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Abstract. Using the action of a Lie group on a hypergroup, the notion of Lie

hypergroup is defined. It is proved that tangent space of a Lie hypergroup is a

hypergroup and that a differentiable map between two Lie hypergroup is good

homomorphism if and only if its differential map is a good homomorphism.

The action of a hypergroup on a set is defined. Using this new notion, hyper-

group bundle is introduced and some of its basic properties are investigated.

In addition, some results on quotient hypergroups are given.
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1. Introduction

The concept of hypergroup arose originally as a generalization of the con-

cept of abstract group. This concept was first introduced by Marty in 1935 [12].

Furthermore, some surveys and papers such as [3, 12, 15, 19] were published

in the field of hypergroup and its applications. In [8, 16] the notions of hyper-

ring and hyperfield is introduced to use it as a technical tool in the study of

the approximation of valued fields. Then the notion of hypervector space was
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introduced by M. Scafati Tallini in 1988 [14]. M. R Molaei at.el studied semi

hypergroups and their properties in [9, 10, 11, 13]. The concept of topological

hypergroup is introduced in [6]. In addition in [17] M. Toomanian at.el give

a definition for Lie hypergroup by using of convolution map on a hypergroup,

which is also a smooth manifold. In the theory of Lie groups many aspects

of topology and harmonic analysis become simpler and more natural. Many

facts from harmonic analysis and representation theory of groups carry over

hypergroups. In this paper, we introduce Lie hypergroup from a geometric

point of view by using the action of a Lie group on a hypergroup. The paper

has two basic parts. In the first part, the concept of Lie hypergroup is defined

generally. Then using some preliminaries hypergroup bundle is introduced in

the second part. In the second section, some properties of quotient hypergroups

are found. In section 3, a sufficient condition for regularity of the equivalence

relation assotiated to the action of a Lie group on a hypergroup is given. In

section 4, using of the action of a Lie group on a hypergroup Lie hypergroup is

introduced and some basic properties are given. It is proved that if left trans-

formation on a Lie hypergroup be homomorphism then the transformation on

its associated Lie hypergroup is homomorphism. In section 5, by using of hyper

action some properties of Lie hypergroups are given. For example, if a regular

hypergroup be reversible then its associated Lie hypergroup is also reversible.

In the last section, hypergroup bundle is defined and fibers in different situa-

tions are found.

As follows, some basic notions and examples are reviewed.

Let P be a non-empty set and p∗(P ) be the set of all non empty subsets of

P . A hyperoperation on P is a map ◦ : P × P → p∗(P ) [5]. The ordered pair

(P, ◦) is called a hypergroupoid. If A and B are two non empty subsets of P

and x ∈ P , then

A ◦B = ∪a∈A,b∈Ba ◦ b, x ◦A = {x} ◦A, A ◦ x = A ◦ {x}.

The hypergroupoid (P, ◦) with the following properties is called a hypergroup.

1) a ◦ (b ◦ c) = (a ◦ b) ◦ c, for all a, b, c ∈ P ,

2) a ◦ P = P ◦ a = P , for all a ∈ P .

If there is an e ∈ P such that a ∈ a ◦ e ∩ e ◦ a, for all a ∈ P , then e is called

identity. Let P be a hypergroup with at least one identity then an element

a−1 ∈ P is inverse of a ∈ P if e ∈ a ◦ a−1 ∩ a−1 ◦ a. A hypergroup is called

regular if it has at least one identity and for any element has at least one inverse.

Remark 1.1. If every element of p has inverse, so (p1 ◦ p2)−1 = p−1
2 ◦ p−1

1 for

all p1, p2 ∈ P .
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Remark 1.2. An equivalence relation, ∼, on the hypergroup (P, ◦) is regular

to the right if

a ∼ b =⇒ ∀u ∈ P & ∀x ∈ a ◦ u ∃y ∈ b ◦ u : x ∼ y.

and

∀y
′
∈ b ◦ u, ∃x

′
∈ a ◦ u : x

′
∼ y

′
.

The concept of regular to the left is defined in the similar way.

