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Abstract. Recently, the relationship between (geodesics) convexity, connect-

edness, and completeness properties in Riemannian manifolds (Σ;h) and the

causal properties in Lorentzian static spacetimes (M ; g) = (R × Σ;−dt2 + h)

is studied. In this paper, some sufficient conditions are introduced to (Σ;h) be

geodesically convex.
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1. Introduction and Preliminaries

In general relativity, a spacetime is a pair (M, g), where M is a real, con-

nected, C∞ Hausdorff manifold of dimension two or more, and g is a globally

defined C∞ Lorentzian metric on M of signature (+,−, ...,−). When there is

no ambiguity, we use M to refer to the spacetime (M, g). Static spacetimes are

one of the simplest classes of spacetimes. A Lorentzian manifold will be called

a stationary spacetime if it admits a timelike Killing vector field K, and static

spaceime if, additionally, K is irrotational (the orthogonal distribution to K is

involutive). Some classical spacetimes are static, as outer Schwarzschild and

Reissner Nordstrom.

It is not difficult to see that the static spacetimes admit a local splitting. A

standard static spacetime is a warped product of the form R × Σ with metric

−Ω(x)dt2 + h (admits a global splitting), where h is a Riemannian metric

on Σ and Ω : Σ → R is a positive function (this is always strongly causal

∗Corresponding Author

AMS 2020 Mathematics Subject Classification: 83Cxx, 53C50, 53C22
42



On Pseudoconvexity Conditions and Static Spacetimes 43

and time-orientable). Thus, any standard static spacetime is conformal to

R × Σ with metric −dt2 + h, where h = (1/Ω)h. In other words, for any

Riemannian manifold (Σ;h), the product manifold M = R × Σ endowed with

the direct sum metric g = −dt2 + h is a (standard static) Lorentzian manifold

(M ; g) which encodes all the information of (Σ;h). Many of the geometric

properties of static spacetimes have been studied from different viewpoints

and, recently, there has been renewed progress made. In addition, Lorentzian

geometry is richer than Riemannian geometry and the converse inclusion does

not hold since Riemannian manifolds do not encode any cone dynamics, i.e. any

causality theory. So, Recent feature of static spacetimes can provide a useful

tool for studying Riemannian geometry, in some sense. For instance, geodesics

on M project to geodesics on Σ, and every geodesic on Σ comes from such a

projection. Namely, every null geodesic γ of (M, g) is of the form t −→ (t, η(t))

where η is a h-arclength geodesic (see [13], [10]).

It is shown that in the case of standard static spacetimes, global hyperbolic-

ity of (M, g), as a causal condition of a spacetime, implies geodesic copmletness

of (Σ, h), as a geometric property of a Riemannian manifold and vice versa.

Also, this fact that static spacetime (M, g) is causally simple spacetime is equiv-

alent to satisfying of geodesic convexity condition in the Riemannian manifold

(Σ, h). Another properties in Riemannian geometry can be proved in the same

manners.

The concept of pseudoconvexity is an increasingly important property which

a system of geodesics on a Lorentzian manifold may have [2]. The connectivity

of any two points of the manifold by means of geodesics is studied as the concept

of geodesic connectedness. For Riemannian (i.e., positive definite) manifolds,

the classical result of Hopf and Rinow shows that completeness implies geodesic

connectedness. It is well known that geodesic completeness is not sufficient for

pseudo-Riemannian manifolds [4]. Pseudoconvexity plays a role similar to that

played by completeness in Riemannian manifolds. It is a part of the sufficient

condition for the geodesic connectedness of space-time [3]. In the Lorentzian

case, Seifert has shown that in globally hyperbolic space-times any two points

which are causally related can be joined by a geodesic segment but in general,

points not causally related may not be joined by geodesic segments, even in

globally hyperbolic space-times [14]. Various implications of causal and null

pseudoconvexity on the geodesic structure of a Lorentzian manifold have been

studied in several recent papers by Beem, Parker, Krolak, and Low [3, 5, 6, 8, 9].

