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Abstract. Let (M,F ) be a Finsler manifold and G be the Sasaki-Finsler

metric on the slit tangent bundle T̃M . In this paper, we investigate some

properties of Sasaki-Finsler metric which is pure with respect to some para-

complex structures on T̃M . We show that the curvature tensor field of the

Levi-Civita connection on (T̃M,G) is recurrent or pseudo symmetric if and

only if (M,F ) is locally Euclidean or locally Minkowski space.
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1. Introduction

In the context of Riemannian geometry, the tangent bundle TM of a Rie-

mannian manifold (M, g) was classically equipped with the Sasaki metric g ,

which was introduced in 1958 by Sasaki [18]. The study of the relationship

between the geometry of a manifold (M, g) and that of its tangent bundle

TM equipped with the Sasaki metric g has shown some kinds of rigidity (see

[13, 11]). Other metrics defined by the various kinds of classical lifts of the

metric g from M to TM were defined in [20], and then geometers obtained

interesting results related to these metrics involving the different aspects and

concepts of differential geometry. One can find correct relations between the

geometric properties of (M, g) and (TM, g) in [1, 2, 10, 12, 21]. J. Wang and Y.
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Wang studied geodesics and some curvature properties for the rescaled Sasaki

metric [19]. A. Gezer investigated the rescaled Sasaki type metric on the tan-

gent bundle and the cotangent bundle, see [9, 8]. In [6], A. Bejancu initiate a

study of interrelations between the geometries of both the tangent bundle and

the indicatrix bundle of a Finsler manifold on one side, and the geometry of the

manifold itself, on the other side. Also, he and H.R. Farran studied some in-

teresting geometric characterizations of Finsler manifold of constant curvature

K = 1 and calculated the scalar curvature of the tangent bundle of a Finsler

manifold (see [4] and [5]).

This paper is organized as follows: In section 2, we introduce some con-

cepts concerning with the tangent bundle TM over an n-dimensional Finsler

manifold (M,F ). In section 3, we investigate the paraholomorphy property

of the Sasaki-Finsler metric by using some compatible paracomplex structures

on TM and give some remarks concerning the twin Norden metric of g. Also

we construct an almost product connection and give conditions for the almost

product connection to be symmetric. Section 4 deals with curvature properties

of the Sasaki-Finsler metric.

2. Preliminaries

Let M be an n-dimensional C∞ manifold, TM =
∪

x∈M TxM the tangent

bundle and T̃M := TM − {0} the slit tangent bundle. A Finsler structure

on M is a function F : TM → [0,∞) with the following properties: (i) F

is C∞ on TM0; (ii) F is positively 1-homogeneous on the fibers of tangent

bundle TM , i.e., F (x, λy) = λF (x, y), ∀λ > 0; (iii) The following quadratic

form gy : TxM × TxM → R is positively defined on TM0

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
s=t=0

, u, v ∈ TxM.

Then the pair (M,F ) is called a Finsler manifold.

Let (M,F ) be an n−dimensional Finsler manifold, where F is the funda-

mental function of (M,F ) that is supposed to be of class C∞ on the slit tangent

bundle T̃M = TM\{0}. Denote by (xi, yi), the local coordinates on TM , where

(xi) are the local coordinates of a point x ∈ M and (yi) are the coordinates of

a vector y ∈ TxM. Then the functions

gij =
1

2

∂2F 2

∂yi∂yj

define a Finsler tensor field of type (0, 2) on T̃M . The n × n matrix [gij ] is

supposed to be positive definite and its inverse is denoted by [gij ].

Next we consider the kernel VT̃M of the differential of the projection map

π : T̃M → M, which is known as vertical bundle on T̃M . Denote by Γ(VT̃M)

the F(T̃M)-module of sections of VT̃M , where F(T̃M) is the algebra of smooth
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functions on T̃M . Locally, Γ(VT̃M) is spanned by the natural vector fields

{ ∂
∂y1 , ...,

∂
∂yn }. Then by using the functions N i

j we define vector fields

δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj
, i ∈ {1, ..., n}, (2.1)

which enable us to construct a complementary vector subbundleHT̃M to VT̃M
in T T̃M that is locally spanned by { δ

δx1 , ...,
δ

δxn }. We call HT̃M the horizontal

distribution on T̃M . Thus the tangent bundle of T̃M admits the composition

T T̃M = HT̃M ⊕ VT̃M. (2.2)

We can define the Sasaki-Finsler metric G on T̃M as follows

G
( δ

δxi
,

δ

δxj

)
= gij ,

G
( δ

δxi
,

∂

∂yj

)
= 0,

G
( ∂

∂yi
,

∂

∂yj

)
= gij . (2.3)

Then we define some geometric objects of Finsler type on T̃M .

First, the Lie brackets of the above vector fields are expressed as follows:[ δ

δxi
,

δ

δxj

]
= −Rk

ij

∂

∂yk
; (2.4)[ δ

δxi
,

∂

∂yj

]
= (Γk

ij + Lk
ij)

∂

∂yk
(2.5)[ ∂

∂yi
,

∂

∂yj

]
= 0 (2.6)

The functions Γk
ij , L

k
ij and Rk

ij given by

Γk
ij =

1

2
gkh
{
δgki
δxj

+
δghj
δxi

− δgij
δxh

}
(2.7)

Lk
ij = −yt

∂Γk
ti

∂yj
(2.8)

Rk
ij = yt

(δΓk
tj

δxi
− δΓk

ti

δxj
+ Γk

hiΓ
h
tj − Γk

hjΓ
h
ti

)
(2.9)

and by Euler theorem we obtain

Γk
ijy

j = Nk
i . (2.10)

We note that Rk
ij define a skew-symmetric Finsler tensor field of type (1, 2)

while (Γk
ij + Lk

ij) are the local coefficients of locally Minkowski connection.

