝑚𝑎𝑥                                                        (14) 

3.5. Objective function of the problem 

In this section, to achieve the predefined objectives, the 

objective function of the problem is introduced for 

reducing losses, and voltage deviation . Hence, the 

appropriate function is first defined as the cost function, 

which contains all these constraints. This function is 

then optimized using the gravitational search algorithm 

(GSA), and the optimal parking location of the EV is 

determined. Therefore, according to objective functions 

total system cost function is defined as Eq. (15): 

𝐹𝑠𝑦𝑠𝑡𝑒𝑚 =
𝑃𝐿𝑜𝑠𝑠

𝑆𝑐

𝑃𝐿𝑜𝑠𝑠
𝑁𝑜𝑟𝑚𝑎𝑙

+
𝐹𝑉

𝑆𝑐

𝐹𝑉
𝑁𝑜𝑟𝑚𝑎𝑙

+
𝑉𝑆𝐼𝑁𝑜𝑟𝑚𝑎𝑙

𝑉𝑆𝐼𝑆𝑐
            (15) 

3.6. Gravitational search algorithm 

First, to perform the calculations by the GSA, it is 

necessary to encode the parameters of the desired 

equation. In this research, four parameters of installation 

location, and capacity of two EVCSs are encrypted, and 

each is placed in one dimension by numbers (mass). The 

first number indicates the location of the charging 

station element, and the second number indicates the 

force applied to each object, which is determined 

according to Eq. (11). Table 1. shows an example of a 

coded mass. 

4. SIMULATION RESULTS 

This section tests and validates the proposed method for 

locating the EVCS in the IEEE 33-bus standard network 

to improve the voltage and loss profiles. The schematic 

of this network is shown in Fig. 6. As can be seen in 

Fig. 6, in this case, studies were used to consider the 

presence of DG in the network from a distributed 

generation source with a nominal capacity of 250 kW at 

bus number 17 with variable output power over 24 

hours.  

4.1. Case study data 

4.1.1. Test network data 

The standard 33-bus IEEE network is selected for 

simulation case studies, in which, bus 1 with V=1.06<0 

pu is selected as the input substation. 

4.1.2. Electric vehicles data 

To take into account different types of EVs, different 

three EVs including of Nissan Leaf, Chevrolet Volt, and 

Toyota Perius as the long-, medium- and short-ranges 
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vehicles are mentioned in this study. Table 2 shows the 

specifications of each vehicle. 

4.1.3. Photovoltaic system specifications 

As mentioned in this case, to consider the presence of 

DGs, a photovoltaic system with a nominal capacity of 

250 kW has been used in bus number 17. The output 

power of photovoltaic arrays depends on the cell 

temperature and the intensity of solar radiation at the 

maximum power point, which is determined as: 

( ) ( ) ( ), /1000 1 25PV PV STC T i PVs PVpP t P G t T N N =   − −           (16) 

,/ ( 20)amp T T STCjT T G G NOCT= +  −                                              (17) 

The temperature and solar radiation changes during 24 

hours are shown in Figs. 7 and 8, respectively. 

4.1.4 Load change coefficient during 24 hours a day 

The normalized values for electrical demand are shown 

in Fig. 9. As can be seen, during the day, the demand for 

electric charge fluctuates by up to 65%. In this case, the 

peak demand for electricity is 3200 kW. 

 
Fig. 7. Ambient temperature during day and night hours 

 
Fig. 8. Solar radiation during day and night hours 

 
Fig. 9. The normalized electrical load 

 
Fig. 10. Optimizing process of the objective function using GSA 

4.2. Modelling results 

The MCS method is used to model the load uncertainty 

over a 24-hours period. In this way, for probabilistic 

load flow analysis, the load in each bus, at any time, is 

described as an PDF based on the exact amounts of 

load. Therefore, solving the probabilistic load flow leads 

to some PDFs of outputs, include voltage, current, and 

losses. In this section, the results obtained from the 

placement simulation are examined of the EVCS. Fig. 

