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1. Introduction

In this paper we study relationships between distributions and linear con-

nections on a supermanifold. There are many papers that have studied the

relationship between linear connections and distributions on a manifold. Given

a distribution and an affine connection on a manifold, considering a product

for vector fields allows one to test for geodesic invariance in the same way one

uses the Lie bracket to test for integrability. If the affine connection does not

restrict to the distribution, one can define its restriction and in the process

generalise the notion of the second fundamental form for submanifolds, see [3].

The existence of an adapted linear connection to the distribution D can be

used to study foliated Riemannian manifolds. In [1], the author presented the
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Vranceanu connection on a foliated Riemannian manifold and showed that a

totally geodesic foliation with bundle-like metric is characterized by means of

this connection.

In the graded case, the situation is different and with the presence of odd

variables, the above results are not necessarily obtained.

A supermanifold (or a graded manifold) of dimension (r, s) is a ringed space

M = (M,OM ) where M is a topological space (Hausdorff, countable base)

and the structural sheaf OM is a sheaf of super R−algebras with unity, locally

isomorphic to Rr,s. Let U be an open subset of x ∈ M , we denote the local co-

ordinates of M in (U,OM (U)) by (xa), a = −s, ...,−1, 1, ..., r. The coordinates

(xa), a = 1, ..., r are called the even coordinates and the (xa), a = −s, ...,−1

are called the odd coordinates, (see [4] and [5] for more information).

IfM is a supermanifold, one can then define vector fields onM as derivations

of the sheaf OM . The derivations form a sheaf of modules over the structure

sheaf OM, called the tangent sheaf of M, denoted by TM. The dual of TM is

denoted by Ω1
M and is called the cotangent sheaf of a supermanifold M, [2].

Let (M,OM ) be an (n+ p,m+ q)−dimensional paracompact supermanifold

and T M be the tangent superbundle of M (for more details see [2] and [6]).

A distribution over M is a graded subsheaf D of TM which is locally a direct

factor [6].

The use of a distribution D allows the presence of geometric structures such

as almost product structure, so that the equivalent of these structures can be

seen in tangent supermanifolds. We will define associated adapted linear super-

connections and find all linear connections on the supermanifold M adapted

to D.

2. Linear superconnections which restrict to a distribution

Given a distribution D over M and x ∈ M, there exists an open neighbor-

hood U of x and another subsheaf D′ ⊂ T M so that for all y ∈ U

TM,y = Dy ⊕D′
y. (2.1)

If we denote by P and P ′ the projection morphisms of TM on D and D′

respectively, then we have the obvious relations

P2 = P,

P ′2 = P ′,

P + P ′ = Id.

An almost product structure on a supermanifold is a tensor field F which

satisfies the condition

F 2 = Id.
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From the definition of two morphisms P and P ′, we see that

F = P − P ′, (2.2)

is an almost product structure on M. So (M,D,D′) will be called an almost

product supermanifold. Note that the the projection morphisms P, P ′ and F

are even morphisms.

Let D be a distribution and x ∈ M, there is an open subset U over which

any set of generators {
χi|i = −m, . . . ,−1, 1, . . . , n

}
of the module D(U) can be enlarged to a set{

χA

}
=

{
χi, χα|i = −m, . . . ,−1, 1, . . . , n, α = −q, . . . ,−1, 1, . . . , p

}
of free generators of DerOM (U).

Definition. A superconnection on a supermanifold M is an even morphism

∇ : TM 7→ Ω1
M ⊗OM TM

satisfying the following condition

∇(f.v) = df ⊗ v + f.∇(v),

where f ∈ OM(U) and v ∈ TM(U), (see [2]).

Let D be an (n,m)−distribution on an (n + p,m + q)−dimensional super-

manifold M = (M,OM ). A superconnection ∇ on M is said to be adapted to

D if

∇XY ∈ D, for all X ∈ DerOM , Y ∈ D.