Some other Finsler tensor fields defined by Rk
ij will be useful in study of Finsler

manifolds of constant flag curvature :

Rhij = ghkR
k
ij , Rhj = Rhijy

i, Rk
j = gkhRhj . (2.11)
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From this we have

yhRhij = 0, yhRhj = 0, Rij = Rji, (2.12)

Rk
ij =

1

3

(
∂Rk

j

∂yi
− ∂Rk

i

∂yj

)
. (2.13)

We define a symmetric Finsler tensor field of type(1, 2) whose local components

are given by

Bk
ij = −Lk

ij (2.14)

As a consequence we have

Bk
ijy

j = 0 (2.15)

Also the Cartan tensor field is given by its local components

Ck
ij =

1

2
gkh

∂gij
∂yh

(2.16)

by the homogeneity condition for F we obtain

Ck
ijy

j = 0. (2.17)

Theorem 2.1. Let (M,F ) be a Finsler manifold, then the Levi-civita connec-

tion on (T̃M,G) are as follows:

i) ∇̃ δ

δxi

δ

δxj
= Γk

ij

δ

δxk
−
(
Ck

ij +
1

2
Rk

ij

) ∂

∂yk
;

ii) ∇̃ δ

δxi

∂

∂yj
=
(
Ck

ij +
1

2
Rk

ij

) δ

δxk
+ Γk

ij

∂

∂yk
;

iii) ∇̃ ∂

∂yi

δ

δxj
=
(
Ck

ij +
1

2
Rk

ij

) δ

δxk
− Lk

ij

∂

∂yk
;

iv) ∇̃ ∂

∂yi

∂

∂yj
= Lk

ij

δ

δxk
+ Ck

ij

∂

∂yk
.

3. On Some Paracomplex Structures on Slit Tangent Bundle

An almost paracomplex manifold is an almost product manifold (M,φ),

φ2 = id, such that the two eigenbundles T+M and T−M associated to the two

eigenvalues +1 and −1 of φ, respectively, have the same rank. Note that the

dimension of an almost paracomplex manifold is necessarily even. For almost

paracomplex structure the integrability is equivalent to the vanishing of the

Nijenhuis tensor

Nφ(X,Y ) = [φX,φY ]− φ[φX, Y ]− φ[X,φY ] + [X,Y ]. (3.1)

On the other hand, in order that an almost paracomplex structure be inte-

grable, it is necessary and sufficient that we can introduce a torsion free linear

connection such that

∇φ = 0.
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A paracomplex manifold is an integrable almost paracomplex manifold (M,φ)

or equivalently it is an almost paracomplex manifold (M,φ) such that its Ni-

jenhuis tensors are zero.

A pure metric with respect to the almost paracomplex structure is a Rie-

mannian metric g such that

g(φX, Y ) = g(X,φY ) (3.2)

for any X,Y ∈ TM . Such Riemannian metrics were said to be Norden metrics.

If (M,φ) is an almost paracomplex manifold with Norden metric, we say that

(M,φ, g) is an almost Norden manifold. If φ is integrable, we say that (M,φ, g)

is a para-Kähler-Norden manifold. It is remarkable that, a Nodren metric is

called paraholomorphic if

ϕφg = 0, (3.3)

where ϕφ is the Tachibana operator:

(ϕφg)(X,Y, Z) =(φX)
(
g(Y, Z)

)
−X(g(φY,Z))

+ g
(
(LY φ)X,Z

)
+ g
(
Y, (LZφ)X

)
. (3.4)

It is well known that the condition ∇φ = 0 is equivalent to paraholomorphy of

the Norden metric g [17], i.e.

ϕφg = 0.

If (M,φ, g) is a Norden manifold with paraholomorphic Norden metric, we

say that (M,φ, g) is a paraholomorphic Norden manifold (para-Kähler-Norden

manifold).

On the slit tangent bundle (T̃M,G) where G is the Sasaki-Finsler metric

(2.3), we can define an almost paracomplex structure J as following:

J
( δ

δxi

)
= − δ

δxi
, J

( ∂

∂yi

)
=

∂

∂yi
, (3.5)

for all i ∈ {1, 2, ..., n}.

Suppose that T̃M equipped with the Sasaki-Finsler metric G and the para-

complex structure I defined by (3.5). We show that (T̃M, I,G) is an almost

paracomplex Norden manifold.

Theorem 3.1. Let (M,F ) be a Finsler manifold and T̃M be its tangent bun-

dle equipped with the Sasaki-Finsler metric G and the paracomplex structure

J defined by (3.5). The triple (T̃M, J,G) is an almost paracomplex Norden

manifold.
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Proof. From (3.2) we have

G
(
J(

δ

δxi
),

δ

δxj

)
= G

( δ

δxi
, J(

δ

δxj
)
)
= −gij ,

G
(
J(

δ

δxi
),

∂

∂yj

)
= G

( δ

δxi
, J(

∂

∂yj
)
)
= 0,

G
(
J(

∂

∂yi
),

δ

δxj

)
= G

( ∂

∂yi
, J(

δ

δxj
)
)
= 0,

G
(
J(

∂

∂yi
),

∂

∂yj

)
= G

( ∂

∂yi
, J(

∂

∂yj
)
)
= gij .

So G is pure with respect to J . □

Theorem 3.2. Let (M,F ) be a Finsler manifold and let T̃M be its tangent

bundle equipped with the Sasaki-Finsler metric G and the paracomplex struc-

ture J defined by (3.5). The triple (T̃M, J,G) is a para-Kähler-Norden (or

paraholomorphic Norden) manifold if and only if M is locally Euclidean.