Definition 1.3. [3] A subset S of a hypergroup (P, ◦) is called sub hypergroup

if it satisfies the following properties:

i) a ◦ b ⊆ S for all a, b ∈ S.

ii) a ◦ S = S ◦ a = S for every a ∈ S.

Example 1.4. (Affine Join Space) Let V be a vector space. Define hyperop-

eration ◦ : V × V −→ P ∗(V ) by

a ◦ b =
{
λa+ µb : λ, µ > 0 , λ+ µ = 1

}
, ∀a, b ∈ V.

We can see easily V with this hyperoperation is a hypergroup and every subspace

of V is a sub hypergoup.

A sub hypergroup S of hypergroup (P, ◦) is normal if x ◦H = H ◦ x, for all
x ∈ P and is supernormal if x ◦H ◦x−1 ⊆ H, for all x ∈ P . A mapping f from

a hypergroup (P1, ◦) to a hypergroup (P2, ∗) is called a

1) homomorphism if for all x, y ∈ P1, f(x ◦ y) ⊆ f(x) ∗ f(y).
2) good homomorphism if for all x, y ∈ P1, f(x ◦ y) = f(x) ∗ f(y).
Let (T, τ) be a topological space. Then, the family U consisting of all sets

SV = {U ∈ p∗(T )|U ⊆ V,U ∈ τ} is a basis for a topology on p∗(T ). This

topology is denoted by τ∗ [7].

2. Some Results on Quotient Hypergroups

Let H be a sub hypergroup of hypergroup (P, ◦). We recall that the right

coset space is P/H = {[x] : x ∈ P } where [x] = x ◦ H. Let us consider

⊗ : P/H × P/H −→ p∗(P/H) where [x] ⊗ [y] = {[z] : z ∈ x ◦ y } for all

[x], [y] ∈ P/H.

Theorem 2.1. Let (P, ◦) be a regular hypergroup and H be a normal sub

hypergroup of P . Then (P/H,⊗) is a regular hypergroup.
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Proof. Obviously (x◦H)⊗ (y ◦H) ⊆ P/H and the identity is eP/H = H. Since

H is a normal sub hypergroup, so x ◦H ∈ (x ◦H)⊗H
∩
H ⊗ (x ◦H). Also set

(x ◦H)−1 = x−1 ◦H, so

(x ◦H ⊗ y ◦H)−1 = (x ◦ y ◦H)−1

= (x ◦ y)−1 ◦H
= y−1 ◦ x−1 ◦H
= (y ◦H)−1 ⊗ (x ◦H)−1.

Hence (P/H,⊗) is a regular hypergroup. □

Theorem 2.2. Let H be a normal sub hypergroup of a hypergroup (P, ◦). Then
the function f : P −→ P/H that f(x) = x ◦ H, for all x ∈ H, is a good

homomorphism.

Proof. H is a normal sub hypergroup so, H ◦H = H. Let x, y ∈ P be arbitrary.

Then, we get

f(x ◦ y) = x ◦ y ◦H = x ◦H ◦ y
= x ◦H ◦H ◦ y
= x ◦H ◦ y ◦H
= f(x)⊗ f(y).

The proof is complete. □

In the next theorem, it is proved that the homomorphism f which is defined

in the above theorem takes a normal sub hypergroup of P to a sub hypergroup

of P/H.

Theorem 2.3. Let H,K, H ⊆ K, be normal sub hypergroups of hypergroup

(P, ◦). Then, K/H is a sub hypergroup of (P/H,⊗).

Proof. The following hold:

1 . Let a, b ∈ K be arbitrary. Hence, we have

(a ◦H)⊗ (b ◦H) = { z ◦H : z ∈ a ◦ b } ⊆ K

H
.

2 . Let a ∈ K be arbitrary, so

(a ◦H)⊗ K

H
= ∪k∈K(a ◦H)⊗ (k ◦H) = ∪k∈K{ z ◦H : z ∈ a ◦ k } ⊆ K/H.

Similarly, we can prove K
H ⊗ (a ◦H) ⊆ K

H .

