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Abstract. In this paper, using a map on the product space, we define a linear

functional on a Hilbert space and we extract the metric entropy of a system

as the operator norm of the linear functional. This follows an approach which

considers the entropy of a dynamical system as a linear operator.
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1. Introduction

The entropy of a measurable dynamical system, called metric entropy, is

first defined by Kolmogorov [12] and Sinai [25]. The topological version of the

metric entropy is also defined for continuous maps on topological spaces [1].

These concepts are connected to each other via the variational principle using

the approaches given by [2, 5].

For differentiable dynamical systems on smooth Riemannian manifolds, there

are some delicate formulas which improves our ability to calculate the entropy

of a smooth system using Lyapunov exponents [13, 14, 17, 23]. The volume

growth rate [16, 27] and geodesics [14] are also used in entropy calculation.
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Other approaches to the concept of entropy, such as local approaches and op-

erator theoretical approached are also studied [3, 4, 15, 24, 19, 20, 21, 22].

The concept of entropy is also defined and studied for some generalizations

of dynamical systems, such as fuzzy systems [7, 9, 10] and stochastic operators

[6, 8, 11]. We follow the ideas in [20] and [22] to define a linear functional on

a Hilbert space which contains the entropy of the system in its nature.

In the rest of the paper, (X, d) is a compact metric space equipped by

the Borel σ-algebra BX and f : X → X is a continuous map. The set of

all invariant and ergodic measures of f are denoted by M(X, f) and E(X, f)

respectively. Given n ∈ N, the dynamical metric on X is defined by

dn(x, y) := max
0≤j≤n

d(f j(x), f j(y)),

and for ϵ > 0, the ϵ-ball of dn is

Bn(x, ϵ) := {y ∈ X : dn(x, y) ≤ ϵ}.

For µ ∈ M(X, f), we denote the metric entropy of f with respect to µ by hµ(f).

The topological entropy of f is also denoted by htop(f). We extract the metric

entropy from a linear functional defined on a Hilbert space.

In Section 2, we review some preliminary facts and results which will be

used in the paper. In Section 3, we present our main approach to the entropy

of a system with some additional assumptions. In Section 4, we give some

concluding remarks for possible extensions of our results to some more general

settings and compact orientable manifolds.

2. Preliminary facts and results

In the first part of this section, we review some classical results in the entropy

theory of dynamical systems. The following theorem is proved in [4].

Theorem 2.1. Suppose that f : (X, d) → (X, d) is a continuous map on a

compact metric space (X, d) and µ ∈ M(X, f), then

(i) limϵ→0 h
+
µ (f, x, ϵ) = limϵ→0 h

−
µ (f, x, ϵ) := hµ(f, x) for almost every x ∈

X, where

h+
µ (f, x, ϵ) := lim sup

n→∞

−1

n
logµ(Bn(x, ϵ)),

and

h−
µ (f, x, ϵ) := lim inf

n→∞

−1

n
logµ(Bn(x, ϵ)).

(ii) hµ(f, x) is f -invariant;

(iii)
∫
X
hµ(f, x)dµ(x) = hµ(f), where hµ(f) is the metric (Kolmogorov)

entropy of f .
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It is known that M(X), the space of all complex Borel measures on X,

equipped by the weak∗ topology, is compact metrizable ([26], Theorems 6.4

and 6.5.), M(X, f) is a compact convex subset of M(X) and E(X, f) is the set

of all extreme points of M(X,T ) ([26], Theorem 6.10.).

Applying the Choquet’s representation Theorem [18], one may have the

ergodic decomposition

µ =

∫
E(X,f)

mdτ(m),

for any µ ∈ M(X, f).

Definition: A continuous map f : X → X is called finitely ergodic if

card
(
E(X, f)

)
< ∞.

Many important topological dynamical systems are finitely ergodic. An

important example is the north-south map. Let X be a circle centered at

(0, 1) ∈ R2 with radius 1. The point N = (0, 2) is called the north pole and

the point S = (0, 0) is called the south pole. Consider the function

ϕ : X \ {N} −→ R× {0}

as follows: For any x ∈ X \{N}, let ϕ(x) be the unique point of intersection of

the line passing through the points x,N and the x-axis. Now, define f : X → X

as follows:

f(x) =

{
ϕ−1

(
1
2ϕ(x)

)
if x ∈ X \ {N}

N if x = N

Therefore, f(N) = N , f(S) = S and

lim
n→∞

fn(x) = S, for x ̸= N,S.

It is easy to see that

E(X, f) = {δN , δS},

where δx is the Dirac measure. So,

M(X, f) =
{
λδN + (1− λ)δS : 0 ≤ λ ≤ 1

}
.