Proof. Having determined both the Sasaki-Finsler metric G and the almost

paracomplex structure J and by using (3.4) we calculate

(ϕJG)
( ∂

∂yi
,

∂

∂yj
,

δ

δxk

)
= 0,

(ϕJG)
( ∂

∂yi
,

∂

∂yj
,

∂

∂yk

)
= 0,

(ϕJG)
( ∂

∂yi
,

δ

δxj
,

∂

∂yk

)
= 0,

(ϕJG)
( ∂

∂yi
,

δ

δxj
,

δ

δxk

)
= 4Cijk,

(ϕJG)
( δ

δxi
,

∂

∂yj
,

δ

δxk

)
= 2Rt

kigtj ,

(ϕJG)
( δ

δxi
,

∂

∂yj
,

∂

∂yk

)
= 4Lijk,

(ϕJG)
( δ

δxi
,

δ

δxj
,

δ

δxk

)
= 0,

(ϕJG)
( δ

δxi
,

δ

δxj
,

∂

∂yk

)
= −2Rt

ijgtk.

Therefore, we have the result. □

Now, let us consider an almost paracomplex structure I on T̃M defined by

I
( δ

δxi

)
=

δ

δxi
, I

( ∂

∂yi

)
=

∂

∂yi
, (3.6)

for all i ∈ {1, 2, ..., n}.
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Suppose that T̃M equipped with the Sasaki-Finsler metric G and the para-

complex structure I. We show that (T̃M, I,G) is an almost paracomplex Nor-

den manifold.

Theorem 3.3. Let (M,F ) be a Finsler manifold and T̃M be its tangent bun-

dle equipped with the Sasaki-Finsler metric G and the paracomplex structure

I defined by (3.6). The triple (T̃M, I,G) is an almost paracomplex Norden

manifold.

Proof. From (3.2) we get

G
(
I(

δ

δxi
),

δ

δxj

)
= G

( δ

δxi
, I(

δ

δxj
)
)
= gij ,

G
(
I(

δ

δxi
),

∂

∂yj

)
= G

( δ

δxi
, I(

∂

∂yj
)
)
= 0,

G
(
I(

∂

∂yi
),

δ

δxj

)
= G

( ∂

∂yi
, I(

δ

δxj
)
)
= 0,

G
(
I(

∂

∂yi
),

∂

∂yj

)
= G

( ∂

∂yi
, I(

∂

∂yj
)
)
= −gij .

So G is pure with respect to I. □

Theorem 3.4. Let (M,F ) be a Finsler manifold and let T̃M be its tangent

bundle equipped with the Sasaki-Finsler metric G and the paracomplex struc-

ture I defined by (3.6). The triple (T̃M, I,G) is a para-Kähler-Norden (or

paraholomorphic Norden) manifold if and only if M is locally Euclidean.

Proof. By using Tachibana operator (3.4), we can get

(ϕIG)
( ∂

∂yi
,

∂

∂yj
,

δ

δxk

)
= 0,

(ϕIG)
( ∂

∂yi
,

∂

∂yj
,

∂

∂yk

)
= 0,

(ϕIG)
( ∂

∂yi
,

δ

δxj
,

∂

∂yk

)
= 0,

(ϕIG)
( ∂

∂yi
,

δ

δxj
,

δ

δxk

)
= −4Cijk,

(ϕIG)
( δ

δxi
,

∂

∂yj
,

δ

δxk

)
= −2gtjR

t
ki,

(ϕIG)
( δ

δxi
,

∂

∂yj
,

∂

∂yk

)
= −4Lijk,

(ϕIG)
( δ

δxi
,

δ

δxj
,

δ

δxk

)
= 0,

(ϕIG)
( δ

δxi
,

δ

δxj
,

∂

∂yk

)
= −2gtkR

t
ij .
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So Sasaki-Finsler metric G is paraholomorphic if and only if (M,F ) is locally

Euclidean. □

Another almost paracomplex structure on T̃M is defined by

θ
( δ

δxi

)
=

∂

∂yi
, θ

( ∂

∂yi

)
=

δ

δxi
. (3.7)

Theorem 3.5. Let (M,F ) be a Finsler manifold and T̃M be its tangent bun-

dle equipped with the Sasaki-Finsler metric G and the paracomplex structure

θ defined by (3.7). The triple (T̃M, θ,G) is an almost paracomplex Norden

manifold.

Proof. From (3.2) we get

G
(
θ(

δ

δxi
),

δ

δxj

)
= G

( δ

δxi
, θ(

δ

δxj
)
)
= 0,

G
(
θ(

δ

δxi
),

∂

∂yj

)
= G

( δ

δxi
, θ(

∂

∂yj
)
)
= gij ,

G
(
θ(

∂

∂yi
),

δ

δxj

)
= G

( ∂

∂yi
, θ(

δ

δxj
)
)
= gij ,

G
(
θ(

∂

∂yi
),

∂

∂yj

)
= G

( ∂

∂yi
, θ(

∂

∂yj
)
)
= 0.

So G is pure with respect to θ. □

Theorem 3.6. Let (M,F ) be a Finsler manifold and let T̃M be its tangent

bundle equipped with the Sasaki-Finsler metric G and the paracomplex struc-

ture θ defined by (3.7). The triple (T̃M, θ,G) is a para-Kähler-Norden (or

paraholomorphic Norden) manifold if and only if M is locally Euclidean.

Proof. By similar calculations, we have

(ϕθG)
( ∂

∂yi
,

∂

∂yj
,

δ

δxk

)
= −(2Cijk +Rt

kigtj),

(ϕθG)
( ∂

∂yi
,

∂

∂yj
,

∂

∂yk

)
= −2Lijk,

(ϕθG)
( ∂

∂yi
,

δ

δxj
,

∂

∂yk

)
= −(2Cijk +Rt

jigtk),

(ϕθG)
( ∂

∂yi
,

δ

δxj
,

δ

δxk

)
= −2Lijk,

(ϕθG)
( δ

δxi
,

∂

∂yj
,

δ

δxk

)
= 2Lijk,

(ϕθG)
( δ

δxi
,

∂

∂yj
,

∂

∂yk

)
= 2Cijk,
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(ϕθG)
( δ

δxi
,

δ

δxj
,

δ

δxk

)
= 2Cijk + 2Rt

jigtk,

(ϕθG)
( δ

δxi
,

δ

δxj
,

∂

∂yk

)
= 2Lijk.

