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Abstract- The paper presents a Fast Fourier Transform (FFT) based Power Spectral Density (PSD) filter for denoising 

the PMU signal received from the smart power system network to identify the low frequency Oscillation modes (LFO). 

Small disturbances are introduced during normal operation of power system causes low frequency oscillations and may 

hinder the power system transfer capabilities of a system. The traditional signal processing method cannot extract the 

information from ambient signals effectively during noisy measurement. In this paper, the performance of the Prony 

analysis with reduced sampling rate is analysed for the PMU data with noiseless and noise environment. It is observed 

that, the performance of the Prony approach is not satisfactory under noisy measurement data.  In the present work 

FFT-PSD is used to denoise the noisy measurement signal and identify the nature of the decrement factor of the low 

frequency oscillatory modes. The accuracy of the estimated decrement factors of modes are verified with eigenvalues to 

validate the proposed method. The performance of proposed method is compared with signal processing method for 

IEEE New England power system and found effective and suitable during noisy PMU measurements. 
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1. INTRODUCTION 

Modern power systems are facilitated by wide-area 

monitoring  (WAM) systems which  has an access to the 

real-time synchronised data obtained  from Phasor 

measurement unit (PMU). The Power transfer in 

modern smart power systems are challenged by the 

integration of  renewable energy resources by  low 

inertia converters and it weakens the stability of the 

systems due to rapid change in electrical dynamics. 

Small disturbance such as switching or line operation 

events hamper the reliability of the power system due to 

inception of LFOs. Timely identification and damping 

of such oscillations are crucial to avoid  collapsing of 

entire power system. The low frequency oscillations are 

characterized as “inter area mode” for frequency ranges 

between 0.1 to 0.8 Hz and “local area modes” with 

frequency between 0.8 and 2 Hz [1][2]. It must be said 

that there is no strong definition of well-damped low-

frequency oscillations, but a generally accepted rule of 

thumb defines an oscillation as sufficiently damped if 

the damping ratio is above the range 3–5% [3].  

The signal analysis approaches are extensively used 

in these years to detect the LFOs from the PMU data. 

To analysis the presence of LFOs from the data, the   

various methods are used such as Prony algorithm 

[4][5], matrix pencil [6], estimation of signal parameters 

by rotational invariance techniques (ESPRIT)[7], 

empirical mode decompositions (EMD)[8],dynamic 

mode decomposition (DMD)[8], eigenvalue realization 

methods(ERA) [9], wavelet based method[10], and 

Discrete Fourier transform based methods[11]. 

Effectiveness of identification process is increased by 

the combination of two signal analysis method.  

Phili.et.al in [12] proposed combined method of 

ESPRIT with exact model order to identify LFOs and 

Jin t et.al [13] proposed a novel approach to identify the 

low frequency components in ECG signal by 

combination of basis pursuit signal denoising with 

wavelet transform.  Fang Liu et.al [14] proposed a 

combination of Variable mode decomposition (VMD) 

with Prony analysis to identify mode shapes from 

ambient signals. 

Prony algorithm decomposes the oscillatory signals 

into linear combination of complex exponentials [15], 

thereby helps in identifying the oscillatory 

characteristics of signals by computing the eigenvalues. 

However, the Prony algorithms is found not effective in 

a noisy environment. Hence to increase identification 

accuracy during noisy environment the Prony is 
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combined with modal decomposition methods such as 

wavelet transforms, EMD, ERA, Kalman filter, system 

identification methods. In [16], the adaptive matrix 

pencil algorithm is used to analyse the low frequency 

oscillation in power system. This method ensures the 

accuracy of mode identification with lower sensitivity to 

noise interference. However, it is a challenging task to 

select the proper mother wavelet and decomposition 

level. Dominant electromechanical Oscillation mode 

identification using Modified VMD makes use of the 

synthetic data of IEEE 16 machine, 68 bus system for 

the analysis which is proposed in [17]. Due to random 

selection of initialization parameter for VMD the leads 

to computational complexity, therefore it demands 

Optimization techniques for the eliminating unwanted 

decomposition modes. However selection of appropriate 

optimization techniques is the limitation of the 

approach.  