A superconnection∇ on (M,D,D′) is said to be an adapted superconnection

if it is adapted to both distributions D and D′ i.e., for each X,Y ∈ DerOM ,

we have

∇XPY ∈ D, ∇XP ′Y ∈ D′. (2.3)

Here, we prove the following.

Theorem 2.1. Given two superconnections (∇,∇′), where ∇ and ∇′ on D and

D′ respectively, there exists an adapted linear superconnection ∇ on (M,D,D′).

Proof. It suffices to consider

∇XY = ∇XPY +∇′
XP ′Y, (2.4)

where X,Y ∈ DerOM . □
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F is parallel with respect to a linear superconnection ∇ on M if we have

(∇̃XF )Y = ∇̃XFY − F (∇̃XY ) = 0, ∀X,Y ∈ DerOM . (2.5)

The same definition applies for P and P ′.

Theorem 2.2. Let ∇ be a linear superconnection on the almost product su-

permanifold (M,D,D′). Then the following assertions are equivalent:

(i) ∇ is an adapted linear superconnection.

(ii) The almost product structure F is parallel with respect to ∇.

(iii) The projection morphisms P and P ′ are parallel with respect to ∇.

Proof. (i → ii) Let ∇ be an adapted linear superconnection on the almost

product supermanifold (M,D,D′). Then there exists a pair (∇,∇′), where ∇
and ∇′ are linear superconnections on D and D′ respectively, such that

(∇XF )Y = ∇XFY − F (∇XY )

= ∇X(PY −P ′Y )− F (∇XPY +∇′
XP ′Y )

= (∇XPY −∇′
XP ′Y )− (∇XPY −∇′

XP ′Y )

= 0.

(ii → i) Let F be parallel with respect to ∇. If Y ∈ D then we have

FY = Y

and

∇XFY = ∇XY = F (∇XY ).

If ∇XY = Z + Z ′, Z ∈ D and Z ′ ∈ D′, then

Z + Z ′ = Z − Z ′ =⇒ Z ′ = 0

i.e.,

∇XY = Z ∈ D.

Similarly, if Y ∈ D′, we have

∇XY = Z ∈ D′.

Then ∇ is an adapted linear superconnection.

(ii → iii) Let the almost product structure F is parallel with respect to ∇,

then

0 = ∇XFY − F (∇XY )

= (∇XPY −∇XP ′Y )− (P∇XY − P ′∇XY )

= (∇XPY −P∇XY )− (∇XP ′Y − P ′∇XY ).

Thus we get

∇XPY − P∇XY = 0
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and

∇XP ′Y − P ′∇XY = 0.

(iii → i) Since projection morphisms P and P ′ are parallel with respect to ∇,

we have

∇XPY − P∇XY = 0

and

∇XP ′Y − P ′∇XY = 0.

Thus

∇XPY = P∇XY ∈ D
and

∇XP ′Y = P ′∇XY ∈ D′.

This completes the proof. □

Now, let ∇ and ∇′ be linear superconnections on D and D′ respectively.

Locally on U ⊂ M we put

(a) ∇χjχi = Γk
ijχk,

(b) ∇Eαχi = Γk
iαχk,

(c) ∇′
χj
χα = Γ′β

αjχβ ,

(d)∇′
χγ

χα = Γ′β
αγχβ .

Thus an adapted linear superconnection ∇ on M is locally given by

(a) ∇χjχi = Γk
ijχk,

(b) ∇χαχi = Γk
iαχk,

(c) ∇χjχα = Γ′β
αjχβ ,

(d) ∇χγχα = Γ′β
αγχβ .