So Sasaki-Finsler metric G is paraholomorphic if and only if (M,F ) is locally

Euclidean. □

Consider the almost paracomplex Norden manifold (T̃M, I,G). The twin

metric tensor of G is the metric defined by

G̃(X,Y ) = G(IX, Y )

for all X,Y ∈ χ(T̃M). So we have

G̃
( δ

δxi
,

δ

δxj

)
= gij ,

G̃
( δ

δxi
,

∂

∂yj

)
= G̃

( ∂

∂yi
,

δ

δxj

)
= 0,

G̃
( ∂

∂yi
,

∂

∂yj

)
= −gij . (3.8)

Let (M,F ) be a Finsler manifold. Consider the triple (T̃M, θ, G̃) where G̃ is

a twin metric defined by (3.8) and θ an almost paracomplex structure defined

by (3.7) we see that

G̃
(
θ(

δ

δxi
), θ(

δ

δxj
)
)
= −G̃

( δ

δxi
,

δ

δxj

)
= −gij ,

G̃
(
θ(

δ

δxi
), θ(

∂

∂yj
)
)
= −G̃

( δ

δxi
,

∂

∂yj

)
= 0,

G̃
(
θ(

∂

∂yi
), θ(

δ

δxj
)
)
= −G̃

( ∂

∂yi
,

δ

δxj

)
= 0,

G̃
(
θ(

∂

∂yi
), θ(

∂

∂yj
)
)
= −G̃

( ∂

∂yi
,

∂

∂yj

)
= gij .

Then the triple (T̃M, θ, G̃) is an almost para-Hermitian manifold.

Another almost paracomplex Norden manifold(T̃M, θ,G), the twin metric

tensor of G is defined by

K(X,Y ) = G(θX, Y )

for all X,Y ∈ χ(T̃M). We have

K
( δ

δxi
,

δ

δxj

)
= K

( ∂

∂yi
,

∂

∂yj

)
= 0,

K
( δ

δxi
,

∂

∂yj

)
= K

( ∂

∂yi
,

δ

δxj

)
= gij . (3.9)

Let (M,F ) be a Finsler manifold and let TM be its tangent bundle equipped

with the Sasaki-Finsler metric G. Then for the triple (T̃M, J,K), where K is a
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twin metric defined by (3.9) and J is an almost paracomplex structure defined

by (3.5) we have

K
(
J
( δ

δxi

)
, J
( δ

δxj

))
= −K

( δ

δxi
,

δ

δxj

)
= 0,

K
(
J
( δ

δxi

)
, J
( ∂

∂yj
))

= −K
( δ

δxi
,

∂

∂yj

)
= −gij ,

K
(
J
( ∂

∂yi
)
, J
( δ

δxj

))
= −K

( ∂

∂yi
,

δ

δxj

)
= −gij ,

K
(
J
( ∂

∂yi
)
, J
( ∂

∂yj
))

= −K
( ∂

∂yi
,

∂

∂yj

)
= 0.

Therefore the triple (T̃M, J,K) is an almost para-Hermitian manifold.

Now, we define a linear connection ∇̄ as following

∇̄XY = ∇̃XY − S(X,Y ), (3.10)

where ∇̃ is Levi-Civita connection given by Theorem 2.1 and S is a tensor field

of type (1, 2) on T̃M by

S(X,Y ) =
1

2

(
(∇̃JY J)X + J

(
(∇̃Y J)X

)
− J

(
(∇̃XJ)Y

))
(3.11)

for all X,Y ∈ χ(TM).

Proposition 3.7. Let (M,F ) be a Finsler manifold and let TM be its tangent

bundle equipped with the Sasaki-Finsler metric G and the almost product struc-

ture J defined by (3.5). Then the almost product connection ∇̄ constructed by

the Levi-Civita connection ∇̃ of the Sasaki-Finsler metric G and the almost

product structure J is as follows:

∇̄ δ

δxi

δ

δxj
= Γk

ij

δ

δxk
,

∇̄ δ

δxi

∂

∂yj
=
(
Γk
ij − 2Lk

ij

) ∂

∂yk
,

∇̄ ∂

∂yi

δ

δxj
= 3
(
Ck

ij +
1

2
Rk

ij

) δ

δxk
,

∇̄ ∂

∂yi

∂

∂yj
= Ck

ij

∂

∂yk
.

Proof. By using Theorem 2.1, the relations (3.10), (3.11) and the almost prod-

uct structure J defined by (3.5), one can get the result. □

Theorem 3.8. Let (M,F ) be a Finsler manifold and TM be its tangent bundle.

The almost product connection ∇̄ constructed by (3.10) is symmetric if and only

if (M,F ) is locally Euclidean.
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Proof. Let T̄ denotes the torsion tensor of ∇̄. By using Proposition 3.7, we get

T̄
( δ

δxi
,

δ

δxj

)
= Rk

ij

∂

∂yk
,

T̄
( δ

δxi
,

∂

∂yj

)
= −3Lk

ij

∂

∂yk
− 3(Ck

ij +
1

2
Rk

ji)
δ

δxk
,

T̄
( ∂

∂yi
,

∂

∂yj

)
= 0.

Therefore the almost product connection ∇̄ is symmetric if and only if (M,F )

is locally Euclidean. □

It is well-known that the almost product structure J is integrable if and only

if there exists a symmetric almost product connection on M [7].