In this paper, synthetic data is generated to mimic the 

real-time Phasor measurement unit (PMU)  incorporated 

at all the generator buses by neglecting  the transfer 

delay to obtain the better results during stability 

analysis[27]. In this work, the signal measured with the 

influence of measurement noise is considered for the 

analysis. The denoising of the signal is performed using 

Power spectral density of the signal using FFT analysis. 

The window of fixed sample size is used to check the 

nature of decrement factor using PSD of the signal 

under consideration. The noisy measurement signals 

received from the wide area monitoring unit (WAM) of 

New England power system during small disturbance is 

chosen as a case study. The existing methods can only 

identify the oscillation frequency, damping ratio and 

mode shapes but not the participation factor. The 

proposed method uses energy-based computation of 

participation factor with improved accuracy compared 

to traditional signal processing methods. 

The contributions of this work is as follows 

• The Prony analysis with reduced sampling rate is 

performed on noiseless measurement signals and 

energy based participation factor is evaluated for 

the data collected from PMU. This work also 

addresses the complexity relying in Prony based 

approaches for the complex data with measurement 

noise. 

• The Power spectral density based  signal denoising 

approach is developed  to identify the underlying 

low frequency oscillation modes in the signal  data 

collected from WAM  

The performance of the PSD based method is 

analysed for IEEE New England Bench mark system by 

artificially generating random Gaussian noise for the 

measurement signal.  

2. MAIN BODY 

2.1. Eigenvalue estimation using Modal Analysis   

Stability analysis in a power system is performed using 

a set of differential-algebraic equations (DAE) 

described as 

𝒙̇ = 𝒇(𝒙, 𝒊)

     𝒚 = 𝒉(𝒙, 𝒊)       
}                (1)       

Where 𝑥 is a state vector 𝑥 ∈ 𝑅𝑚,  input vector  𝑖 ∈

𝑅𝑘  and the output vector 𝑦 ∈ 𝑅𝑛 . Linearization of 

equation (1) at an equilibrium point  𝑥0, 𝑖0 results in the 

state space representation of system expressed as 

𝚫𝒙̇ = 𝑨𝚫𝒙 + 𝑩𝚫𝒊
𝚫𝒚 = 𝑪𝚫𝒙 + 𝑫𝚫𝒊

}                                                        

(2) 

Where 𝐴  is the state matrix and the dimension is 

𝑚 ×  𝑚  , 𝐵 is control matrix with dimension 𝑚 ×

 𝑘 ,output matrix 𝐶  has 𝑛 ×  𝑚  dimension and the 

dimension of feedforward matrix 𝐷 is 𝑛 ×  𝑘. 

To implement eigenvalue analysis (EA) method on 

state matrix 𝐴, the eigenvectors and eigenvalues must 

satisfy following equation  

𝑨𝑼𝒋 = 𝛌𝐣𝑼𝒋

𝑽𝒋𝑨 = 𝛌𝐣𝑽𝒋
𝑻}              (3) 

where λj  is the 𝑗𝑡ℎ  eigenvalue of 𝐴 , 𝑈𝑗   is right 

eigenvector of 𝐴  associated with λj  and dimension is 

𝑚 ×  1 , left eigenvector of 𝐴  is represented as  𝑉𝑗  

associated with λj .The  𝑈𝑗and V𝑗 satisfy  𝑉𝑗
𝑇𝑈𝑗 = 1 

To represent the relationship between the system 

states and the modes, the participation factor is 

computed by    

𝑷𝒋𝒓 =
𝑽𝒓𝒋𝑴𝒋𝒓

𝑬𝑨

𝑽𝒋
𝑻𝑴𝑱

𝑬𝑨                                       (4) 

where 𝑃𝑟,𝑗 is the  participation factor which measure 

the participation of  𝑗𝑡ℎ  state variable over 𝑟𝑡ℎ  mode ; 

𝑣𝑟𝑗  is the 𝑟𝑡ℎ   entry of 𝑉𝑗  and 𝑀𝑗𝑟
𝐸𝐴  is the 𝑟𝑡ℎ  entry of  

𝑈𝑗 . The small-signal oscillation in the power system 

causes system oscillation to increase due to the presence 

of low-frequency oscillation modes. Based on the 

frequency, the low frequency oscillatory modes are 

categorized as, inter-area oscillatory modes and swing 

modes. The mode shape matrix is used to estimate the 

coherency between the generators associated with low-

frequency oscillatory modes [18][19][20][21] i.e   
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represented as  

 𝑀𝐸𝐴 = [𝑀1 𝑀2 𝑀3 … … . . 𝑀𝑘] 

𝑴𝑬𝑨   =

[
 
 
 
 
𝑴𝟏𝟏 𝑴𝟐𝟏 . . . . 𝑴𝒌𝟏

𝑴𝟏𝟐 𝑴𝟐𝟐 . . . . 𝑴𝒌𝟐

. . . . . . .

