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Abstract. In this paper, we study Ricci-Bourguignon soliton on Finsler man-

ifolds and prove any forward complete shrinking Finslerian Ricci-Bourguignon

soliton under some conditions on vector filed and scalar curvature is compact

and its fundamental group is finite.
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1. Introduction

Over the last few years, geometric flows have been a topic of active research

interest in both mathematics and physics. A geometric flow is an evolution

of a geometric structure as metric under a differential equation related to a

functional on a manifold, usually associated with some curvatures. Also, Ricci

solitons and Yamabe solitons play an important role in geometric flow where

they correspond to self-similar solutions of the flow. Hence, given a geomet-

ric flow it is natural to investigate the solitons associated to that flow. In

1982, R. S. Hamilton introduced the intrinsic Riemannian geometric flows on

Riemannain manifolds, Ricci flow [16] as

∂

∂t
g(t) = −2Ric(g(t)), (1.1)
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and Yamabe flow [17] as

∂

∂t
g(t) = −Rg(t)g(t), (1.2)

which are evolution equations for Riemannian metrics and R is the scalar cur-

vature. Then J. P. Bourguignon [12] introduced Ricci-Bourguignon flow on

Riemannian manifolds (Mn,g(t)) as

∂

∂t
g(t) = −2(Ric− ρRg) (1.3)

where ρ is a real constant. Short-time existence and uniqueness for solution to

the Ricci-Bourguignon flow on [0, T ) have been shown by Catino et al. [13] for

ρ <
1

2(n− 1)
.

When ρ = 0, the Ricci-Bourguignon flow reduces to the Ricci flow.

On a Riemannain manifold (Mn,g) and a non-vanishing vector field X is

said to define a Ricci-Bourguignon soliton if there exists a real constant λ such

that

Ric+
1

2
LXg = λg+ ρRg, (1.4)

where LXg denotes the Lie derivative of the metric g in the direction of the

vector field X. If the vector field X is of gradient type, X = ∇f , for a smooth

function f on M , then the Ricci-Bourguignon soliton is called a gradient Ricci-

Bourguignon soliton. The soliton is called expanding, steady, shrinking when

λ is negative, zero and positive, respectively.

In recent years, many authors studied the Ricci-Bourguignon soliton on

Riemannain manifolds. In [14], Catino et al. classified noncompact gradi-

ent shrinkers of gradient Ricci-Bourguignon soliton with bounded non-negative

sectional curvature. In [11, 15] the authors have obtained some results on Ricci-

Bourguignon solitons and almost Ricci-Bourguignon solitons on Riemannian

manifolds.

On the other hand, the concept of the Ricci flow on Finsler manifolds is

defined by Bao [5], choosing the Ricci tensor introduced by Akbar-Zadeh. The

existence and uniqueness of solutions to the Ricci flow and Yamabe flow on

Finsler manifolds are shown in [3, 4, 7]. In [8], Bidabad and Yar Ahmadi intro-

duced Ricci solitons on Finsler manifolds as a generalization of Einstein space

and shown that if there is a Ricci soliton on a compact Finsler manifold then

there exists a solution to the Finsler-Ricci flow. Then, in [10, 19], they estab-

lished a forward complete shrinking Finsler-Ricci soliton space is compact if

and only if the corresponding vector field is bounded and a compact shrinking

Finsler-Ricci soliton space has a finite fundemental group. Also, they obtained

similar results for complete Finslerian Yamabe soliton [9].



110 Shahroud Azami

Motivated by the above studies, in the present paper, we establish some

properties of Ricci-Bourguignon solitons on Finsler manifolds. In fact, we prove

the following theorems.

Theorem 1.1. Let (M,F ) be a forward geodesically complete Finsler manifold

satisfying

2Ricij + LV̂ gij ≥ 2(λ+ ρH)gij , (1.5)

where V̂ denotes the complete lift of the vector field V on M . Suppose that the

following holds

H ≤ K1, and λ+ ρH ≥ 0

for some positive real constants ρ and K1. Then M is compact if and only if

||V || is bounded on M by a constant K2. Moreover, in this case we have

diam(M) ≤ π

λ+ ρK1

(
K2 +

√
K2

2 + (n− 1)(λ+ ρK1)

)
.

Then, we prove the following.