Corollary 3.9. Let (M,F ) be a Finsler manifold and TM be its tangent bundle

equipped with the Sasaki-Finsler metric G and the paracomplex structure J

defined by (3.5). The triple (TM, J,G) is a paracomplex Norden manifold if

and only if (M,F ) be locally Euclidean.

Finally, we conclude the following.

Corollary 3.10. Let (M,F ) be a Finsler manifold and TM be its tangent

bundle equipped with the Sasaki-Finsler metric G. The triple (TM, J,K) is a

para-Hermitian manifold if and only if (M,F ) be locally Euclidean, where K is

a twin metric defined by (3.9) and J is an almost paracomplex structure defined

by (3.5).

4. Some Properties of the Sasaki-Finsler Metric

A Riemannian manifold (M, g) is said to be locally symmetric due to E.

Cartan if its curvature tensor R satisfies the relation ∇R = 0, where ∇ denotes

the operator of covariant differentiation with respect to the metric tensor g.

In this section, we study conditions for the curvature tensor R̃ of G to be

recurrent or pseudo symmetric. If curvature tensor R̃ is recurrent then there

exists a 1-form α on T̃M such that

(∇̃W R̃)(X,Y )Z = α(W )R̃(X,Y )Z (4.1)

for all X,Y, Z,W ∈ χ(T̃M). The tangent bundle (T̃M,G) is called pseudo

symmetric, if there exists a 1-form α and a vector field Ã on T̃M such that

(∇̃W R̃)(X,Y )Z =2α(W )R̃(X,Y )Z + α(X)R̃(W,Y )Z + α(Y )R̃(X,W )Z

+ α(Z)R̃(X,Y )W +G
(
R̃(X,Y )Z,W

)
Ã, (4.2)

where Ã is the G-dual vector field of the 1-form α, e.i.,

G(X, Ã) = α(X).
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Here, we are going to find the curvature tensor field R̃ of Levi-Civita con-

nection on (T̃M,G) in terms of Vrănceanu connection ∇.

Theorem 4.1. [6] Let (M,F ) be a Finsler manifold. Then the curvature tensor

field R̃ of Levi-Civita connection on (T̃M,G) in terms of Vrǎnceanu connection

∇ is as follows:

i) R̃
( δ

δxi
,

δ

δxj

) δ

δxk
=R
( δ

δxi
,

δ

δxj

) δ

δxk
+B

(
δ

δxk
, R
( δ

δxi
,

δ

δxj

))

+
1

2
R

(
δ

δxk
, R
( δ

δxi
,

δ

δxj

))
+ C

(
δ

δxk
, R
( δ

δxi
,

δ

δxj

))

−A( δ

δxi ,
δ

δxj )

[
1

2
B

(
δ

δxi
, R
( δ

δxj
,

δ

δxk

))
+

1

4
R

(
δ

δxi
, R
( δ

δxj
,

δ

δxk

))
+

1

2
C

(
δ

δxi
, R
( δ

δxj
,

δ

δxk

))
+B

(
δ

δxi
, C
( δ

δxj
,

δ

δxk

))
+

1

2
R

(
δ

δxi
, C
( δ

δxj
,

δ

δxk

))
+ C

(
δ

δxi
, C
( δ

δxj
,

δ

δxk

))
+

1

2

(
∇ δ

δxi
R
)( δ

δxj
,

δ

δxk

)
+
(
∇ δ

δxi
C
)( δ

δxj
,

δ

δxk

)]
,

ii) R̃
( δ

δxi
,

δ

δxj

) ∂

∂yk
=R
( δ

δxi
,

δ

δxj

) ∂

∂yk
−B

(
R
( δ

δxi
,

δ

δxj

)
,

∂

∂yk

)

+A( δ

δxi ,
δ

δxj )

[
B

(
δ

δxi
, B
( δ

δxj
,

∂

∂yk

))
+
(
∇ δ

δxi
B
)( δ

δxj
,

∂

∂yk

)
+
(
∇ δ

δxi
C
)( δ

δxj
,

∂

∂yk

)
+ C

(
δ

δxi
, B
( δ

δxj
,

∂

∂yk

))
− C

(
δ

δxi
, C
( δ

δxj
,

∂

∂yk

))

− 1

2
C

(
δ

δxi
, R
( δ

δxj
,

∂

∂yk

))
+

1

2

(
∇ δ

δxi
R
)( δ

δxj
,

∂

∂yk

)
+

1

2
R

(
δ

δxi
, B
( δ

δxj
,

∂

∂yk

))
− 1

2
R

(
δ

δxi
, C
( δ

δxj
,

∂

∂yk

))

− 1

4
R

(
δ

δxi
, R
( δ

δxj
,

∂

∂yk

))]
,
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iii) R̃
( ∂

∂yi
,

∂

∂yj

) δ

δxk
=R
( ∂

∂yi
,
∂

∂yi

) δ

δxk
+A( ∂

∂yi ,
∂

∂yj )

[
−B

(
∂

∂yi
, B
( δ

δxk
,

∂

∂yj

))
+B

(
C
( δ

δxk
,

∂

∂yj

)
,
∂

∂yi

)
+

1

2
B

(
R
( δ

δxk
,

∂

∂yj

)
,
∂

∂yi

)
+ C

(
C
( δ

δxk
,

∂

∂yj

)
,
∂

∂yi

)
+

1

2
C

(
R
( δ

δxk
,

∂

∂yj

)
,
∂

∂yi

)
+

1

2
R

(
C
( δ

δxk
,

∂

∂yj

)
,
∂

∂yi

)
+

1

4
R

(
R
( δ

δxk
,

∂

∂yj

)
,
∂

∂yi

)
+
(
∇ ∂

∂yi
B
)( δ

δxk
,

∂

∂yj

)
+
(
∇ ∂

∂yi
C
)( δ

δxk
,

∂

∂yj

)
+

1

2

(
∇ ∂

∂yi
R
)( δ

δxk
,

∂

∂yj

)]
,

iv) R̃
( ∂

∂yi
,

∂

∂yj

) ∂

∂yk
=R
( ∂

∂yi
,

∂

∂yj

) ∂

∂yk

−A( ∂
∂yi ,

∂

∂yj )