. . . . . . .
𝑴𝟏𝒎 𝑴𝟐𝒎 . . . . 𝑴𝒌𝒎]

 
 
 
 

                           

(5)             

where 𝑀𝐸𝐴   is mode shapes matrix associated with 

multiple low frequency oscillatory modes. 

2.2. Prony analysis 

Consider the signals extracted from the PMU data of 

multimachine power system which is represented as 

x(0),x(1),………x(N-1) are approximated by the 

exponential components  [20]  

𝑥 ̂(𝑛) = ∑ 𝑎𝑘𝑧𝑘
𝑛for(𝑛 = 0,1, …… 𝑁 − 1)              (6)𝑞

𝑘=1     

Where 𝑎𝑘 = 𝐴𝑘 𝑒
𝑗𝛳𝑘 and 𝑧𝑘 = 𝑒[(𝜎𝑘+2𝜋𝑓𝑘)𝛥𝑡] 

Where q is the order,  𝛥𝑡  is sampling interval 

𝐴𝑘 ,  𝛳𝑘 ,  𝜎𝑘  and 𝑓𝑘  are amplitude, phase, attenuation 

factor and frequency. The objective of the Prony 

algorithm is to calculated the parameter 𝑎𝑘  and 

𝑧𝑘.Here, 𝑥 ̂(𝑛) is approximated value of  𝑥(𝑛) and error 

can be calculated as 

 𝑒𝑟(𝑛) = 𝑥(𝑛) − 𝑥 ̂(𝑛)     for  𝑛 = 0,1, … … .𝑁 − 1  (7)      
The constant coefficient  linear differential equations 

can be obtained as     

 𝑥 ̂(𝑛) = −∑ 𝑏𝑘𝑥 ̂(𝑛 − 𝑘)   for 𝑛 = 𝑞,…𝑁 − 1   (8)
𝑞
𝑘=1           

The points on the z-plane 𝑧𝑘  are the solutions of the 

equation 

 1+∑ 𝑏𝑘
𝑞
𝑘=1 𝑧−𝑘 = 0                                                    (9)                                                    

The error equation can be obtained from equation (3) 

and (4) is   𝑥(𝑛) = −∑ 𝑏𝑘
𝑞
𝑘=1 𝑥 ̂(𝑛 − 𝑘) + 𝛷(𝑛)      

  𝑛 = 𝑞,…… 𝑁 − 1                                                     (10)     

  Where 𝛷(𝑛) satisfies the following equation 

 𝛷(𝑛) = −∑ 𝑏𝑘𝑒𝑟(𝑛 − 𝑘)𝑝
𝑘=0                 (11)                                 

Using Least square algorithm the error can be 

minimized as 

 ∑ |𝛷(𝑛) |2𝑁−1
𝑛=𝑞     the coefficients 𝑏1, 𝑏2, …… . 𝑏𝑞  is 

obtained with the following equation 

[
𝑀(1,0) 𝑀(1,1)…… 𝑀(1, 𝑞)

𝑀(2,0) 𝑀(2,1)…… 𝑀(2, 𝑞)
⋮ ⋮ ⋮

] [
1
𝑏1

⋮
] = [

0
0
⋮
]                 (12) 

Where 𝑀(𝑖, 𝑗) = ∑ 𝑥(𝑛 − 𝑗)𝑥(𝑛 − 𝑘)  𝑤ℎ𝑒𝑟𝑒  𝑘, 𝑗 =𝑁−1
𝑛=𝑞

0,1,2, … . 𝑞 

The following equation can be obtained from the 

equation (1) 