Also, the torsion tensor field T ∗ of the linear superconnection ∇ is given by

T ∗(X,Y ) = ∇XY − (−1)|X||Y |∇Y X − [X,Y ], ∀X,Y ∈ DerOM . (2.6)

Now, by using (2.1) if we set

(a) T ∗(χj , χi) = T k
ijχk + T ′α

ijχα,

(b) T ∗(χα, χi) = −(−1)|χi||χα|T ∗(χi, χα)

= T k
iαχk + T ′β

iαχβ

= −(−1)|χi||χα|(T k
αiχk + T ′β

αiχβ),

(c) T ∗(χγ , χα) = T k
αγχk + T ′β

αγχβ ,

then we can obtain all components of T ∗ as in the following theorem.
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Theorem 2.3. Let ∇ = (Γk
iA,Γ

′β
αA) be an adapted linear superconnection on

the almost product supermanifold (M,D,D′). Then the local components of

its torsion tensor field with respect to a nonholonomic frame field {χi, χα} are

given by

(a) T k
ij = Γk

ij − (−1)|χi||χj |Γk
ji − V k

ij ,

(b) T ′α
ij = −V ′α

ij ,

(c) T k
iα = −(−1)|χi||χα|T k

αi = Γk
iα − V k

iα,

(d) T ′β
αi = −(−1)|χi||χα|T ′β

iα = Γ′β
αi − V ′β

αi, (2.7)

(e) T k
αβ = −V k

αβ ,

(f) T ′β
αγ = Γ′β

αγ − (−1)|χα||χγ |Γ′β
γα − V ′β

αγ .

Proof. It is sufficient to let

(a) P[χj , χi] = V k
ijχk,

(b) P[χβ , χα] = V k
αβχk,

(c) P[χα, χi] = −(−1)|χi||χα|P[χi, χα]

= V k
iαχk

= −(−1)|χi||χα|V k
αiχk,

and

(d) P ′[χj , χi] = V ′β
ijχβ ,

(e) P ′[χγ , χα] = V ′β
αγχβ

(f) P ′[χi, χα] = −(−1)|χi||χα|P ′[χα, χi]

= V ′β
αiχβ

= −(−1)|χi||χα|V ′β
iαχβ .

Then we get the proof. □

For any X,Y, Z ∈ DerOM , the curvature tensor field R∗ of ∇ is given by

the following formula

R∗(X,Y )Z = ∇X∇Y Z − (−1)|X||Y |∇Y ∇XZ −∇[X,Y ]Z. (2.8)

To compute the component of R∗ we suppose that

(a) R∗(χk, χj)χi = Rh
ijkEh,

(b) R∗(χk, χα)χi = −(−1)|χα||χk|R∗(χα, χk)χi

= Rh
iαkEh

= −(−1)|χk||χα|Rh
ikαEh,

(c) R∗(χβ , χα)χi = Rh
iαβEh,
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and

(d) R∗(χk, χj)χα = R′β
αjkχβ ,

(e) R∗(χk, χγ)χα = −(−1)|χk||χγ |R∗(χγ , χk)χα

= R′β
αγkχβ

= −(−1)|χk||χγ |R′β
αkγχβ ,

(f) R∗(Eµ, χγ)χα = R′β
αγµχβ .