[(
∇ ∂

∂yi
B
)( ∂

∂yj
,

∂

∂yk

)
+ C

(
B
( ∂

∂yj
,

∂

∂yk

)
,
∂

∂yi

)

+B

(
B
( ∂

∂yj
,

∂

∂yk

)
,
∂

∂yi

)
+

1

2
R

(
B
( ∂

∂yj
,

∂

∂yk

)
,
∂

∂yi

)]
,

v) R̃
( δ

δxi
,

∂

∂yj

) δ

δxk
=R
( δ

δxi
,

∂

∂yj

) δ

δxk
+B

(
δ

δxi
, B
( δ

δxk
,

∂

∂yj

))
−B

(
∂

∂yj
, C
( δ

δxi
,

δ

δxk

))
− 1

2
B

(
∂

∂yj
, R
( δ

δxi
,

δ

δxk

))
+
(
∇ δ

δxi
B
)( δ

δxk
,

∂

∂yj

)
+ C

(
δ

δxi
, B
( δ

δxk
,

∂

∂yj

))
− C

(
δ

δxi
, C
( δ

δxk
,

∂

∂yj

))
− 1

2
C

(
δ

δxi
, R
( δ

δxk
,

∂

∂yj

))
+
(
∇ δ

δxi
C
)( δ

δxk
,

∂

∂yj

)
+
(
∇ ∂

∂yj
C
)( δ

δxi
,

δ

δxk

)
+

1

2
R

(
δ

δxi
, B
( δ

δxk
,

∂

∂yj

))
− 1

2
R

(
δ

δxi
, C
( δ

δxk
,

∂

∂yj

))
− 1

4
R

(
δ

δxi
, R
( δ

δxk
,

∂

∂yj

))
+

1

2

(
∇ δ

δxi
R
)( δ

δxk
,

∂

∂yj

)
+

1

2

(
∇ ∂

∂yj
R
)( δ

δxi
,

δ

δxk

)
,

vi) R̃
( δ

δxi
,

∂

∂yj

) ∂

∂yk
=R
( δ

δxi
,

∂

∂yj

) ∂

∂yk
−
(
∇ δ

δxi
B
)( ∂

∂yj
,

∂

∂yk

)
−
(
∇ ∂

∂yj
B
)( δ

δxi
,

∂

∂yk

)
−
(
∇ ∂

∂yj
C
)( δ

δxi
,

∂

∂yk

)
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− 1

2

(
∇ ∂

∂yj
R
)( δ

δxi
,

∂

∂yk

)
+ C

(
δ

δxi
, B
( ∂

∂yj
,

∂

∂yk

))

− C

(
C
( δ

δxi
,

∂

∂yk

)
,

∂

∂yj

)
− 1

2
C

(
R
( δ

δxi
,

∂

∂yk

)
,

∂

∂yj

)

+
1

2
R

(
δ

δxi
, B
( ∂

∂yj
,

∂

∂yk

))
− 1

2
R

(
C
( δ

δxi
,

∂

∂yk

)
,

∂

∂yj

)

− 1

4
R

(
R
( δ

δxi
,

∂

∂yk

)
,

∂

∂yj

)
+B

(
∂

∂yj
, B
( δ

δxi
,

∂

∂yk

))

−B

(
C
( δ

δxi
,

∂

∂yk

)
,

∂

∂yj

)
− 1

2
B

(
R
( δ

δxi
,

∂

∂yk

)
,

∂

∂yj

)
.

In [15], Latifi and the author considered the curvatures of tangent bundle

of Finsler manifolds equipped with Cheeger-Gromoll metric and obtained the

following rigidity result.

Theorem 4.2. ([15]) Let (M,F ) be a Berwald space and TM be its tangent

bundle with the Sasaki-Finsler metric G̃. Then TM is flat if and only if M is

locally Euclidean.

In [6], Bejancu studied the tangent bundle and indicatrix bundle of a Finsler

manifold and obtained the following.

Lemma 4.3. ([6]) Let ∇ and ∇̃ be the Vrǎnceanu and Levi-Civita connections

on (T̃M,G) and N = ys ∂
∂ys be the vertical Liouville vector field on T̃M . then

we have the following equalities:

1) ∇ ∂

∂yi
N =

∂

∂yi
,

2) ∇̃ ∂

∂yi
N =

∂

∂yi

3) ∇ δ
δxi

N = 0,

4) ∇̃ δ

δxi
N = 0,

5) ∇N
δ

δxi
= 0,

6) ∇̃N
δ

δxi
= 0,

7) ∇N
∂

∂yi
= 0,

8) ∇̃N
∂

∂yi
= 0.

for any i ∈ {1, ..., n}.
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Theorem 4.4. ([9]) Let (M, g) be a Riemannian manifold and TM be its

tangent bundle equipped with the deformed Sasaki metric Sgf . The tangent

bundle (TM, Sgf ) is recurrent if (M, g) is flat and

(∇XAf )(Y, Z)− (∇Y Af )(X,Z) +Af

(
X,Af (Y, Z)

)
−Af

(
Y,Af (X,Z)

)
= 0,

where

Af (X,Y ) =
1

2f
(X(f)Y + Y (f)X − g(X,Y ) ◦ (df)∗)

is a (1, 2)−tensor field. Thus (TM, Sgf ) is flat.

For f = 1, it follows that Sgf = Sg; i.e. the metric Sgf is a generalization

of the Sasaki metric Sg. Then, we conclude the following.