10 shows the optimizing process of the objective 

function during different iterations Figs. 11 and 12 also 

show the probability density functions (PDFs) of the 

location and optimal capacity of the EVCSs.  

Table 3 shows the optimal location and capacity of 

the most likely EVCSs in the network. Therefore, by 

placing the EVCSs in the mentioned buses, the losses, 

and voltage profiles are investigated. Figs. 13-15, show 

the diagrams of active, reactive losses and voltage 

deviations for the installation of EVCSs in the proposed 

buses, respectively. These figures show the status of the 

network parameters for the state before the presence of 

the EVCSs (red diagram) and after their presence (bus 

diagram) in 24 hours. 

As can be seen in Figs. 13 and 14, the active and 

reactive losses of the lines in most hours of the presence 

EVCSs have always increased due to the increase of the 

current flowing through the lines. Meanwhile, the losses 

have decreased between24 and 7 in the morning, when 

the amount of EV load is very small, due to the power 

dispatch and power flow changes through the lines . On 

the other hand, according to Fig. 15, the voltage 

deviation from the value of one pu in all hours of the 

presence of the EVCSs is greater than the absence. This 

is also due to the increase in current flowing through the 

lines during the hour of increasing demand and causing 

more voltage drop on the lines. 

 
Fig. 11. Optimal location and capacity of EVCS for first station 

 
Fig. 12. Optimal location and capacity of EVCS for second station 
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Fig. 13. Active losses in 24 hours of day and night, with and 

without the EVCSs 

 
Fig. 14. Reactive losses in a 24-hour period of day and night, with 

and without the EVCSs 

 
Fig. 15. Voltage deviation in a 24-hour period of day and night, 

with and without the EVCSs 

Table 3. Optimal location and capacity of EVCSs 
Proposed optimal capacity 

(kW) 
Number of suggested 

bus  

10 
3 

Station no. 1 28 

22 
38 

40 
2 

Station no. 2 70 

21 
100 

Table 4. Comparative results 

Voltage 

deviations 

(Average 

percentage) 

Electrical 

losses 

(Average 

percentage) 

Proposed 

capacity for 

EVCSs 

(kW) 

Proposed 

locations 

for EVCSs 

(bus no.) 

Applied 

Method 

+12 +10 
10 3 

This work 
71 21 

+13 +15 
42 8 GA Neglecting 

uncertainties 120 19 

+14 +12 55 6 

PSO 

Neglecting 

uncertainties 

Table 4 shows a compression between the obtained 

results by the proposed method applying the GSA 

(considering the uncertainties), with other well-known 

algorithms such as GA, and PSO, neglecting the 

uncertainties. 

5. CONCLUSION 

In this paper, the proposed method for EVCSs 

placement on the power grid was simulated and 

validated, and the role of charging stations in different 

network locations on different parameters of electrical 

losses and voltage deviations was studied in 24 hours. 

As seen in the simulation results, depending on where 

the EVCSs are located in the network, the losses and 

voltage deviations is always different according to the 

power dispatch and power passing through the lines in 

the network. The simulation results in the IEEE 33 

standard bus network show that even by determining the 

optimal location and capacity of the EVCSs in the 

network, the losses increase in most hours. Also, the bus 

voltage deviation from one puin all buses and at all 

hours, the presence of the EVCSs is more than the 

absence. Also, the results confirm that the power losses 

at 24:00-7:00., are reduced due to decreased power flow 

across the lines, as the EVs load is very low in this 

duration. The voltage deviation will increase by an 

average of 30% over a day, if the EVCSs are not 

optimally located. This item will limit to a maximum of 

8% when EVCSs are sited appropriately. Analyzing the 

impacts of correlation between different sources of 

uncertainties, and the possibility of sudden overloading 

of the system, can be considered as some interesting 

subjects for future research. 
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