Then we have

(a) Rh
ijk = Γh

ij||k + (−1)|χk|(|Es|+|χi|+|χj |)Γs
ijΓ

h
sk − (−1)|χk||χj |Γh

ik||j

− (−1)|χi||χj |+|χj ||Es|Γs
ikΓ

h
sj − V s

jkΓ
h
is − V ′α

jkΓ
h
iα,

(b) Rh
iαk = Γh

iα||k + (−1)|χk|(|Es|+|χi|+|χα|)Γs
iαΓ

h
sk − (−1)|χk||χα|Γh

ik|α

− (−1)|χi||χα|+|χα||Es|Γs
ikΓ

h
sα − V s

αkΓ
h
is − V ′ε

αkΓ
h
iε,

(c) Rh
iαβ = Γh

iα|β + (−1)|χβ |(|Es|+|χi|+|χα|)Γs
iαΓ

h
sβ − (−1)|χβ ||χα|Γh

iβ|α

− (−1)|χi||χα|+|χα||Es|Γs
iβΓ

h
sα − V s

αβΓ
h
is − V ′ε

αβΓ
h
iε,

(d) R′
α
β
jk = Γ′

α
β
j||k + (−1)|χk|(|χα|+|χj |+|Eε|)Γ′

α
ε
jΓ

′
ε
β
k − (−1)|χk||χj |Γ′

α
β
k||j

− (−1)|χj ||χα|+|χj ||Eε|Γ′
α
ε
kΓ

′
ε
β
j − Vj

s
kΓ

′
α
β
s − V ′

j
ε

kΓ
′
α
β
ε ,

(e) R′β
αγk = Γ′

α
β
γ||k + (−1)|χk|(|χα|+|χγ |+|Eε|)Γ′

α
ε
γΓ

′
ε
β
k − (−1)|χk||χγ |Γ′

α
β
k|γ

− (−1)|χγ ||χα|+|χγ ||Eε|Γ′
α
ε
kΓ

′
ε
β
γ − Vγ

s
kΓ

′
α
β
s − V ′

γ
ε

kΓ
′
α
β
ε ,

(f) R′
α
β
γµ = Γ′

α
β
γ|µ + (−1)|Eµ|(|χα|+|χγ |+|Eε|)Γ′

α
ε
γΓ

′
ε
β
µ − (−1)|Eµ||χγ |Γ′

α
β
µ|γ

− (−1)|χγ ||χα|+|χγ ||Eε|Γ′
α
ε
µΓ

′
ε
β
γ − Vγ

s
µΓ

′
α
β
s − V ′

γ
ε

µΓ
′
α
β
ε .

Now, we are ready to state and prove the general form of all adapted linear

superconnections on (M,D,D′).

Theorem 2.4. Let (M,D,D′) be an almost product supermanifold and ∇̃ be

a linear superconnection on M. Then all the adapted linear superconnections

on M are given by

∇XY = P∇̃XPY + P ′∇̃XP ′Y + PS(X,PY ) + P ′S(X,P ′Y ), (2.9)

where X,Y are graded vector fields and S is an arbitrary tensor field of type

(1, 2) on M.
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Proof. Let Y ∈ D, then PS(X,PY ) ∈ D, P∇̃XPY ∈ D and

P ′Y = 0.

We can also obtain Y ∈ D′ in a similar way. It is easy to check that ∇ is an

adapted linear superconnection on M.

Conversely, suppose that ∇ is an adapted linear superconnection on M. For

graded vector fields X and Y , if we put

∇XY − ∇̃XY = S(X,Y ), (2.10)

then we have

P ′(∇XPY ) = P ′
(
∇̃XPY + S

(
X,PY

))
= 0,

and

P(∇XP ′Y ) = P
(
∇̃XP ′Y + S

(
X,P ′Y

))
= 0.

Thus we see that

∇XY =∇̃XY + S(X,Y )

=(P + P ′)
(
∇̃X(P + P ′)Y

)
+
(
P + P ′)S

(
X, (P + P ′)Y

)
=P∇̃XPY + P ′∇̃XPY + P∇̃XP ′Y + P ′∇̃XP ′Y

+ PS(X,PY ) + P ′S(X,PY ) + PS(X,P ′Y ) + P ′S(X,P ′Y )

which implies that

∇XY = P∇̃XPY + P ′∇̃XP ′Y + PS(X,PY ) + P ′S(X,P ′Y ).

This completes the proof. □

Next, for two graded vector fields X and Y , we define

S◦(X,Y ) = P ′∇̃XPY + P∇̃XP ′Y,

and

S∗(X,Y ) = P
(
[P ′X,PY ]− ∇̃P′XPY

)
+ P ′

(
[PX,P ′Y ]− ∇̃PXP ′Y

)
.

Both S◦ and S∗ are tensor fields of type (1, 2) on M :

S◦(X1f +X2, Y ) = P ′∇̃X1f+X2PY + P∇̃X1f+X2P ′Y

= P ′
(
(−1)|X1||f |f∇̃X1PY + ∇̃X2PY

)
+ P

(
(−1)|X1||f |f∇̃X1

P ′Y + ∇̃X2
P ′Y

)
.