Corollary 4.5. [9] Let (M, g) be a Riemannian manifold and TM be its tan-

gent bundle equipped with the Sasaki metric Sg .The tangent bundle (TM, Sg)

is recurrent if (M, g) is flat.

Theorem 4.6. Let (M,F ) be a Finsler manifold and T̃M be its tangent bundle

equipped with the Sasaki-Finsler metric G. The tangent bundle (T̃M,G) is

recurrent if (M,F ) is locally Euclidean or a locally Minkowski space. Thus

(T̃M,G) is locally Euclidean.

Proof. We know that if R̃ is recurrent then there exists a 1-form α on T̃M such

that

(∇̃W R̃)(X,Y )Z = α(W )R̃(X,Y )Z, ∀X,Y, Z,W ∈ χ(T̃M).

First, we set

W = Y = N = ys
∂

∂ys
, X =

δ

δxi
, Z =

∂

∂yj
.

Then by Theorem 4.1 it follows that

R̃
( δ

δxi
, N
) ∂

∂yj
=R
( δ

δxi
, N
) ∂

∂yj
+ C

( δ

δxi
,

∂

∂yj

)
− 1

2
R
( δ

δxi
,

∂

∂yj

)
. (4.3)

By using Lemma 4.3. we get

R
( δ

δxi
, N
) ∂

∂yj
=∇ δ

δxi
∇N

∂

∂yj
−∇N∇ δ

δxi

∂

∂yj
−∇[ δ

δxi ,N ]

∂

∂yj
= 0. (4.4)

Thus (4.3) and (4.4) imply

R̃
( δ

δxi
, N
) ∂

∂yj
= C

( δ

δxi
,

∂

∂yj

)
− 1

2
R
( δ

δxi
,

∂

∂yj

)
. (4.5)

Now, by using (4.5) and the homogeneity of both Ck
ij and Rk

ij we deduce that

(∇̃N R̃)
( δ

δxi
, N,

∂

∂yj

)
= −2C

( δ

δxi
,

∂

∂yj

)
. (4.6)
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If R̃ is recurrent then

α(N)

(
C
( δ

δxi
,

∂

∂yj

)
− 1

2
R
( δ

δxi
,

∂

∂yj

))
= −2C

( δ

δxi
,

∂

∂yj

)
. (4.7)

Second, we set

W = X = N, Y =
∂

∂yi
, Z =

∂

∂yj
,

Using Theorem 4.1 we get

R̃
(
N,

∂

∂yi

) ∂

∂yj
= −B

( ∂

∂yi
,

∂

∂yj

)
. (4.8)

Since Bk
ij is homogeneous of degree 0 and by using Lemma 4.3., we get

(∇̃N R̃)
(
N,

∂

∂yi
,

∂

∂yj

)
= B

( ∂

∂yi
,

∂

∂yj

)
. (4.9)

From recurrence of R̃ we have

α(N)B
( ∂

∂yi
,

∂

∂yj

)
= −B

( ∂

∂yi
,

∂

∂yj

)
. (4.10)

Let us put

W = Z = N, X =
δ

δxi
, Y =

δ

δxj
.

By Theorem 4.1. we have

R̃
( δ

δxi
,

δ

δxj

)
N = R

( δ

δxi
,

δ

δxj

)
N = Rt

ij

∂

∂yt
= −R

( δ

δxi
,

δ

δxj

)
. (4.11)

By using (4.11) and the homogeneity of Rk
ij we deduce that

(∇̃N R̃)
( δ

δxi
,

δ

δxj
, N
)
=∇̃N R̃

( δ

δxi
,

δ

δxj
, N
)
− R̃

( δ

δxi
,

δ

δxj

)
N

=−R
( δ

δxi
,

δ

δxj

)
+R

( δ

δxi
,

δ

δxj

)
= 0. (4.12)

Therefore we have

α(N)R
( δ

δxi
,

δ

δxj

)
= 0. (4.13)

If α(N) = 0, from (4.10) we get Bk
ij = 0 and from (4.7) we get Ck

ij = 0, i.e.

(M,F ) is a Riemannian manifold. Therefore by using Corollary 4.5. we obtain

Rk
ij = 0.

Thus (M,F ) is locally Euclidean.

If α(N) ̸= 0, from (4.13) we have Rk
ij = 0 and from (4.10) and (4.7) we

obtain

(α(N) + 2)C(
δ

δxi
,

∂

∂yj
) = 0 (4.14)

(α(N) + 1)B(
∂

∂yi
,

∂

∂yj
) = 0 (4.15)
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If Ck
ij ̸= 0 and Bk

ij ̸= 0 then from (4.14) and (4.15) we get α(N) = −2 and

α(N) = −1 that is contradiction. If Ck
ij = 0 and Bk

ij ̸= 0 then it is impossible

because from Ck
ij = 0 we deduce that Bk

ij = 0. If Ck
ij ̸= 0 and Bk

ij = 0 then

(M,F ) is a locally Minkowski manifold. If Ck
ij = 0 and Bk

ij = 0 then (M,F ) is

locally Euclidean. The last part gets from Theorem 4.2. □

Theorem 4.7. ([9]) Let (M, g) be a Riemannian manifold and TM be its

tangent bundle equipped with the deformed Sasaki metric Sgf . The tangent

bundle (TM, Sgf ) is pseudo symmetric if (M, g) is flat and

(∇XAf )(Y, Z)− (∇Y Af )(X,Z) +Af

(
X,Af (Y, Z)

)
−Af

(
Y,Af (X,Z)

)
= 0,

where

Af (X,Y ) :=
1

2f

(
X(f)Y + Y (f)X − g(X,Y ) ◦ (df)∗

)
is a (1, 2)−tensor field. Thus (TM, Sgf ) is flat.