On the other hand, let z ◦H ∈ (a ◦H) ⊗ K
H where z ∈ a ◦ k for some

k ∈ K. The claim is z◦H ∈ K
H ⊗(a◦H). K is a normal sub hypergroup

of P so, a ◦ K = K ◦ a. Thus, there is k1 ∈ K such that z ∈ k1 ◦ a.
Hence, (a ◦H)⊗ K

H = K
H ⊗ (a ◦H) = K

H for all a ∈ K. □
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3. Action of a Lie Group on a Hypergroup

In this section some properties of action of a Lie group on a hypergroup are

investigated. This kind of action is used to define Lie hypergroup in the next

section. Let G be a Lie group and (P, ◦) be a hypergroup. Suppose that G

acts on P to the right by φ : P ×G→ P .

Lemma 3.1. Let H be a Lie subgroup of G and φ(p1, g1) ◦ φ(p2, g2) ⊆ φ(p1 ◦
p2, g1g2), for all p1, p2 ∈ P and g1, g2 ∈ G. Then the range of the restriction

of action on H is a sub hypergroup.

Proof. Let φ(P ×H) = P0, we prove that (P0, ◦) is closed with respect to the

action of hypergroup. If p′1, p
′
2 ∈ P0 then there are p1, p2 ∈ P and h1, h2 ∈ H

such that p′1 = φ(p1, h1) and p
′
2 = φ(p2, h2). Thus,

p′1 ◦ p′2 = φ(p1, h1) ◦ φ(p2, h2) ⊆ φ((p1 ◦ p2), h1h2) ⊆ P0.

Next, we prove that P0 is a sub hypergroup. Let φ(p, h) ∈ P0 so,

φ(p, h) ∈ φ(p1, h1) ◦ φ(p2, h2) ∈ φ(p1 ◦ p2, h1h2) ⊆ x ◦ P,

where x = φ(p1, h1). □

Theorem 3.2. Let φ be a transitive action of a Lie group G on a hypergroup

(P, ◦) and φ(p1 ◦ p2, g) ⊆ φ(p1, g) ◦ p2, φ(p1 ◦ p2, g) ⊆ p1 ◦ φ(p2, g), for every

p1, p2 ∈ P and g ∈ G, Then ∼ is regular.

Proof. Let p1 ∼ p2 for p1, p2 ∈ P . u ∈ P and x ∈ p1 ◦ u are arbitrary. There

is g ∈ G such that p2 = φ(p1, g) and φ(x, g) ∈ φ((p1 ◦ u), g) ⊆ φ(p1, g) ◦ u.
Therefore φ(x, g) ∈ p2 ◦ u. Set y = φ(x, g), so x ∼ y.

On the other hand, let y
′ ∈ p2 ◦ u be arbitrary. Then, we have

φ(y
′
, g−1) ∈ φ((p2 ◦ u), g−1) ⊆ φ(p2, g

−1) ◦ u = p1 ◦ u.

Set x
′
= φ(y

′
, g−1), so x

′ ∼ y
′
. Similarly, we can prove that ∼ is regular to

the left. □

The converse of above theorem is not true.

Example 3.3. Let P = R. Then P defined by hyperoperation ◦ : P × P −→
p∗(P ), p1 ◦ p2 7→ {p1, p2} is a hypergroup.

Define p1 ∼ p2 if and only if p1 ≡ p2 (mod m) where m ∈ N. (i.e. p1 =

mk + p2 ∃k ∈ Z).
Consider the Lie group G = R acts on P to the right such that the equivalence

relation is preserved. One can check easily (P,∼) is a regular equivalence rela-

tion. Also φ((p1◦p2), g) = {φ(p1, g), φ(p2, g)} and φ(p1, g)◦p2 = {φ(p1, g), p2}.
Clearly, The sets φ((p1 ◦ p2), g) and φ(p1, g) ◦ p2 are not subset of each other.
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4. Lie Hypergroup and Tangent Space

Now to define Lie hypergroup, the quotient of a Lie group on its stabilazer

is concidered. Let (P, ◦) be a hypergroup, G be a Lie group and G acts on P

to the right by smooth action φ. We recall that Gp0 = {g ∈ G : φ(p0, g) = p0}
is called the stabilizer of action for p0 ∈ P . If P be a smooth manifold then
G
Gp0

∼= P [18]. Consider f : P −→ G
Gp0

be the isomorphism function be-

tween hypergroup P and Lie hypergroup G
Gp0

. f−1 : G
Gp0

−→ P is defined by

f−1(gGp0) = φ(g, p0). This isomorphism induces the following hyperoperation

on G
Gp0

.