[

𝑧1
0 … 𝑧𝑞

0

⋮ ⋮ ⋮
𝑧1

𝑁−1 … 𝑧𝑞
𝑁−1

] [

𝑎1

⋮
𝑎𝑞

] = [
𝑥 ̂(0)

⋮
𝑥 ̂(𝑁 − 1)

]                   (13)           

Where  𝑥 ̂(𝑛) =

{
𝑥(𝑛)                       0 ≤ 𝑛 ≤ 𝑞 

−∑ 𝑏𝑘
𝑞
𝑘=1 𝑥 ̂(𝑛 − 𝑘)   𝑞 + 1 ≤ 𝑛 ≤ 𝑁 − 1

      

 

Energy of the estimated signal is  

E= ∑ |𝑥 ̂(𝑛)|2
𝑞
𝑛=0           (14)  

The computation of coefficients 𝒂𝒌  is carried out 

using procedures of Prony algorithm from equations 

(10) and (13). 

2.3. Fast Fourier Transform based signal denoising 

using Power spectral density method  

 The measured signals can be represented as  

𝑦(𝑡) = 𝑥(𝑡) +  𝑛𝑜𝑖𝑠𝑒                (15) 

Where y(t) is noisy measurement signal, x(t) is the 

actual signal and noise is the random noise present in 

the signal. The noise can be zero mean white gaussian 

noise or any non-gaussian noise present in the practical 

signal. This paper presents the data driven approaches to 

denoise the signal to estimate the eigenmodes of 

oscillations. 

The measurement data in WAM are discrete in 

nature. Therefore the Discrete Fourier Transform (DFT) 

is employed to approximate on discrete data. For any 

discrete signal  𝑥(𝑚) 𝑡ℎ𝑒 , the DFT is defined as [22] 

𝑋(𝑘) = ∑ 𝑥[𝑚]𝑁−1
𝑛=0 𝑒−𝑗2𝜋𝑘𝑚/𝑁𝑓𝑜𝑟0 ≤ k ≤                  (16) 

N is the number of available data points; k is each 

discrete instants and the synthesis equation to 

reconstruct the signal after processing is given by 

𝑥(𝑚) =
1

𝑁
∑ 𝑋[𝑘]𝑁−1

𝑛=0 𝑒𝑗2𝜋𝑘𝑚/𝑁𝑓𝑜𝑟0 ≤ n ≤ N − 1 (17)                    

Hence DFT acts as a linear operator to map the data 

points in vector 𝑥(𝑚) to frequency domain 𝑋(𝑘). DFT 

is most useful tool for numerical approximation and 

computation. However, its computational complexity 

increases  for the larger data points as it requires   

𝑁2 multiplications  for mapping  N point data to 

frequency. To overcome this, the fast Fourier transform 

(FFT) developed by James W cooley and John W 

Turkey is employed which scales the multiplication 

operation to (𝑁 log𝑁). The basic idea behind the FFT 

is that the DFT may be implemented much more 

efficiently if the number of data points N is a power of 

2.   In this case, the DFT may be written as  

 𝑋(𝑘) = 𝑊𝑁
𝑘𝑚𝑥(𝑚)                                                  (18) 

Where 𝑊𝑁 = 𝑒−𝑗2𝜋/𝑁  is the twiddle factor matrix 

also termed as DFT matrix. 

For any data point  𝑁 = 2𝑝  , the equation (3) can be 

represented as 
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𝑋(𝑘) = 𝑊2𝑃  𝑥(𝑚) = [
𝐼2𝑃−1 −𝐷2𝑃−1

𝐼2𝑃−1 𝐷2𝑃−1
] [

𝑊2𝑃−1 0

0 𝑊2𝑃−1
] [

𝑥𝑒𝑣𝑒𝑛

𝑥𝑜𝑑𝑑
] (19)         

Where  𝑥𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 𝑥𝑜𝑑𝑑  are the even and odd index 

elements of 𝑥(𝑚).  

 𝐼2𝑃−1 is 2𝑃−1 𝑥   2𝑃−1 identity matrix. 