Then

S◦(X1f +X2, Y ) =(−1)|X1||f |f
(
P ′∇̃X1PY + P∇̃X1P ′Y

)
+
(
P ′∇̃X2PY + P∇̃X2P ′Y

)
.
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Thus we get

S◦(X1f +X2, Y ) =
(
(−1)|X1||f |fP ′∇∼

X1
PY + P ′(X1(f)PY )

)
+

(
(−1)|X1||f |fP∇∼

X1
P ′Y + P(X1(f)P ′Y )

)
+

(
P ′∇̃X2

PY + P∇̃X2
P ′Y

)
=

(
P ′∇̃X1fPY + P∇̃X1fP ′Y

)
+

(
P ′∇̃X2PY + P∇̃X2P ′Y

)
which give us

S◦(X1f +X2, Y ) = S◦(X1, fY ) + S◦(X2, Y ).

Also, we have

S◦(X,Y1f + Y2) =P ′∇̃XP(Y1f + Y2) + P∇̃XP ′(Y1f + Y2)

=(−1)|f ||Y1|P ′∇̃XfPY1 + P ′∇̃XPY2

+ (−1)|f ||Y1|P∇̃XfP ′Y1 + P∇̃XP ′Y2

=(−1)|f ||Y1|P ′
(
X(f)PY1 + (−1)|X||f |f∇̃XPY1

)
+ P ′∇̃XPY2

+ (−1)|f ||Y1|P
(
X(f)P ′Y1 + (−1)|X||f |f∇̃XP ′Y1

)
+ P∇̃XP ′Y2

=0 + (−1)|f ||Y1|+|X||f |fP ′∇̃XPY1 + P ′∇̃XPY2

+ 0 + (−1)|f ||Y1|+|X||f |fP∇̃XP ′Y1 + P∇̃XP ′Y2

=
(
P ′∇̃XPY1 + P∇̃XP ′Y1

)
f +

(
P ′∇̃XPY2 + P∇̃XP ′Y2

)
which implies that

S◦(X,Y1f + Y2) = S◦(X,Y1)f + S◦(X,Y2).

Also, we have

S∗(Xf, Y ) =P
(
[P ′(Xf),PY ]− ∇̃P′(Xf)PY

)
+ P ′

(
[P(Xf),P ′Y ]− ∇̃P(Xf)P ′Y

)
=P

(
P ′(Xf)(PY )− (−1)|Xf ||Y |PY

(
P ′(Xf)

))
− P

(
(−1)|X||f |f∇̃P′XPY

)
+ P ′

(
P(Xf)(P ′Y )− (−1)|Xf ||Y |P ′Y (P(Xf))

)
− P ′

(
(−1)|X||f |f∇̃PXP ′Y

)
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=P
(
(−1)|X||f |fP ′X(PY )

− (−1)|Xf ||Y |+|X||f |(PY (f)P ′X + (−1)|Y ||f |fPY (P ′X)
))

− P
(
(−1)|X||f |f∇̃P′XPY + ((P ′X)(f))PY − ((P ′X)(f))PY

)
+ P ′

(
(−1)|X||f |fPX(P ′Y )

− (−1)|Xf ||Y |+|X||f |((P ′Y (f))PX + (−1)|Y ||f |fP ′Y (PX))
)

− P ′
(
(−1)|X||f |f∇̃PXP ′Y + ((PX)(f))P ′Y − ((PX)(f))P ′Y

)
=P

(
((P ′X)(f))PY + (−1)|X||f |f(P ′X)(PY )− (−1)|X||fY |fPY (P ′X)

)
− P

(
(−1)|X||f |f∇̃P′XPY + ((P ′X)(f))PY

)
+ P ′

(
((PX)(f))P ′Y + (−1)|X||f |fPX(P ′Y )− (−1)|X||fY |fP ′Y (PX))

)
− P ′

(
(−1)|X||f |f∇̃PXP ′Y + ((PX)(f))P ′Y

)
=P

(
[P ′(X),P(fY )]− ∇̃P′X)P(fY )

)
+ P ′

(
[PX,P ′(fY )]− ∇̃PXP ′(fY )

)
.