In [9], Gezer study the tangent bundle with deformed Sasaki metric and

proved the following.

Corollary 4.8. [9] Let (M, g) be a Riemannian manifold and TM be its tan-

gent bundle equipped with the Sasaki metric Sg .The tangent bundle (TM, Sg)

is pseudo symmetric if (M, g) is flat.

Now, we are going to consider T̃M with the Sasaki-Finsler metric G and

show that (T̃M,G) is locally Euclidean.

Theorem 4.9. Let (M,F ) be a Finsler manifold and T̃M be its tangent bundle

equipped with the Sasaki-Finsler metric G. Then (T̃M,G) is pseudo symmetric

if (M,F ) is locally Euclidean or locally Minkowski space. Thus (T̃M,G) is

locally Euclidean.

Proof. The tangent bundle (T̃M,G) is called pseudo symmetric, if there exists

a 1-form α and a vector field Ã on T̃M such that (4.2) satisfies.

First, we consider

W = X = N, Y =
∂

∂yi
and Z =

∂

∂yj
.

By Theorem 4.1, Lemma 4.3 and homogeneity of Bk
ij we deduce that

(∇̃N R̃)
(
N,

∂

∂yi
,

∂

∂yj

)
= B

( ∂

∂yi
,

∂

∂yj

)
. (4.16)



40 Zohre Raei

Also, by using Theorem 4.1. we have

2α(N)R̃
(
N,

∂

∂yi

) ∂

∂yj
+ α(N)R̃

(
N,

∂

∂yi

) ∂

∂yj
+ α

( ∂

∂yi

)
R̃(N,N)

∂

∂yj

+ α
( ∂

∂yj

)
R̃
(
N,

∂

∂yi

)
N +G

(
R̃
(
N,

∂

∂yi

) ∂

∂yj
, N

)
Ã

= 3α(N)R̃
(
N,

∂

∂yi

) ∂

∂yj

= −3α(N)B
( ∂

∂yi
,

∂

∂yj

)
. (4.17)

Therefore from (4.16) and (4.17) we get

3α(N)B
( ∂

∂yi
,

∂

∂yj

)
= −B

( ∂

∂yi
,

∂

∂yj

)
. (4.18)

Now, we set

W = Z = N, X =
δ

δxi
and Y =

δ

δxj
.

By using Theorem 4.1. and homogeneity of Rk
ij we obtain

(∇̃N R̃)
( δ

δxi
,

δ

δxj
, N
)
= 0. (4.19)

By Theorem 4.1 and Lemma 4.3, we have

2α(N)R̃
( δ

δxi
,

δ

δxj

)
N + α

( δ

δxi

)
R̃
(
N,

δ

δxj

)
N + α

( δ

δxj

)
R̃
( δ

δxi
, N
)
N

+ α(N)R̃
( δ

δxi
,

δ

δxj

)
N +G

(
R̃
( δ

δxi
,

δ

δxj

)
N,N

)
Ã

= −3α(N)R
( δ

δxi
,

δ

δxj

)
−G

(
R
( δ

δxi
,

δ

δxj

)
, N

)
Ã

= −3α(N)R
( δ

δxi
,

δ

δxj

)
. (4.20)

From (4.19) and (4.20) we get

α(N)R
( δ

δxi
,

δ

δxj

)
= 0. (4.21)

Finally, we consider

W = Y = N, X =
δ

δxi
, and Z =

∂

∂yj
,

by using Theorem 4.1., Lemma 4.3. and homogeneity of both Ck
ij and Rk

ij we

obtain

(∇̃N R̃)
( δ

δxi
, N,

∂

∂yj

)
= −2C

( δ

δxi
,

∂

∂yj

)
. (4.22)
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On the other hand, by using Theorem 4.1. and Lemma 4.3. we get

2α(N)R̃
( δ

δxi
, N
) ∂

∂yj
+ α

( δ

δxi

)
R̃(N,N)

∂

∂yj
+ α(N)R̃

( δ

δxi
, N
) ∂

∂yj

+ α
( ∂

∂yj

)
R̃
( δ

δxi
, N
)
N +G

(
R̃
( δ

δxi
, N
) ∂

∂yj
, N

)
Ã

= 3α(N)

(
C
( δ

δxi
,

∂

∂yj

)
− 1

2
R
( δ

δxi
,

∂

∂yj

))
. (4.23)

So from (4.21), (4.22) and (4.23) we obtain

3α(N)C
( δ

δxi
,

∂

∂yj

)
= −2C

( δ

δxi
,

∂

∂yj

)
. (4.24)

If α(N) = 0, from (4.18) we get

Bk
ij = 0

and from (4.24) we obtain

Ck
ij = 0.

This means that (M,F ) is a Riemannian manifold. Therefore by using Corol-

lary 4.8. we obtain

Rk
ij = 0.

Thus (M,F ) is locally Euclidean.

If α(N) ̸= 0, from (4.21) we have Rk
ij = 0 and from (4.18) and (4.24) we

obtain

(3α(N) + 2)C
( δ

δxi
,

∂

∂yj

)
= 0, (4.25)

(3α(N) + 1)B
( ∂

∂yi
,

∂

∂yj

)
= 0. (4.26)

If Ck
ij ̸= 0 and Bk

ij ̸= 0 then from (4.25) and (4.26) we get

α(N) = −2

3
, and α(N) = −1

3

that is contradiction. If Ck
ij = 0 and Bk

ij ̸= 0, then it is impossible because

from Ck
ij = 0 we deduce that

Bk
ij = 0.

If Ck
ij ̸= 0 and Bk

ij = 0 then (M,F ) is a locally Minkowski manifold and If

Ck
ij = 0 and Bk

ij = 0 then (M,F ) is locally Euclidean. The last part is a result

of theorem 4.2. □
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