In [20], the entropy of a dynamical system is considered as a linear functional on

a Banach space. Indeed, if f : X → X is a compact dynamical system of finite

topological entropy, then for any invariant measure µ and any sequence U =

{ξn}n≥1 of Borel measurable partitions with diam(ξn) → 0, a linear functional

Lf (·;µ;U) : C(X) → R

on the Banach space C(X) is defined as

Lf (ϕ;µ;U) :=

∫
X

ϕ(x)h∗
f (x;U)dµ(x),
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where the map x 7−→ h∗
f (x;U) is suitably defined. It is proved that, the defi-

nition of the previous functional is independent of the choice of U and so it is

denoted by Lf (·;µ).

The following properties are stated and proved in [20].

Theorem 2.2. Suppose that f : X → X is a continuous map on the compact

metric space X such that htop(f) < ∞. Then

(i) Given any µ ∈ M(X, f) the entropy functional ϕ → Lf (ϕ;µ) is linear.

(ii) Given any ϕ ∈ C(X) the map µ → Lf (ϕ;µ) is affine.

(iii) If µ ∈ M(X, f) and µ =
∫
E(X,f)

mdτ(m) is the ergodic decomposition

of µ then

Lf (ϕ;µ) =

∫
E(X,f)

Lf (ϕ;m)dτ(m)

for all ϕ ∈ C(X).

(iv) If f1 : X1 → X1 and f2 : X2 → X2 are topologically conjugate contin-

uous maps via the homeomorphism h : X1 → X2, and µ ∈ M(X1, f1)

then

Lf1(ϕ;µ) = Lf2(ϕh
−1;h∗µ)

for all ϕ ∈ C(X1).

The relation between the previous linear functional and the metric entropy

is as follows.

Theorem 2.3. Suppose that f : X → X is a continuous map on the compact

metric space X, and let µ ∈ M(X, f). Then

(i) Lf (1;µ) = hµ(f).

(ii) The entropy functional ϕ → Lf (ϕ;µ) is a continuous linear functional

on C(X), and

∥Lf (·;µ)∥op = hµ(f).

The goal of the current paper is to extend the domain C(X) to a much larger

space which is not only a Banach space but also a Hilbert space. This will be

formulated in the next section.

As an extension of the results in [20], the topological entropy of a compact

dynamical system is also extracted via a linear operator between Banach spaces

[19]. In [22], the results in [19] are improved by replacing the Banach spaces

by a Hilbert space. This enables us to express the entropy of a system in terms

of the eigen values of a compact linear operator on a Hilbert space.

In this approach, given any compact dynamical system f : X → X and

any invariant measure µ, a linear operator Ψf : L2(µ) → L2(µ) of the form

Ψf = βKf is defined where Kf is an integral operator on the Hilbert space
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H = L2(µ). It is proved that Ψf is a compact operator and so has a countable

spectrum σ(Ψf ) = {λn}n≥0. The following theorem expresses the entropy of a

system in terms of the eigen values of Ψf .

Theorem 2.4. (See [22], Theorem 4.3.) Suppose that f : (X, d) → (X, d) is

a continuous map on a compact metric space X and µ ∈ M(X, f). Then we

have:

(i) Ψf is a Hilbert-Schmidt operator;

(ii) If {λn}n≥1 is the sequence of non-zero eigenvalues of Ψf and En =

ker(Ψf − λnI) is the eigenspace corresponding to λn then

hµ(f) =

∞∑
n=1

λ2
n dim(En).

In the next section, using the ideas in [20, 22], we express the metric entropy

of a compact finitely ergodic system in terms of the norm of a linear functional

on a Hilbert space.

3. The main result

In this section, we follow the idea defined in [20, 22] to extract the metric

entropy of a finitely ergodic compact dynamical system as the norm of a linear

functional. We first review the concept of diagonal measure for finitely ergodic

systems.

Definition: Let f : X → X be a finitely ergodic dynamical system. Let

E(X, f) = {m1,m2, · · · ,mk}. Given µ ∈ M(X, f), if µ =
∑k

j=1 λjmj, where

λj ∈ [0, 1] and
∑k

j=1 λj = 1, then the diagonal measure of µ is a measure

defined on the product space X ×X as follows:

µ̃ :=

k∑
j=1

λjmj ×mj .

Definition: Let f : X → X be a compact topological dynamical system. The

information map corresponding to f is a map Jf : X ×X → [0,+∞) defined

by

Jf (x, y) :=

(
lim
ϵ→0

lim sup
n→+∞

π∗
n(x, y; ϵ)

) 1
2

where

π∗
n(x, y; ϵ) :=

{
− 1

n log πn(x, y; ϵ) if πn(x, y; ϵ) ̸= 0

0 if πn(x, y; ϵ) = 0.

and

πn(x, y; ϵ) := lim sup
l→∞

1

l

l−1∑
j=0

χBn(x,ϵ)(f
j(y)).
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It is easy to see that Jf is a Borel measurable map.

Definition: Let f : X → X be a compact topological dynamical system,

µ ∈ M(X, f) and hµ(f) < +∞. The information functional

Lf : L2(X ×X, µ̃) 7−→ R

is defined by

Lf (ϕ) :=

∫
X×X

ϕ(x, y)Jf (x, y)dµ̃(x, y).