◦′ : G

Gp0
× G

Gp0
−→ p∗(

G

Gp0
)

where gGp0 ◦′ g′Gp0 = f(p ◦ p′) which f(p) = gGp0 and f(p′) = g′Gp0 .

The identity set is

e
( G

Gp0

)
=

{
f(e) : e ∈ e(P )

}
.

If the hypergroup P is invertible, then G
Gp0

is invertible and the set of all

inverses of gGp0 in G
Gp0

is

i(gGp0) =
{
g′Gp0 : f(e) ∈ gGp0 ◦′ g′Gp0 ∩ g′Gp0 ◦′ gGp0

}
.

Hence, G
Gp0

is a hypergroup which we call Lie hypergroup.

This definition is different from the one which is given in [17].

Example 4.1. O(3), the set of orthogonal 3 × 3 matrices, acts on S2 in the

following way:

φ(A, x) = Ax, for A ∈ O(3) and x ∈ S2. O(3)
O(2)

∼= S2[18]. Using example 1.3
O(3)
O(2) is a Lie hypergroup.

Let us investigate some basic properties of Lie hypergroups. actually, Theses

are generalization of Lie group properties.

Remark 4.2. If P ′ is a sub hypergroup of P then f(P ′) is a sub hypergroup

of G
Gp0

.

Theorem 4.3. Let G be a Lie group and p0 ∈ P be a fixed element of hy-

pergroup P . If p0 ∈ p0 ◦ p0 and φ(g1, p0) ◦ φ(g2, p0) = φ(g1g2, p0 ◦ p0) for all

g1, g2 ∈ G. Then g1g2Gp0 ∈ g1Gp0 ◦′ g2Gp0 .

Proof. Let p1 = φ(g1, p0) and p2 = φ(g2, p0). By assumptions

p1 ◦ p2 = φ(g1, p0) ◦ φ(g2, p0) = φ(g1g2, p0 ◦ p0).

Hence, f−1(g1g2Gp0) = φ(g1g2, p0) ∈ p1 ◦ p2. So, g1g2Gp0 ∈ f(p1 ◦ p2) =

g1Gp0 ◦′ g2Gp0 . □
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Theorem 4.4. Let (P1, ◦1) and (P2, ◦2) be hypergroups. Consider φ1 : P1 ×
G −→ P1 and φ2 : P2 × G −→ P2 are good homomorphism actions. Consider

p1 ∈ P1 and p2 ∈ P2 are arbitrary and fixed points. If ψ0 : G
Gp1

−→ G
Gp2

is a

good homomorphism then there is a map ψ : P1 −→ P2 such that the following

diagram commutes and ψ is a good homomorphism. Where f : P1 −→ G
Gp1

and

g : P2 −→ G
Gp2

are isomorphisms which are correspond the actions φ1 and φ2.

Proof. Using assumptions ψ(ω) = g−1 ◦ ψ0 ◦ f(ω) = φ2(p2, ψ0(f(ω))) for all

ω ∈ P1. Therefore,

ψ(ω1) ◦2 ψ(ω2) = φ2(p2, ψ0(f(ω1))) ◦2 φ2(p2, ψ0(f(ω2)))

= φ2(p2, ψ0(f(ω1)) ◦′2 ψ0(f(ω2)))

= φ2(p2, ψ0(f(ω1)) ◦′2 f(ω2)))

= φ2(p2, ψ0(f(ω1 ◦1 ω2))

= g−1 ◦ ψ0 ◦ f(ω1 ◦1 ω2)

= ψ(ω1 ◦1 ω2).