𝐷2𝑃−1  is given by  

𝐷2𝑃−1 =

[
 
 
 
 
1 0 0 ⋯ 0
0 𝑊 0 ⋯ 0
0 0 𝑊2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ 𝑊2𝑃−1]
 
 
 
 

                        (20)   

The process is repeated for until 2 X 2 DFT 

computations. If the number of data points in a signal is  

𝑁 ≠ 2𝑃, then to perform FFT the number of zeros are 

padded to convert the data vector into the power of 2.  

Energy of the signal  𝑥  is computed using  

 𝐸(𝑛) = ∑ |𝑥(𝑘)|2𝑁−1
𝑘=0               (21)    

Processing a Noisy signal and identifying decrement 

factor 𝝈:  

Powe spectral density (PSD) is computed from FFT 

of a signal which is defined by 

     𝑃𝑆𝐷 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑥(𝑚)   =  
| (𝑓𝑓𝑡(𝑥(𝑚)))|2

𝑁
               (22)                                    

PSD computes the power at each signal frequency 

and power at actual signals are higher than the noise 

content present in the signal. Hence, by setting the 

threshold PSD values and by zeroing out the 

components with power lesser than threshold to remove 

the noise from the signal. The reconstruction of the 

signal is obtained using inverse fast Fourier transform 

using equation (2).  In this work, the statistical features 

of denoised signal is compared with noise free signal to 

check the accuracy of the method. The sliding window 

of size ‘h’ seconds is used over the denoised signal 

𝑥(𝑚) to compute the decrement factor for the LFO 

modes. 

Consider an sinusoidal exponential signal  

𝑥(𝑡)= 𝑒𝜎𝑡 sin(𝜔𝑡 + 𝜑)                         (23) 

which can be decomposed into   

𝑥(𝑡) = 𝑥(𝑡1) +  𝑥(𝑡2)+. . . . . . . . + 𝑥(𝑡𝑚),      (24) 
     where window size  𝑡1 = 𝑡2 =. . . . . . = 𝑡𝑚  = ‘m’ 

seconds.  Equation (23),can be re-written as 
𝑥(𝑡)= 𝑒𝜎𝑡1 sin(𝜔𝑡1 + 𝜑) + 𝑒𝜎𝑡2 sin(𝜔𝑡2 + 𝜑) +…. 

    𝑒𝜎𝑡𝑚 sin(𝜔𝑡𝑚 + 𝜑)                                                (25)              

The decrement factor  is computed by observing the 

PSD computed for 𝑥(𝑡1), 𝑥(𝑡2), . . . . . . . , 𝑥(𝑡𝑚)  using 

(10) 

𝜎 =
1

(𝑡2−𝑡1)
ln (

𝑃𝑆𝐷(𝑥(𝑡2))

𝑃𝑆𝐷(𝑥(𝑡1))
) =

1

(𝑡3−𝑡2)
ln (

𝑃𝑆𝐷(𝑥(𝑡3))

𝑃𝑆𝐷(𝑥(𝑡2))
) =

. . . . =
1

(𝑡𝑚−𝑡𝑚−1)
ln (

𝑃𝑆𝐷(𝑥(𝑡𝑚))

𝑃𝑆𝐷(𝑥(𝑡𝑚−1))
)                               (26)                                        

The effectiveness of denoising is analysed using  

statistical metric: 

Mean Square error (MSE): 

MSE =
1

N
∑ (xk − x̂)2N−1

k=1      (27) 

Root Mean Squared Error (RMSE) 

RMSE =
1

N
∑ (xk − x̂)2N−1

k=1     (28)                                                             

The Mean Absolute Error(MAE): 

    MAE =
1

N
∑ (xk − x̂)N−1

k=1                            (29) 

Signal to Noise ratio (SNR)                     

SNR = 20 log
rms value of signal

rms value of noise 
 dB                             (30) 

SNR = 10 log  
signal power

noise power 
   

  Fit co-efficient                             

    fit = (1 −
∑ [x̂k−Xk]2n

k=1

∑ [Xk−(
1

n
) ∑ Xk

n
i=1 ]

2
n
i=1

) ∗  100       (31)    

Error in the Signal Energy is computed to verify the 

energy preservation after the reconstruction using (26). 