It follows that

S∗(Xf, Y ) = S∗(X, fY ).

Also, we have

S∗(X,Y f) = P
(
[P ′X,P(Y f)]− ∇̃P′XP(Y f)

)
+ P ′

(
[PX,P ′(Y f)]− ∇̃PXP ′(Y f)

)
= P

(
P ′X(P(Y f))− (−1)|X||Y f |P(Y f)(P ′X)− (−1)|Y ||f |∇̃P′XfPY

)
+ P ′

(
PX(P ′(Y f))− (−1)|X||Y f |(P ′(Y f))(PX)− (−1)|Y ||f |∇̃PXfP ′Y

)
= P

(
(−1)|Y ||f |P ′X(f)PY + (−1)|X||f |+|Y ||f |fP ′X(PY )

− (−1)|X||Y f |+|Y ||f |fPY (P ′X)
)

+ P ′
(
(−1)|Y ||f |PX(f)P ′Y + (−1)|X||f |+|Y ||f |fPX(P ′Y )

− (−1)|X||Y f |+|Y ||f |fP ′Y (PX)
)

− (−1)|Y ||f |P
(
P ′X(f)PY + (−1)|X||f |f∇̃P′XPY

)
− (−1)|Y ||f |P ′

(
PX(f)P ′Y + (−1)|X||f |f∇̃PXP ′Y

)
.

Thus

S∗(X,Y f) =
(
P[P ′X,PY ]

)
f −

(
P∇̃P′XPY

)
f +

(
P ′[PX,P ′Y ]

)
f −

(
P ′∇̃PXP ′Y

)
f

= S∗(X,Y )f.
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By direct calculations we deduce that

(a) PS◦(X,PY ) = 0,

(b) P ′S◦(X,P ′Y ) = 0,

and

(a) PS∗(X,PY ) = P
(
[P ′X,PY ]− ∇̃P′XPY

)
,

(b) P ′S∗(X,P ′Y ) = P ′
(
[PX,P ′Y ]− ∇̃PXP ′Y

)
.

Finally, we obtain two adapted linear superconnections ∇◦ and ∇

∇◦
XY = P∇̃XPY + P ′∇̃XP ′Y + PS◦(X,PY ) + P ′S◦(X,P ′Y )

= P∇̃XPY + P ′∇̃XP ′Y, (2.11)

and

∇XY =P∇̃XPY + P ′∇̃XP ′Y + PS∗(X,PY ) + P ′S∗(X,P ′Y )

=P∇̃XPY + P ′∇̃XP ′Y + P
(
[P ′X,PY ]− ∇̃P′XPY

)
+ P ′

(
[PX,P ′Y ]− ∇̃PXP ′Y

)
which yields

∇XY =P∇̃X−P′XPY + P ′∇̃X−PXP ′Y + P[P ′X,PY ] + P ′[PX,P ′Y ]

=P∇̃PXPY + P ′∇̃P′XP ′Y + P[P ′X,PY ] + P ′[PX,P ′Y ] (2.12)

for graded vector fields X,Y .

If ∇ is torsion-free then for each i, j, α and β, we have [Ej , Ei] ∈ D and

[Eβ , Eα] ∈ D′. This means that distributions D and D′ are involutive. So, we

conclude the following.

Corollary 2.5. The following hold:

(i) Two adapted linear superconnections ∇◦ and ∇, defined in (2.11) and

(2.12), coincide if and only if they have the same torsion tensor fields.

(ii) If ∇ is torsion-free then distributions D and D′ are involutive.
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