As follows, tangent space of a hypergroup is introduced as a hypergroup. Con-

sider TpP is tangent space on the manifold P at point p and TP = ∪p∈PTpP
is tangent bundle. In addition, suppose that (P, ◦) be a hypergroup. Let

v1 ∈ Tp1P and v2 ∈ Tp2P . Define the hyperoperation # : TP×TP −→ p∗(TP )

where v1#v2 = {v : v ∈ TpP p ∈ p1 ◦ p2 }. □

Theorem 4.5. (TP,#) is a hypergroup.

Proof. Let v1, v2 and v3 are arbitrary tangent vectors. Then, we have

v1#(v2#v3) =
{
v1#v : v ∈ TpP p ∈ p1 ◦ p2

}
=

{
v′ : v′ ∈ Tp′P p′ ∈ p1 ◦ p

}
=

{
v′ : v′ ∈ Tp′P p′ ∈ p1 ◦ (p2 ◦ p3)

}
=

{
v′ : v′ ∈ Tp′P p′ ∈ (p1 ◦ p2) ◦ p3

}
= (v1#v2)#v3.

Also for v ∈ TpP , we have

v#TP = {v′ : v′ ∈ v#v1, v1 ∈ Tp1P ∃p1 ∈ P}
= {v′ : v′ ∈ Tp′P p′ ∈ p ◦ p1}
= TP.

Thus, (TP,#) is a hypergroup. This implies that the tangent bundle of a Lie

hypergroup is a hypergroup. □
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Let (P1, ◦1) and (P2, ◦2) be hypergroups which are manifold too. By previous

theorem (TP1,#) and (TP2,#
′) are hypergroups.

Theorem 4.6. If ψ : P1 −→ P2 is a differentiable function. Then, ψ is good

homomorphism if and only if dψ : TP1 −→ TP2 is good homomorphism.

Proof. Let ω1, ω2 ∈ P1 be arbitrary and v1 ∈ Tω1P1 and v2 ∈ Tω2P1. Firsly,

consider ψ is a good homomorphism. Let v ∈ v1#v2, dψ(v) ∈ dψ(v1#v2)

such that v ∈ TωP1 and ω ∈ ω1 ◦1 ω2. Hence, dψ(v) ∈ Tψ(ω)P2 and ψ(ω) ∈
ψ(ω1 ◦1 ω2) = ψ(ω1) ◦2 ψ(ω2). On the other hand,

dψ(v1)#
′dψ(v2) =

{
v′ : v′ ∈ Tω′P2 , ω′ ∈ ψ(ω1) ◦2 ψ(ω2)

}
.

Thus, dψ(v) ∈ dψ(v1)#
′dψ(v2).

Conversely, if v ∈ dψ(v1)#
′dψ(v2) then v ∈ Tψ(ω)P2. Since, ψ is onto

map so, there is v′ ∈ TωP1 such that v′ = dψ(v) and v ∈ v1#v2. Hence,

v ∈ dψ(v1#v2).

Secondly, consider dψ is good homomorphism. Let ω′ ∈ ψ(ω1) ◦2 ψ(ω2) and

v′ ∈ Tω′P2 so, v′ ∈ dψ(v1)#
′dψ(v2) = dψ(v1#v2) where v1 ∈ Tω1P1 and

v2 ∈ Tω2P1. Therefore, there is v ∈ v1#v2 such that v′ = dψ(v) and there

exists an ω ∈ ω1 ◦1 ω2 such that v′ ∈ Tψ(ω)P2. Hence, ω′ = ψ(ω) ∈ ψ(ω1 ◦1 ω2).

Conversely, let ω ∈ ω1◦1ω2 and ω′ = ψ(ω). If v ∈ TωP1 then dψ(v) ∈ Tω′P2.

Since, dψ is good homomorphism, dψ(v) ∈ Tψ(ω)P2. Therefore, ψ(ω) ∈ ψ(ω1)◦2
ψ(ω2). □
Remark 4.7. Let lgGp0

: G
Gp0

−→ G
Gp0

be left transformation on G
Gp0

where

lgGp0
(g′Gp0) = gg′Gp0 . Then there is a transformation lg : P −→ P such that

f ◦ lg = lgGp0
◦ f .