 𝐸𝐸(𝑡) = ∑ |𝑥(𝑘)|2𝑁−1
𝑘=0  −   ∑ |x̂k(𝑘)|2𝑁−1

𝑘=0             (32)                                 

Where 𝑥(𝑘) is  amplitude of actual signal  and   x̂k(𝑘)-is 

amplitude of denoised signal. 

 
Fig. 1. Flow chart of algorithm to detect the dominant generators 

The process of identification of oscillation modes are 

as shown in flowchart in Fig. 1. Data collected from 

PMU are pre-processed. Bad data are removed from the 

data vector and missing data are added using data 

interpolation in MATLAB environment. Low frequency 

of the range for crucial low frequency oscillation in 

power system is 0.1 Hz to 3 Hz which is fixed as 
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threshold value. The Fast Fourier transform is applied to 

pre-processed data and  frequency spectrum is 

evaluated. The modes of the generators appearing under 

the low frequency range are separated. The dominancy 

of the generator  for the critical mode is verified by 

computing the ratio of amplitude to the critical 

frequency. The generator with highest ratio for the 

particular critical mode is chosen as dominant generator.  

 
Fig. 2. IEEE 39 bus, 10 Machine New England system [1] 

3. RESULTS AND DISCUSSIONS 

The performance of the propose FFT-PSD method is  

verified for Synthetic data  generated using MATLAB 

Simulink 2021 a for  IEEE-39 bus New England system 

shown in Fig. 2. Small signal stability analysis is carried 

out by perturbing mechanical input at machine 7 at 0.5 

secs. The bus power at the all generator buses is used as 

signal for the analysis. The data  collected at every step 

size of 0.001 sec for 10 seconds and data vector is 

modified to replicate  the PMU data of 60 samples / 

seconds [17] [23][24][25][26]. The PMU block 

available in MATLAB 2021 b is used to meet the 

requirement. 

4.1 Eigenvalue analysis and Computation of 

Participation factor 

The mathematical model for IEEE-39 bus New England 

System is developed using MATLAB Simulink 2021 a . 

The machines are represented by 1.0 model and the 

loads by constant power model. The model is linearised 

to extract continuous-time linear state-space model 

around operating point & eigenvalues of the linearized 

model is computed using (3) [27][28][29]. It is observed 

from the results that, there are nine swing modes as 

shown in Table 1, out of which the  swing mode 1(SM1) 

and  swing mode 6 (SM6)considered as critical and 

dominant  modes since their decrement factor is positive 

and swing mode 5(SM5)  for decrement factor less than 

0.1. Therefore the study system has three dominant 

swing modes ( SM1,SM5 and SM6) identified which 

decided upon the stability of the system which is 

considered as a base case for further study. The 

participation factor is computed for generators against  

the critical swing modes using (4).  It is seen from the 

Fig. 4 and Fig. 5 that, Generator 2 dominantly 

contributes to SM-1, Generator 3 for SM-5 and 

Generator 9 for SM-6. 

Table 1. Computation of eigenmodes 

 

Table 2. Comparison of error in computation of swing modes 

using Prony Algorithm 

Swing mode F in Hz 

Noiseless signal Signal with noise 

Decrement 

factor(𝜎) 
Error  in(𝜎) 

Decrement 

factor(𝜎) 
Error  in(𝜎) 

SM1 0.62 0.071 14.2% 0.16 142.2% 

SM5 0.998 -0.098 15.1% -0.017 79.2% 

SM6 0.93 0.22 6.8% 0.0066 97% 

Table.3 Statistical Metric for PSD based denoising approach 

Signal SNR MSE MAE FIT RMSE correlation 
% energy 

error 

M2 49.488 0.0012 0.01731 97.17 0.0302 0.9969 0.017% 

M3 51.05 0.0003241 0.01255 93.529 0.01814 0.96112 0.00171% 

M9 52.054 0.0004269 0.0165 97.41 0.02055 0.9839 -0.042% 

Table 4. Computation of swing modes for noise signal using FFT- 

PSD 

 
Decrement factor and  

frequency 
%error 

Modes 𝜎 𝑓 𝜎 𝑓 

SM1 0.068 0.62 9.6% 1.3% 

SM5 -0.092 0.967 8.19% 1.32% 

SM6 0.21 0.932 2.81 0.85% 

 

Fig. 4. Participation factors of the Generators for the critical 

swing mode 

 