Obviously, Lf is a positive linear functional on the Hilbert space H = L2(X ×
X, µ̃).

Now, we are ready to state and prove our main result.

Theorem 3.1. Let f : X → X be a compact topological dynamical system,

µ ∈ M(X, f) and hµ(f) < +∞. Then the information functional Lf is bounded

and ||Lf ||op = hµ(f).

Proof. Let E(X, f) = {m1,m2, · · · ,mk} and µ =
∑k

j=1 λjmj where λj ≥
0 and

∑k
j=1 λj = 1. Let also {ϵn}n≥1 be a decreasing sequence of positive

numbers such that ϵn → 0. Note that,

Jf (x, y) =

(
lim

n→+∞
lim sup
m→+∞

π∗
m(x, y; ϵn)

) 1
2

(3.1)

and

hµ(f, x) = lim
n→+∞

lim sup
m→+∞

−1

m
logµ(Bm(x, ϵn)). (3.2)

For any ϕ ∈ L2(X ×X, µ̃) we have:

|Lf (ϕ)| ≤ ||ϕ||2L2(µ̃)||Jf ||
2
L2(µ̃)

= ||ϕ||2L2(µ̃)

∫
X×X

J2
fdµ̃

= ||ϕ||2L2(µ̃)

∫
X×X

J2
fd(

k∑
j=1

λjmj ×mj)

= ||ϕ||2L2(µ̃)

k∑
j=1

λj

∫
X×X

J2
fdmj ×mj . (3.3)

On the other hand, for every j, since each mj is ergodic, then for each x ∈ X,

applying Birkhöff ergodic theorem, we will have:

πm(x, y; ϵn) = mj

(
Bm(x, ϵn)

)
for mj − alomst every y ∈ X.

So, given x ∈ X, one may easily find a measurable set Ax such that

mj(Ax) = 1
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and for y ∈ Ax, we get

πm(x, y; ϵn) = mj

(
Bm(x, ϵn)

)
∀m,n ∈ N. (3.4)

Also, there exists a Borel measurable subset B of X such that for x ∈ B,

lim
n→+∞

lim
m→+∞

− 1

m
logmj

(
Bm(x, ϵn)

)
= hmj (f, x).

Since {πm(x, y; ϵn)}m,n≥1 is decreasing both in m and n then (3.4) implies that

∀y ∈ Ax Jf (x, y)
2 = hmj (f, x), (3.5)

for all x ∈ B. Integrating (3.5) with respect to y and then x, and using Brin-

Katok theorem, will result in∫
X×X

J2
fdmj ×mj = hmj (f). (3.6)

Now, combining (3.4) and (3.6), and using the affinity of the entropy map, we

will have:

|Lf (ϕ)| ≤ ||ϕ||L2(µ̃)

 k∑
j=1

λjhmj (f)

 = ||ϕ||L2(µ̃)hµ(f).

Therefore,

|Lf (ϕ)| ≤ hµ(f)||ϕ||L2(µ̃). (3.7)

One should note that, in light of the calculations in (3.6) and (3.7), since

hµ(f) < +∞, we have

Jf ∈ L2(µ̃).

Now, setting ϕ = Jf in the definition of Lf , we will have:

|Lf (ϕ)| =
∫
X×X

ϕJfdµ̃ =

∫
X×X

J2
fdµ̃ = hµ(f). (3.8)

Combining (3.7) and (3.8) we will have

||Lf ||op = hµ(f)

which completes the proof. □

4. Discussion and concluding remarks

The classical view to the concept of entropy of dynamical systems is to

consider it as a non-negative number assigned to a dynamical system to describe

the increase in dynamical complexity as the system evolves. In a sequence of

papers, it is tried to have an unusual view to the entropy of a system as a linear

operator or functional rather than a non-negative number [19, 20, 22].

In this paper, we followed this approach by considering the entropy as a lin-

ear functional on a Hilbert space. Despite we assumed the system to be finitely

ergodic, it is possible to remove this assumption by extending the definition of

diagonal measure for arbitrary invariant measures [22].
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One may extend the main result of the current paper in the setting of con-

tinuous or smooth maps on compact smooth orientable manifolds. Given any

Riemannian metric g on a compact smooth orientable manifold M , we have a

natural volume form as follows:

ω =
√
|g|dx1 ∧ dx2 ∧ · · · ∧ dxn,

where the dxi are 1-forms that form a positively oriented basis for the cotangent

bundle of the manifold. Here, |g| is the absolute value of the determinant of the

matrix representation of the metric tensor on the manifold. Now, denote the

standard measure corresponding to the form ω above by µg. This corresponds

a measure µg to any Riemannian metric g on M . Now, for a continuous or

smooth map on M , by an f -invariant Riemannian metric on M we mean a

Riemannian metric g such that µg is f -invariant. An invariant Riemannian

metric g is called ergodic if the corresponding measure µg is ergodic. An

interesting problem arising here is to discuss on the entropy of f with respect

to µg and formulate the relation between the entropy with the values gij .
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