A spacetime (M ; g) is called (causal, null or maximally null) pseudoconvex,

if for any compact set K, there exists another compact set K∗, such that each

geodesic of the respective type with both endpoints in K must be entirely con-

tained in K∗. Clearly pseudoconvexity implies causal pseudoconvexity which

implies null pseudoconvexity which again is stronger than maximal null pseu-

doconvexity. Riemannian version of this is defined similally. A Riemannian



44 Mehdi Vatandoost and Rahimeh Pourkhandani

manifold (Σ;h) is called (minimally) pseudoconvex, if for any compact set C

there exists another compact set C∗, such that each (minimal) geodesic with

endpoints in C must be entirely contained in C∗. Clearly, pseudoconvexity

implies minimal pseudoconvexity (see [7, 16]).

Definition 1.1. Assume pn → p and qn → q for distinct points p and q in

a spacetime M . We say that the spacetime M has the limit geodesic segment

property (LGS), if each pair pn and qn can be joined by a “geodesic segment”,

then there is a limit geodesic segment from p to q. Namely, for every sequence

of geodesics γn from pn to qn where pn → p, qn → q, there are a subsequence

γk and a geodesic segment from p to q such that γk converges h-uniformly to

γ. Similarly, causal, null, and maximal null LGS property can be defined by

restricting the condition “geodesic segment” to causal, null, and maximal null

geodesics, respectively.

We say that a vector v ∈ TpM is timelike if gp(v, v) > 0, causal if gp(v, v) ≥
0, null if gp(v, v) = 0 and spacelike if gp(v, v) < 0. A smooth curve is called

future directed timelike curve if its tangent vector is everywhere timelike future

pointing vector and similarly for spacelike, causal, null future directed (or null

past directed) curve can be defined. If p, q ∈ M , then q is in the chronological

future of p, written q ∈ I+(p) or p ≺ q, if there is a timelike future pointing

curve γ : [0, 1] → M with γ(0) = p, and γ(1) = q; similarly, q is in the causal

future of p, written q ∈ J+(p) or p ⪯ q, if there is a future pointing causal

curve from p to q. For any point, p, the set I+(p) is open; but J+(p) need not,

in general, be closed. J+(p) is always a subset of the closure of I+(p).

Definition 1.2.

• A spacetime M is causal if it has no point p with a non-degenerate

causal curve that starts and ends at p.

• A spacetime M is said to be distinguishing if for all points p and q in

M , either I+(p) = I+(q) or I−(p) = I−(q) implies p = q.

• If each point p has arbitrarily small neighborhoods in which any causal

curve intersects in a single component, M satisfies the condition of

strong causality.

• A distinguishing spacetime M is said to be causally continuous at p

if the set-valued functions I+ and I− are both inner continuous and

outer continuous at p. The set-valued function I± is said to be inner

continuous at p ∈ M if for each compact set K ⊆ I±(p), there exists a

neighborhood U(p) of p such that K ⊆ I±(q) for each q ∈ U(p). The
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set-valued function I± is outer continuous at p if for each compact set

K in the exterior of I±(p) there exists some neighborhood U(p) of p

such that for each q ∈ U(p), K is in the exterior of I±(q). We recall

that I± is always inner continuous.

• If M is causal and J±(p) is closed for all p ∈ M , then M is causally

simple.

• A spacetime M is said to be globally hyperbolic if M is strongly causal

and J+(p) ∩ J−(q) is compact for all p and q in M .

2. Main results

In Ref. [16], for the first time, it is shown that the pseudoconvexity and

LGS property are equivalent.

Proposition 2.1. [16, Proposition 4] Let (M, g) be a strongly causal spacetime.

Then, it is (null or maximal null) causal pseudoconvex if and only if it has the

(null or maximal null) causal LGS property.

Also, a Riemannian manifold (Σ;h) is disprisoning if no inextensible geodesic

γ : [0, b) → Σ imprisons in a compact set. In Ref. [7], a Riemannian version of

Proposition 2.1 is proved.