Fig. 5a. Mode shapes for swing mode 1, 5b. Mode shapes for swing 

Sl.No Eigenvalues Comments f(Hz) 𝜔 in rad/sec Damping ratio 

1 0.0619 ± j3.9157  Swing Mode #1  0.623 3.9157 -0.015802 

2 -0.2740 ± j8.6877 Swing Mode #2  1.383 8.6877 0.031526 

3 -0.1580 ± j7.1570 Swing Mode #3  1.139 7.1570 0.022073 

4 -0.1627 ± j6.9796 Swing Mode #4  1.11 6.9796 0.023307 

5 -0.0845 ± j6.2698 Swing Mode #5  0.998 6.2698 0.013482 

6  0.2041 ± j5.8835  Swing Mode #6  0.936 5.8835 -0.034676 

7 -0.2039 ± j8.2621 Swing Mode #7  1.315 8.2621 0.024667 

8 -0.1879 ± j6.1803 Swing Mode #8  0.9836 6.1803 0.030396 

9 -0.2055 ± j8.3453 Swing Mode #9  1.328 8.3453 0.024622 
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mode 5, 5c. Mode shapes for swing mod 

 

Fig. 6 a: 60samples/second, b: 10samples/second 

 

Fig. 6. Energy based participation factors for dominant modes 

 

Fig. 7.Participation factors for dominant modes using FFT 

4.2. Prony analysis 

The Prony analysis is carried out for the PMU data of 

machine using (13). The measurement of bus power at 

the all generator buses is used as signal for the analysis 

collected step size of 0.001 sec for 10 seconds and data 

vector is modified to replicate  the PMU data of 60 

samples / seconds.  The reduced sampling rate Prony 

analysis   is applied for the detrended data collected 

from PMU allocated at different locations. The 

estimated system order is approximately  200. This is 

termed as overfitting in machine learning with increased 

number of features. Therefore, in this manuscript the 

reducing sampling rate approach of Prony analysis is 

performed to reduce the order of estimation. The 

sampling rate is reduced to 10 sample /second and 

estimated order for the fitness is approximately 35. 

Reducing sampling rate resembles the average filter. It 

can be observed from Fig. 6a that real part of roots are 

very denser near to unit circle and Fig. 6 b shows the 

more dispersed roots around unit circle and hence 

identification of dominant roots are more accurate in 

low sampling rates. The energy based participation 

factor of the machine for the critical modes are analysis 

using signal energy obtained by Prony analysis for all 

the machines using equation (14). It can observed from 

the chart in Fig. 6 that, Machine 2 contribute to critical 

mode SM1, Machine 3 for SM5 and Machine 9 for SM6 

which is in consistent with Model based EA method. 

Prony analysis is a traditional method employed to 

calculate the low frequency oscillations in power 

system. But it is not an efficient method if the number 

of measurements are increased or due to measurement 

noise. Due to complexity in data handling capacity, it 

requires proper data pre-processing techniques. 

Percentage error in the identification of decrement 

factor using the Prony method during noise for 

particular machine is more compared to noiseless as 

shown in table  

 

Fig. 8 a. Denoised signal using PSD for Machine 2 

 

Fig. 8 b. Denoised signal using PSD for Machine 3 
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Fig. 8 c: Denoised signal using PSD for Machine 9 

 

Fig. 9 a. FFT 1 sec window for M2 

 

Fig. 9 b. FFT 1 sec window for M3 

 

Fig. 9 c. FFT 1 sec window for M9 

Prony Analysis can be good choice only for ringdown 

data. Therefore, we proposed, the FFT-PSD based 

approach which used PSD for denoising the signal and 

used sliding window with FFT technique on denoised 

signals to extract the frequency and decrement factor as 

mentioned in page 10. Based on the results the proposed 

FFT PSD approach is concluded as better than Prony 

approach. To justify the proper denoising, the statistical 

metrics are used and mentioned in table 3. 