Theorem 4.8. If lgGp0
: G
Gp0

−→ G
Gp0

is a homomorphism left transformation.

Then lg : P −→ P is homomorphism.

Proof. Let p1, p2 ∈ P be arbitrary and there are g1, g2 ∈ G such that f(p1) =

g1Gp0 and f(p2) = g2Gp0 . Then, we have

lg(p1 ◦ p2) = {lg(p) : p ∈ p1 ◦ p2 }
= {f−1 ◦ lgGp0

(g′Gp0) : f(p) = g′Gp0 , p ∈ p1 ◦ p2 }
= {f−1(gg′Gp0) : g′Gp0 ∈ g1Gp0 ◦′ g2Gp0 }
= {f−1(lgGp0

(g′Gp0)) : g′Gp0 ∈ g1Gp0 ◦′ g2Gp0 }
⊆ f−1(lgGp0

(g1Gp0) ◦′ lgGp0
(g2Gp0))

= f−1(gg1Gp0 ◦′ gg2Gp0)
= f−1(g1gGp0) ◦ f−1(gg2Gp0)

= (f−1 ◦ lgGp0
◦ f)(p1) ◦ (f−1 ◦ lgGp0

◦ f)(p2)
= lg(p1) ◦ lg(p2).
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Hence, left transformation gives a relation between Lie group action and hy-

peroperation. In the next section using the definition of hyperaction which is

given in [20] some properties of Lie hypergroup are investigated. □

5. Hyperaction

Let us recall the definition of hyperaction.

Let X be a nonempty set and (P, ◦) be a hypergroup such that e(P ) be a

nonempty set. A left hyperaction of P on X is a map α : P ×X −→ P ∗(X)

such that

i) α(a, α(b, x)) = α(a ◦ b, x), for all a, b ∈ P and for all x ∈ X,

ii) x ∈ α(e, x), for all x ∈ X and for all e ∈ e(P ). By above assumptions the

following theorem is established.

Theorem 5.1. The map α : G
Gp0

×P −→ p∗(P ) which is defined by α(gGp0 , p) =

f−1(gGp0) ◦ p is a hyperaction.

Proof. . Suppose that f−1(g1Gp0) = p1 and f−1(g2Gp0) = p2, for g1 and

g2 ∈ G. Therefore, we get

i)α(g1Gp0 , α(g2Gp0 , p)) = α(g1Gp0 , f
−1(g2Gp0) ◦ p)

= f−1(g1Gp0) ◦ (f−1(g2Gp0) ◦ p
= p1 ◦ (p2 ◦ p)
= (p1 ◦ p2) ◦ p
= f−1(g1Gp0 ◦′ g2Gp0) ◦ p
= α(g1Gp0 ◦′ g2Gp0 , p).

ii) p ∈ α(e′, p) = f−1(e′) ◦ p = e ◦ p. □

Definition 5.2. A regular hypergroup (P, ◦) is called reversible if for all p1, p2, p3 ∈
P

i) p2 ∈ p3 ◦ p1, then there exists p′3 ∈ i(p3) such that p1 ∈ p′3 ◦ p2.
ii) p2 ∈ p1 ◦ p3, then there exists p′′3 ∈ i(p3) such that p1 ∈ p2 ◦ p′′3 .

The hypergroup which given in example 1.3 is reversible.

Lemma 5.3. If the regular hypergroup (P, ◦) is reversible then the regular Lie

hypergroup (G/Gp0 , ◦′) is reversible.

Theorem 5.4. Suppose that (P, ◦) is a reversible hypergroup and α : G
Gp0

×
P −→ p∗(P ) is a hyperaction. If α(g1Gp0 , p1)∩α(g2Gp0 , p2) ̸= ∅ for all g1, g2 ∈
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G and p1, p2 ∈ P , then p1 ∈ α(g′1Gp0◦′g2Gp0 , p2) and p2 ∈ α(g′2Gp0◦′g1Gp0 , p1)
for all g′1Gp0 ∈ i(g1Gp0) and g

′
2Gp0 ∈ i(g2Gp0).