Lemma 2.2. A Riemannian manifold (Σ;h) satisfies the LGS if and only if it

is disprisoning and pseudoconvex.

By Hopf-Rinow theorem, for any connected Riemannian manifold Σ, if expp
is defined on all of TpΣ, then any point of Σ can be joined to p by a minimizing

geodesic and any two points of Σ can be joined a minimizing geodesic (Σ is

geodesically convex) if Σ is geodesically complete (i.e. the domain of geodesics

can be extended to all real numbers R) or equivalently every closed and bounded

subsets of Σ are compact or equivalently Σ is a complete metric space. The

converse of the last statment in the theorem is false, by taking Σ to be an open

ball of Rn as an open submanifold.

Theorem 2.3. [6, Theorem 3.67.] and [7, Lemma 3.4.] Let (Σ;h) be a Rie-

mannian manifold and M = R× Σ be the Lorentzian manifold with the direct

sum metric g = −dt2 + h. The following statements are hold:

1) (M ; g) is globally hyperbolic if and only if (Σ;h) is geodesically com-

plete.

2) (M ; g) is causally simple if and only if (Σ;h) is geodesically convex.
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There are a problem that say “the pseudoconvexity of Σ implies the geodesi-

cally convexity of Σ”. This leads to solve a conjecture that say “the nul pseu-

doconvexity of M implies the causal simplicity of M” (see [17]). Also, it is

shown that if (Σ;h) is a Riemannian manifold which admits an equidimen-

sional embedding into a complete manifold then Σ is minimally pseudoconvex

if and only if it is geodesically convex.

Proposition 2.4. Let (Σ;h) be a Riemannian manifold. Any limit curve of a

sequence of minimal geodesics in Σ is a minimal geodesic.

Proof. Let (Σ;h) be a Riemannian manifold and M = R×Σ be the Lorentzian

manifold with the direct sum metric g = −dt2 + h and σn be a sequence of

minimal geodesics in Σ converges to σ. Set γn := (bnt, σn) and γ := (bt, σ)

where bn = Lh(σn) and b = Lh(σ). It is clear that γn is a sequence of maximal

null geodesics converging to γ in M . By [17, Remark 2], γ is a maximal null

geodesic. Finally, [7, Lemma 3.1] implies σ is minimal geodesic. □

Proposition 2.5. If (Σ;h) is a disprisoning and pseudoconvex (LGS) Rie-

mannian manifold without conjugate points, then Σ is geodesically convex.

Proof. By [12, Theorem 2.2], it concludes that Σ is geodesically connected.

Now, let M = R×Σ be the Lorentzian manifold with the direct sum metric g =

−dt2 + h. According to the hypothesis, M is a disprisoning and pseudoconvex

space-time that is also geodesically connected manifold. So, by [5, Proposition

2], (M, g) is causally simple and Theorem 2.3 implies that (Σ;h) is geodesically

convex. □

Definition 2.6. A spactime M is said to be causally geodesically connected

if every two points which are in causal relation, can be connected by a causal

geodesics and is said to be strictly causally geodesically connected can be con-

nected by a unique causal geodesics. A Riemannian manifold Σ is said to be

strictly geodesically connected if every two points, can be connected by a unique

geodesic.

Proposition 2.7. Let M be a disprisoning strictly causally geodesically con-

nected spacetime then M is causal pseudoconvex if and only if it is causally

simple.

Proof. Beem and Krolak, in [5, Proposition 2], showed that disprisoning causally

geodesically connected causal pseudoconvex spacetimes are causally simple.