4.3. FFT Denoising using power spectral density 

The participation factor is computed to identify the 

dominant generators for critical mode under noiseless 

condition for the measured data shown in Fig. 7 by 

computing the ratio of amplitude to peak frequency. The 

results is in consistent with the EA approach. However, 

the effectiveness of the approach is verified for the 

measurement signal contaminated by white noise of 

30dB and denoised using Power Spectral  Density 

(PSD) shown in Fig. 8 a,8b &8c. Spectrum analysis is 

carried out for the measured signal  and Noise spectrum 

is identified and the required cut-off PSD is chosen to 

filter out the noise  and performance of the denoising  

approach is analysed using statistical metric as shown  

in table 3. The result shows increased SNR, very low 

MSE, adequate MAE and %fit , reduced RMSE and 

improved correlation which indicates the higher degree 

of reconstructed signal after denoising. Energy error 

computed for denoised signal against noiseless signal is 

approximated almost zero indicates exact matching with 

original. FFT is computed for denoised signal for  

sliding window of the width 1 sec  to capture the low 

frequency Oscillation information. Fig. 9a represents  

FFT applied over denoised signal of machine 2 for            

window length  of 1 sec from 4 sec to 8 secs .It is 

observed that, the amplitude of  FFT increases as the 

slider moves which indicates the positive decrement 

factor. The computed frequency and respective 

decrement factor are in line with the SM1 of the system. 

Fig. 9 b represents the FFT applied over denoised 

signal of Machine 3. The first peak of the FFT is related 

to the SM1, however the amplitude variation is not 

surpassing the machine 2 signal. Therefore Machine 3 

cannot be a dominant for SM1. Dominancy of Machine 

3 is observed for the frequency of SM5 at which the 

amplitude of the FFT decreases as slider moves 

indicating the negative decrement factor. The computed 

frequency and decrement factors are in line with SM5. 

In Fig. 9 a, the dominancy of the Machine 9 is observed 

for the SM6 and computed decrement factor is in line 

with SM6.  

Table 4 shows the computed values of decrement 

factor and frequency for modes of interest using FFT -

PSD. It is observed that, the % error for estimation of 

decrement factor is negligible & are inconsistent with 

the eigenvalues computed using EA approach. It can 

observed from Table 4 that , the proposed approach is 

very effective under noisy measurement environment 

compared to the Prony analysis performed with reduced 

sampling rate shown in Table 2.  

5. CONCLUSION 

In this paper, FFT- PSD algorithm is developed to 
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estimate low frequency oscillation from  Noisy PMU 

data in IEEE 39 bus, New England system. The 

following are the deliberations from the proposed work.  

• The dynamic characteristics eigenmodes, mode 

shapes and generator participation factor for various 

modes are computed for system under consideration 

using eigenvalue approach using mathematical 

model of the system and it is considered as a base 

case. 

• The Synthetic data is generated for the system is 

pre-processed to imitate the behaviour of PMU 

using heuristic approach. PMU reporting rate is 60 

samples / second is considered in this work. The 

Prony analysis is performed for original data and 

compared it with Prony with reduced sampling rate 

at 10 samples / second. It is observed that, the 

accuracy of the identification of LFO is better in 

case of reduced sampling rate. Energy based 

participation factor for identification of dominant 

generators for LFO’s is computed using Prony 

algorithm for the PMU data collected at various 

locations at same time. The signal energy based 

participation factor is computed for noiseless 

measurement is in consistent with EA approach. 

• The effectiveness of the Prony algorithm with 

reducing sampling rate is verified to identify the 

decrement factor and low frequency oscillations for 

the system under noiseless and noisy measurement. 

It is observed that, the complexity of the Prony 

algorithm increases with noisy measurement and 

necessitates the denoising prior to the identification.  

• The performance of proposed FFT-PSD is validated 

against Prony approach for detrended data in 

MATLAB/Simulink environment.  

• The FFT-PSD based denoising techniques for the 

noisy measurement signal identifies the nature of 

the decrement factor of the low frequency 

oscillatory modes. The The effectiveness of the 

denoised signal is validated using MSE, RMSE, 

MAE, SNR and FIT statistical metrics. The 

estimated decrement factors computed for the 

swing mode  frequencies  using FFT-PSD approach 

has high degree of accuracy in comparison with 

Prony approach but in consistent with the 

eigenmodes computed using eigenvalue analysis. 

The FFT-PSD can be used as a suitable feature 

extraction method for online detection of LFO 

using machine learning algorithm and initiating 

power oscillation damping. 
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