- 1. H. Akbar-Zadeh, Sur les espaces de Finsler ‘a courbures sectionnelles constantes. Acad.
Roy. Belg. Bull. Cl. Sci. 74, 1 (1988), 281322.
- 2. H. Akbar-Zadeh, Initiation to Global Finsler Geometry. Elsevier, North Holland, 2006.
- 3. M. M. Alexandrino, B. O. Alves and H. R. Dehkordi, On Finsler transnormal functions.
Differential. Geom. Appl. 65(2019), 93-107.
- 4. A. Asanjarani and B. Bidabad, Classification of complete Finsler manifolds through a
second order differential equation, Differential Geom. Appl. 26(2008), 434-444.
- 5. D. Bao, S. S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry. New
York, Springer, 2012.
- 6. D. Bao and Z. Shen, Finsler metrics of constant positive curvature on the Lie group S
3,J. Lond. Math. Soc. 66(2002), 453-467.
- 7. B. Bidabad, On compact Finsler spaces of positive constant curvature, C. R. Math. Acad.
Paris. 349(2011), 1191-1194.
- 8. B. Bidabad and A. Tayebi, A classification of some Finsler connections and their applications. Publ. Math. Debrecen. 71(2007), 253-266.
- 9. N. Boonnam, R. Hama and S. V. Sabau, Berwald spaces of bounded curvature are
Riemannian, Acta Math. Acad. Paedagog. Nyiregyhaziensis (2017), 339-347.
- 10. A. Cauchy, Sur les polygones et les poly´edres: second m‘emoire. lEcole Polytechnique,
XVIe Cahier. 9(1813), 26-38.
- 11. H. R. Dehkordi, Finsler Transnormal functions and singular foliations of codimension
1. PhD thesis, PhD thesis at IME University of Sao paulo, 2018.
- 12. H. R. Dehkordi, Mathematical modeling the wildfire propagation in a randers space,
arXiv preprint arXiv:2012.06692 (2020).
- 13. H. R. Dehkordi, Mathematical modeling of wildfire propagation in an agricultural land,
Proc. Ser. Braz. Soc. Comput. Appl. Math. 8(2021).
- 14. H. R. Dehkordi, Applications of Randers geodesics for wildfire spread modelling, Appl.
Math. Model (2022).
- 15. H. R. Dehkordi and A. Saa, Huygens envelope principle in Finsler spaces and analogue
gravity. Class. Quantum Grav. 36(2019), 085008.
- 16. S. Deng and M. Xu, Recent progress on homogeneous Finsler spaces with positive curvature, Eur. J. Math. 4(2017), 974-999.
- 17. C. Ekici and C. Muradiye, A note on Berwald eikonal equation, In J. Phys.: Conf. Ser.
766(2016), 012029.
- 18. P. Foulon, Locally symmetric Finsler spaces in negative curvature, Compt. Rendus.
Acad. Sci. Math. 324(1997), 11271132.
- 19. P. Foulon, Curvature and global rigidity in Finsler manifolds. Houston J. Math.
28(2002), 263-292.
- 20. S. Gallot, Equations diff‘erentielles caract‘eristiques de la sphere, In Ann. Sci. de lEcole.
Norm. Superieure. 12(1979), 235-267.
- 21. P. M. Gruber and J. M. Wills, Chapter 1.7 of Handbook of Convex Geometry, Vol. A.
North-Holland Publishing Co., 1993.
- 22. T. Gudlaugur, Chapter 10 - a survey on isoparametric hypersurfaces and their generalizations. In Handbook of Differential Geometry, F. J. Dillen and L. C. Verstraelen,
Eds., vol. 1 of Handbook of Differential Geometry. North-Holland, (2000), 963-995.
- 23. Q. He, S. Yin and Y. Shen, Isoparametric hypersurfaces in minkowski spaces, Differ.
Geom. Appl. 47(2016), 133-158.
- 24. C. Kim and J. Yim, Rigidity of noncompact Finsler manifolds, Geom. Dedicata.
81(2000), 245-259.
- 25. C. Kim and J. Yim, Finsler manifolds with positive constant flag curvature, Geom.
Dedicata. 98(2003), 47-56.
- 26. C. W. Kim, Locally symmetric positively curved Finsler spaces, Arch. Math. 88(2007),
378-384.
- 27. D. Lehmann, Une g´en´eralisation de la g´eom´etrie du plongement. S´eminaire Ehresmann,
Topologie et g´eom´etrie diff´erentielle. 6(1964), 1-21.
- 28. H. B. Rademacher, A sphere theorem for non-reversible Finsler metrics, Math. Ann.
328(2004), 373-387.
- 29. Z. Shen, Lectures on Finsler geometry, World Scientific, Singapore, 2001.
- 30. Z. Shen, Finsler manifolds with nonpositive flag curvature and constant S-curvature,
Math. Zeitschrift. 249(2005), 625-639.
- 31. Z. Shen, Differential geometry of spray and Finsler spaces, Springer, Netherlands, 2013.
- 32. Q. M. Wang, Isoparametric functions on Riemannian manifolds, Math. Ann.
277(1987), 639-646.
- 33. B. Wilking and W. Ziller, Revisiting homogeneous spaces with positive curvature, J. f¨ur
die Reine und Angew. Math. 738(2018), 313-328.
- 34. B. Y. Wu, Some rigidity theorems for locally symmetrical Finsler manifolds, J. Geom.
Phys. 58(2008), 923-930.
- 35. G. Wu and R. Ye, A note on Obata’s rigidity theorem, Commun. Math. Stat. 2(2014),
231-252.
- 36. M. Xu and J. A. Wolf, Sp(2)/U(1) and a positive curvature problem, Differ. Geom.
Appl. 42(2015), 115-124.
- 37. M. Xu, L. Zhang, et al. δ-homogeneity in Finsler geometry and the positive curvature
problem, Osaka J. Math. 55(2018), 177-194.
|