Proof. We have g1Gp0◦′g2Gp0 = f(x◦y) for some x, y ∈ P where f−1(g1Gp0) =

x and f−1(g2Gp0) = y. Since α(g1Gp0 , p1) ∩ α(g2Gp0 , p2) ̸= ∅. Hence, there

exist p ∈ P such that p ∈ f−1(g1Gp0)◦p1∩f−1(g2Gp0)◦p2 so p ∈ x◦p1∩y◦p2.
The hypergroup (P, ◦) is reversible so, p1 ∈ x′ ◦ p and p2 ∈ y′ ◦ p for some

x′ ∈ i(x) and y′ ∈ i(y). Therefore,

p1 ∈ x′ ◦ p ⊆ x′ ◦ (y ◦ p2) = (x′ ◦ y) ◦ p2
= α(f(x′ ◦ y), p2)
= α(g′1Gp0 ◦′ g2Gp0 , p2).

Similarly, we can prove p2 ∈ α(g′2Gp0 ◦′ g1Gp0 , p1). □

6. Hypergroup Bundle

To introduce hypergroup bundle, the action of a hypergroup (P, ◦) on set X

is defined.

Definition 6.1. Let (P, ◦) be a hypergroup and X be a non-empty set. α :

X × P −→ X is the action of the hypergroup P on the set X if it satisfies:

i) α(α(x, p), p
′
) ∈ α(x, p ◦ p′

) for all p, p
′ ∈ P and x ∈ X, where α(x, p ◦ p′

) =

{α(x, u) : u ∈ p ◦ p′ },
ii) α(x, e) = x for all x ∈ X.

Example 6.2. [2] Let J ⊆ R be an open interval and Pn′ (J) the collection

of all polynomials of degree n
′
. Let us consider the set LAn(J), n ∈ N, of all

linear differential operators of the nth order in the form

D(p0, ..., pn−1) =
dn

dxn
+

n−1∑
k=0

pk(x)
dk

dxk
,

where

pk ∈ Pn(J), k = 0, 1, ..., n− 1; D(p0, ..., pn−1) : C
∞(J) −→ C∞(J).

Hence

D(p0, ..., pn−1)(f) = f (n)(x)+pn−1(x)f
(n−1)(x)+ ...+p0(x)f(x) f ∈ C∞(J).

For any m ∈ {0, 1, ..., n− 1} we set

LAn(J)m =
{
D(p0, ..., pn−1) : pk ∈ Pn′ (J) , pm > 0

}
.

Let us put

p =
(
p0(x), ..., pn−1(x)

)
, x ∈ J.
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On the set LAn(J)m we define a binary operation ” ◦m ” in this way:

D(p) ◦m D(q) = D(u) where uk(x) = pm(x)qk(x) + (1− δkm)pk(x) and x ∈ J .

An inverse for D(q) is

D−1(q) =
(−q0
qm

, ...,
1

qm
, ...,

−qn−1

qm

)
.

We can check LAn(J)m is a C∞- manifold.

Let (Z, ∗) be a hypergroup where ∗ : Z× Z −→ p∗(Z) defined by

k ∗ l = { u ∈ Z : k + l ≤ u }.

For a fixed D(1) ∈ LAn(J)m we define an action α : LAn(J)m × Z −→
LAn(J)m as fallow:

α(D(p), k) = Dk(1) ◦m D(p),

where

Dk(q) = D(q) ◦m D(q) ◦m ... ◦m D(q)︸ ︷︷ ︸
k−times

, fork > 0.

Obviously α is an action.

Theorem 6.3. [20] If (X,P, α) is an action of hypergroup on a set X, then

the set X is a hypergroup with following oprator

⊙ : X ×X −→ p∗(X) where x⊙ y = α(x, P ) ∪ α(y, P ) ∪ {x, y}.

Remark 6.4. Suppose that α be an action of the hypergroup P on the set X.

This action induces the following equivalence relation on X:

x ∼ y if and only if α(x, P ) = α(y, P ).

Theorem 6.5. [x] = {α(x, p) : p ∈ P } is a sub hypergroup of (X,⊙).

Remark 6.6. (X,⊙) is a hypergroup, so X
∼ is a hypergroup.