Theorem 1.2. Let (M,F ) be a geodesically complete Finsler manifold satisfy-

ing (1.5), where V̂ denotes the complete lift of the vector field V on M . Suppose

that the following holds

H ≤ K1, and λ+ ρH ≥ 0

for some positive real constants ρ and K1. Then, for any two points p, q in M

we have

d(p, q) ≤ max

{
1,

1

λ+ ρK1

(
2(n− 1) + Λp + Λq + ||V ||p + ||V ||q

)}
. (1.6)

Finally, we show the following.

Theorem 1.3. Let (M,F ) be a complete connected Finsler manifold satisfying

(1.5), where V̂ denotes the complete lift of the vector field V on M . If H ≤ K1

and λ+ρH ≥ 0 for some positive real constants ρ and K1., then the fundamental

group π1(M) of M is finite.

2. Preliminaries

In this section, we recall some basic concepts and facts in Finsler geometry

from [1, 5, 18].

Let Mn be a smooth, connected differentiable manifold and TM be the

tangent bundle. A Finsler structure on M is a function F : TM → [0,∞) with

the following properties:

(i) F is smooth function on TM0 := TM \ {0};
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(ii) F (x, λy) = λF (x, y) for all (x, y) ∈ TM and all λ > 0,

(iii) the n× n matrix

gij(y) :=
1

2

∂2

∂yi∂yj
F 2(x, y)

is positive definite for every (x, y) ∈ TM0.

Such a pair (M,F ) is called a Finsler manifold and g(x, y) = gijy
iyj is called

fundamental tensor of F , where y ∈ TxM .

The natural projection map π : TM0 → M gives rise to the pull-back bundle

π∗TM and its dual bundle π∗T ∗M over TM0. The pull-back bundle π∗TM

admits a unique connection which is called the Chern connection. The Chern

connection is determined by the following structure equations,

DV
XY −DV

Y X = [X,Y ],

and

XgV (Y, Z) = gV (D
V
XY,Z) + gV (Y,D

V
XZ) + 2CV (D

V
XV, Y, Z),

for V ∈ TxM \ {0}, X,Y, Z ∈ TxM , where

CV (X,Y, Z) := Cijk(V )XiY jZk =
1

4

∂3F 2

∂V i∂V j∂V k
(V )XiY jZk

is the Cartan tensor of F and DV
XY the covariant derivative with respect to

vector V ∈ TxM \ {0}. The coefficients of the Chern connection are

Γk
ij =

1

2
gil
(
δgkl
δxj

+
δgjl
δxk

− δgjk
δxl

)
where

γi
jk :=

1

2
gis
(∂gsj
∂xk

− ∂gjk
∂xs

+
∂gks
∂xj

)
,

Gj =
1

2
γi
jky

iyj ,

N j
i =

∂Gj

∂yi
,

δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj
,

and the pair { δ
δxi ,

∂
∂yj } forms a horizontal and vertical frame for TTM .

The coefficients of the Riemann curvature Ry = Ri
kdx

i ⊗ ∂
∂xi are given by

Ri
k := 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
, (2.1)

and the Ricci scalar function of F is given by

Ric :=
1

F 2
Ri

i.
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A companion of the Ricci scalar is the Akbar-Zadeh’s Ricci tensor

Ricij :=

(
1

2
F 2Ric

)
yiyj

.

Let V = vi ∂
∂xi be a smooth vector field on Finsler manifoldM . The complete

lift of V is a globally defined vector field on TM0 given by

V̂ = vi
∂

∂xi
+ yj(

∂vi

∂xj
)
∂

∂yi

and the Lie derivative of a Finsler metric tensor gjk in direction V̂ is given by

LV̂ gjk = ∇jvk +∇kvj + 2(∇0v
l)Cljk, (2.2)

where ∇ is the Cartan h-covariant derivative, ∇0 := yp∇ δ
δxp

. For any piecewise

smooth curve γ : [a, b] → M on (M,F ) with the velocity

dγ

dt
=

dγi

dt

∂

∂xi
∈ Tγ(t)M,

the integral length L(γ) is given by

L(γ) =

∫ b

a

F
(
γ,

dγ

dt

)
dt

and distance function d : M ×M → [0,∞) defined by

d(p, q) = inf
{
L(γ) : γ ∈ Γ(p, q)

}
,

where Γ(p, q) denotes the collection of all piecewise smooth curve γ : [a, b] → M

with γ(a) = p and γ(b) = q.