Conversely, Let M be a disprisoning strictly causally geodesically connected

causally simple spacetime. We show that M is causal pseudoconvex. Suppose

{pn} and {qn} are sequences in M converging to p and q respectively and there
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are causal curves γn from pn to qn for all value of n. By Proposition 2.1, it is

sufficient to show that γn has a limit curve γ which is causal geodesics from

p to q. For each point x ∈ I+(q), we have p ∈ J−(x). Since q is the limit

of {qn}, every open neighborhood of q ( such as I−(x)) must consist of all

but a finite number of {qn}. So, there is N > 0 such that qn ∈ I−(x) for all

value n greater than N . Thus for any such values of n, there exists a future

directed causal curve from qn to x. By consideration of γn, the existence of a

future directed causal curve from pn to x can be concluded and thus causally

simple assumption of the space-time implies that p ∈ J−(x). From this fact,

for every sequence {xn} converging to q in I+(q) we have xn ∈ J+(p) and

so q ∈ J+(p). Therefore, strictly causally geodesically connected implies the

existence a unique causal geodesic γ from p to q. □

Every compact Riemannian manifold is trivially pseudoconvex but fails to

satisfy the LGS as, certainly, it is not disprisoning. For instance, T 2 is pseudo-

convex but does not satisfy the LGS. Also, completeness implies convexity by

the Hopf-Rinow theorem, but completeness (hence convexity) does not imply

pseudoconvexity (e.g. a complete surface with infinitely many holes) [7].

Corollary 2.8. Let (Σ;h) be a disprisoning strictly geodesically connected Rie-

mannian manifold. Then Σ is pseudoconvex if and only if convex.

References

1. A. Bautista, A. Ibort, J. Lafuente, and R. Low, A conformal boundary for space-times

based on light- like geodesics: The 3-dimensional case, J. Math. Phys. 58(2017), 022503.

2. J. K. Beem and P.E. Parker, Klein–Gordon solvability and the geometry of geodesics,

Pacific J. Math. 107(1983), 1–14.

3. J. K. Beem, and P. E. Parker, Pseudoconvexity and general relativity, J. Geom. Phys.

4(1987), 71–80.

4. J. K. Beem and P. E. Parker, Pseudoconvexity and geodesic connectedness, Ann. Mat.

Pura Appl. 155(1989), 137–142.

5. J. K. Beem and A. Krolak, Cosmic censorship and pseudoconvexity, J. Math. Phys.,

33(1992), 2249–2253.

6. J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian Geometry, Marcel Dekker,

New York, 1996.

7. J. Hedicke, E. Minguzzi, B. Schinnerl, R. Steinbauer, and S. Suhr, Causal simplicity and

(maximal) null pseudoconvexity, Class. Quantum Grav. 38(2021), 227002 .

8. R. J. Low, The geometry of the space of null geodesics, J. Math. Phys. 30(1989), 809–811.

9. R. J. Low, Spaces of causal paths and naked singularities, Class. Quantum Grav 7(1990),

943–954.

10. E. Minguzzi, Lorentzian causality theory, Living Reviews in Relativity, 22(1):3(2019).

11. R. Pourkhandani and Y. Bahrampour, The space of causal curves and separation axioms,

Class. Quantum Grav, 29(2012).

12. M. Sanchez, Geodesic connectedness of semi–Riemannian manifolds, Nonlinear Anal, 47

(5)(2001), 3085–3102.

13. M. Sanchez, On the geometry of static spacetimes, Nonlinear Anal, 63(2005).



48 Mehdi Vatandoost and Rahimeh Pourkhandani

14. H. J. Seifert, Global connectivity by timetike geodesics, Zs. fur Naturforsch. 22a(1967),

1356–1360.

15. M. Vatandoost and Y. Bahrampour, Some necessary and sufficient conditions for admit-

ting a continuous sphere order representation of two-dimensional space-times, J. Math.

Phys., 53(2012), 122501.

16. M. Vatandoost, R. Pourkhandani, and N. Ebrahimi, On null and causal pseudoconvex

space-times, J. Math. Phys., 60(2019), 012502.

17. M. Vatandoost, R. Pourkhandani, and N. Ebrahimi, Causaly simple spacetimes and

Naked Singularities, arXiv:2105.03730v1 [gr-qc] 8 May 2021.

18. F. Treves, lntroduction to Pseudodifferential and Fourier Integral Operatorss, vols. 1 and

2, Plenum, New York and London, 1980.

Received: 27.03.2022

Accepted: 13.05.2022