Definition 6.7. [18] Let (P, ◦) be a hypergroup and a C∞ manifold. Also X

be a C∞ manifold. The pair (X,P ) is called a hypergroup bundle if it satisfies

the following conditions

i) P acts on X with α : X × P −→ X,

ii) X
∼ = M is a quotient space of X under equivalence relation. (x, y ∈ X,

x ∼ y if ∃p ∈ P such that y = α(x, p)),

iii) π : X −→M be a good homomorphism.

The space M is called the base space and the space X is called the total space.

For every m ∈ M , the space π−1(m) is called the fibre of hypergroup bundle

over m. π−1(m) is a sub hypergroup which is called a fiber over m.

Example 6.8. (R− {0}, ◦) is a hypergroup and a C∞ manifold, where

r ◦ r′ =
{
rr′,

r

r′
,
r′

r

}
.

Define

α : Rd − {0} × R− {0} → Rd − {0}
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α(V, r) = rV.

We can see easily that α is an action. The equivalence relation on Rd − {0} is

defined as

V ∼W ⇔ ∃r ∈ R− {0} s.t. α(V, r) =W.

Hence, [V ] = { rV : r ∈ R−{0} }. The function π : Rd−{0} → Rd−{0}/ ∼
is a good homomorphism. Therefore, (Rd−{0},R−{0}) is a hypergroup bundle

and π−1(V ) = { rV : r ∈ R− {0} } is fiber over V ∈ Rd − {0}.

Theorem 6.9. Let (X,P ) be a hypergroup bundle. Consider H is a sub hy-

pergroup of P . Then x⊙H is fiber over x for every x ∈ X.

Proof. Let P acts on X by α.

x, y ∈ X, x ∼ y ⇐⇒ ∃p ∈ P s.t. y = α(x, p).

Therefore, (X,⊙) is a hypergroup. We prove that

X

∼
=
X

H
= {x⊙H : x ∈ X }.

If y ∈ [x], so there is p ∈ P such that α(x, p) = y. Thus, y ∈ α(x, P ) so

y ∈ x ⊙ H. Conversely, if y ∈ x ⊙ H be arbitrary, so there is z ∈ H such

that y ∈ x ⊙ z = α(x, P ) ∪ α(z, P ) ∪ {x, z}. If y ∈ α(x, P ), then y ∈ [x]. If

y ∈ α(z, P ), then there is p ∈ P such that y = α(z, p). Thus y ∈ [z].

Hence by new equivalence relation, we have a hypergroup bundle which x⊙H

is a fibre over x for every x ∈ X. □

Remark 6.10. Let (X,P ) be a hypergroup bundle. Xe is a sub hypergroup

which is constructed by { x ◦ x−1 : x ∈ X }. Therefore, x⊙Xe is a fibre over

x for every x ∈ X.

Theorem 6.11. Let (P, ◦) be a hypergroup, H be a sub hypergroup of P and

H acts on P with action α. Then (P,H) is a hypergroup bundle which fibers

are subsets of p ◦H, for all p ∈ P .

Proof. Let α : P ×H −→ P be an action that H acts on P such that α(p, h) ∈
p ◦h. The action induces an equivalence relation on P such that p1 ∼ p2 if and

only if there is h ∈ H such that p2 = α(p1, h). Set P
∼ = B so, the projection

π : P −→ B is defined by π(p) = [p], for all p ∈ P .The (P,H) is a hypergroup

bundle. The fibers are π−1(b) ∈ b ◦H, for all b ∈ B. Also, b ◦H is isomorphic

to H. □
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7. Conclusion

At the beginning, quotient hypergroup and sub quotient hypergroup are

studied. futhermore, using action of a Lie group on a hypergroup, Lie hyper-

group is introduced. Some basic properties of Lie hypergroups are investigated.

actually, Theses are generalization of Lie group properties. It is shown that

tangent space of a hypergroup is a hypergroup. Finally using the action of a

hypergroup on a set, hypergroup bundle is defined. In the future researches

other geometric properties such as Lie hyperalgebra and Lie theorems can in-

vestigated.
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