Now, suppose that γ(s), s ∈ [0, r], is a geodesic of Cartan connection pa-

rameterized by the arc length s with variation β(s, t). Let

T =
∂β

∂s
,

U =
∂β

∂t
,

β̂ :
{
(s, t)|0 ≤ s ≤ r, −ϵ ≤ t ≤ ϵ

}
→ TM0

defined by

β̂(s, t) =
(
β(s, t), T (s, t)

)
be canonical lift of β. Then, the second variation of arc length in Finsler

geometry is given by

L′′(0) = g(∇ÛU, T )
∣∣∣r
0
+

∫ r

0

[
g(∇T̂U,∇T̂U)− g(R(U, T )T,U)−

∣∣∣ ∂
∂s

g(U, T )
∣∣∣2] ds,
(2.3)
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where

T̂ =
∂β̂

∂s
, Û =

∂β̂

∂t
.

Let us denote by SxM the set consisting of all rays [y] := {λy|λ > 0}, where
y ∈ TxM0. The sphere bundle of M , i.e. SM , is the union of SxM ’s , SM =

∪
x
SxM, and it has a natural (2n− 1)-dimensional manifold structure.

Let u : M → SM be a unitary vector fields and ω = uidx
i the corresponding

1-form. We consider the volume form

η =
(−1)

n(n−1)
2

(n− 1)!
ω ∧ (dω)n−1

on the sphere bundle SM . Let α = αidx
i be a horizontal 1-form on SM , then

the divergence of α with respect to the Cartan connection is defined as

div(ω) = −∇iα
i + αi∇0C

i,

where Ci is the trace of Cartan tensor, and when manifold M is closed we get∫
SM

div(α)η = −
∫
SM

(∇iα
i − αi∇0C

i)η = 0. (2.4)

Also, given a vector field V = vi ∂
∂xi on M define

||V ||x = max
y∈SxM

√
gijvivj ,

where x ∈ M .

3. Compact Ricci-Bourguignon soliton

Let (M,F ) be a Finsler manifold and V = vi ∂
∂xi a vector field on M . Similar

to Riemannian manifolds, a Finslerian Ricci-Bourguignon soliton is a Finsler

manifold (Mn, F ) endowed with a vector filed V on M such that the funda-

mental tensor g of F satisfies

2Ricij + LV̂ gij = 2λgij + 2ρHgij , (3.1)

where V̂ is the complete lift of V , H = gijRicij and λ is a real constant.

Multiplying the both sides of (3.1) by yiyj , we obtain

2F 2Ric+ LV̂ F
2 = 2λF 2 + 2ρHF 2. (3.2)

The Finslerian Ricci-Bourguignon soliton is called expanding, steady, shrinking

when λ is negative, zero and positive, respectively. When manifold (M,F ) is

forward complete (res. compact) then Finslerian Ricci-Bourguignon soliton is

called forward complete (res. compact).

Proof of Theorem 1.1: If M is compact manifold then ||V || will be bounded
on M . Conversely, assume that ||V || is bounded on M by a constant K2
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and p, q be two points in M jointed by a minimal geodesic α : [0,∞) → M

parameterized by the arc length t. According (2.2), along geodesic α we have

α′iα′jLV̂ gjk = α′iα′j
(
∇jvk +∇kvj + 2(∇0v

l)Cljk

)
. (3.3)

Since along the geodesic α, we have

α′iα′j∇0v
lCljk

(
α(t), α′(t)

)
= 0,

then (3.3) becomes

α′iα′jLV̂ gjk = 2α′iα′j∇jvk. (3.4)

Replacing

α′iα′j∇jvk =
d

dt

(
α′kvk

)
in (3.4) we get

α′iα′jLV̂ gjk = 2
d

dt

(
α′kvk

)
. (3.5)

Multiplying the both sides of (3.1) by α′iα′j and using (3.5) we obtain

α′iα′jRicij ≥ α′iα′j(λ+ ρH)gij −
d

dt

(
α′kvk

)
≥ λ+ ρK1 +

d

dt
(−α′kvk). (3.6)

The Cauchy-Schwarz inequality implies that

| − α′kvk| = |gkl
(
α(t), α′(t)

)
α′kvl| ≤ |gkl

(
α(t), α′(t)

)
vkvl| 12

≤ max
y∈Sα(t)M

|gkl
(
α(t), α′(t)

)
vkvl| 12

= ||V ||α(t)
≤ K2.

Now, the Lemma 1 of [2] implies that M is compact and

diam(M) ≤ π

λ+ ρK1

(
K2 +

√
K2

2 + (n− 1)(λ+ ρK1)
)
.

This completes the proof. □

By Theorem 1.1, we get the following.

Corollary 3.1. Let (M,F ) be a forward complete shrinking Finslerian Ricci-

Bourguignon soliton. If H ≤ K1 and λ+ρH ≥ 0 for some positive real constant

ρ, then M is compact if and only if ||V || is bounded on M by a constant K2

and moreover, in this case we have

diam(M) ≤ π

λ+ ρK1

(
K2 +

√
K2

2 + (n− 1)(λ+ ρK1)

)
.
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Let (M,F ) be a Finsler manifold and p ∈ M . Set

Λp := sup
x∈B+

p (1)∪B−
p (1)

max
y∈SxM

|Ric(x, y)|,

where

B+
p (1) :=

{
x ∈ M |d(p, x) < 1

}
, B−

p (1) :=
{
x ∈ M |d(x, p) < 1

}
.

Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2: Without loss of generality we assume that d(p, q) > 1.

Let p, q be two points in M jointed by a minimal geodesic α : [0,∞) → M

parameterized by the arc length t. Taking integral of both sides of (3.6) we get∫ r

0

Ric(α, α′)dt ≥ (λ+ ρK1)r − α′k(r)vk + α′k(0)vk. (3.7)

The Cauchy-Schwarz inequality implies that

|α′k(0)vk| ≤ ||V ||p

and

|α′k(r)vk| ≤ ||V ||q.
Hence, we can write (3.7) as∫ r

0

Ric(α, α′)dt ≥ (λ+ ρK1)r − ||V ||p − ||V ||q. (3.8)

On the other hand from Lemma 3.1 of [10], we have∫ r

0

Ric(α, α′)dt ≤ 2(n− 1) + Λp + Λq. (3.9)

Substutiting (3.9) into (3.8), we conclude

2(n− 1) + Λp + Λq ≥ (λ+ ρK1)r − ||V ||p − ||V ||q, (3.10)

which proves (1.6). □

Corollary 3.2. Let (M,F ) be a complete shrinking Finsler Ricci-Bourguignon

soliton. If H ≤ K1 and λ+ ρH ≥ 0 for some positive real constant ρ, then for

any two points p, q in M we have (1.6).

Proof of Theorem 1.3: Let p : M̃ → M be the universal covering manifold of

M , it is well known that the fundamental group is in one-to-one corresponding

with discrete counterimage of a basepoint x ∈ M . The pullback of the complete

lift p̂ : TM̃ → TM given by

p̂(x̃, ỹ) =
(
p(x̃), ỹi

∂p

∂x̃i

∂

∂xi

)
.
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It defines a Finsler structure on M̃ as

F̃ = p̂∗F := F ◦ p̂ : TM̃ → [0,∞).

Notice that p : (M̃, F̃ ) → (M,F ) is a local isometry. We have

p̂∗g = g̃,

p̂∗Ric = R̃ic,

p̂∗LV̂ g = LŴ g̃,

where W = p∗V . Inequality (1.5) implies that

2R̃icij + LŴ g̃ij ≥ 2(λ+ ρH̃)g̃ij . (3.11)

Let h be a deck transformation on M̃ and x̃ ∈ M̃ . Since h is an isometry and

H̃ = p̂∗H, we get

H̃ ≤ K1.

By Theorem 1.2, we can write

d
(
x̃, h(x̃)

)
≤ max

{
1,

1

λ+ ρK1

(
2(n− 1) + Λx̃ + Λh(x̃) + ||W ||x̃ + ||W ||h(x̃)

)}
= max

{
1,

2

λ+ ρK1

(
2(n− 1) + Λx̃ + ||W ||x̃

)}
.

Let x = p(x̃). Then p−1(x) is forward bounded and the closed and forward

bounded subset p−1(x) of M̃ is compact and being discrete. Since M̃ is a

universal covering and π1(M,x) is in a bijective corresponding with p−1(x) we

conclude π1(M,x) is finite. On the other hand M is connected, hence all of

its fundamental group π1(M,x), x ∈ M are isomorphic. Therefore π1(M) is

finite. □

Then, we conclude the following.

Corollary 3.3. Let (M,F ) be a complete shrinking Finsler Ricci-Bourguinon

soliton. If H ≤ K1 and λ+ ρH ≥ 0 for some positive real constant ρ, then the

fundamental group π1(M) of M is finite.
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