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Abstract. In this paper, we study the class of semi-C-reducible Finsler man-

ifolds. Under a condition, we prove that every semi-C-reducible Finsler spaces

with a semi-P-reducible metric has constant characteristic scalar along Finsle-

rian geodesics or reduces to a Landsberg metric. By this fact, we characterize

the class of semi-P-reducible spaces equipped with an (α, β)-metric. More pre-

cisely, we proved that such metrics are Berwaldian B = 0, or have vanishing

S-curvature S = 0 or satisfy a well-known ODE. This yields an extension of

Tayebi-Najafi’s classification for 3-dimensional (α, β)-metric of Landsberg-type.

Keywords: 3-dimensional Finsler space, weakly Landsberg metric.

1. Introduction

Let (M,F ) be a Finsler manifold and c : [a, b] → M be a piecewise C∞

curve from c(a) = p to c(b) = q. For every u ∈ TpM , let us define

Pc : TpM → TqM

by Pc(u) := U(b), where U = U(t) is the parallel vector field along c such

that U(a) = u. Pc is called the parallel translation along c. In [2], Ichijyō

showed that if F is a Berwald metric, then all tangent spaces (TxM,Fx) are

linearly isometric to each other. Let us consider the Riemannian metric ĝx on
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TxM0 := TxM − {0} which is defined by

ĝx := gij(x, y)δy
i ⊗ δyj , gij :=

1

2

[
F 2

]
yiyj

is the fundamental tensor of F and {δyi := dyi+N i
jdx

j} is the natural coframe

on TxM associated with the natural basis {∂/∂xi|x} for TxM . If F is a Lands-

berg metric, then for any C∞ curve c, Pc preserves the induced Riemannian

metrics on the tangent spaces, i.e., Pc : (TpM, ĝp) → (TqM, ĝq) is an isometry.

By definition, every Berwald metric is a Landsberg metric, but the converse

may not hold. Thus, we get the following

{Berwald metrics} ⊆ {Landsberg metrics}.

Let (M,F ) be an n-dimensional Finsler manifold. The second derivatives of

F 2
x at y ∈ TxM0 is an inner product gy on TxM . The third order derivatives

of F 2
x at y ∈ TxM0 is a symmetric trilinear forms Cy on TxM . We call gy and

Cy the fundamental form and the Cartan torsion, respectively.

Set Iy :=
∑n

i=1 Cy(ei, ei, ·) where {ei} is an orthonormal basis for (TxM,gy).

Iy is called the mean Cartan torsion of F . A Finsler metric F is called semi-

C-reducible if its Cartan tensor is given by

Cijk =
P

n+ 1

{
hijIk + hjkIi + hkiIj

}
+

Q

||I||2
IiIjIk,

where P = P (x, y) and Q = Q(x, y) are scalar function on TM , hij is the

angular metric, and ||I||2 = gijIiIj . The function P is called characteristic

scalar of F . By definition, we have P +Q = 1. In the case of P = 1, F reduces

to a C-reducible Finsler metric

Cijk =
1

n+ 1

{
hijIk + hjkIi + hkiIj

}
.

In [4], Matsumoto proved that any Randers metric is C-reducible. Later on,

Matsumoto-Hōjō proves that the converse is true too [3]. A Randers metric

F = α+β is just a Riemannian metric α perturbated by a one form β. Randers

metrics have important applications both in mathematics and physics.

The rate of change of Cy along geodesics is the Landsberg curvature Ly on

TxM for any y ∈ TxM0. F is said to be Landsbergian if L = 0. There is a

weaker notion of metrics- weakly Landsberg metrics. Set Jy :=
∑n

i=1 Ly(ei, ei, ·).
Then Jy is called the mean Landsberg curvature. A Finsler metric F is said to

be weakly Landsbergian if J = 0. As a generalization of C-reducible metrics,

Matsumoto-Shimada introduced the notion of L-reducible metrics [5]. Indeed,

F is said to be L-reducible Finsler metric if its Landsberg curvature can be

written as the follows

Lijk =
1

n+ 1

{
Jihjk + Jjhik + Jkhij

}
. (1.1)
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As an extension of L-reducible metric, Rastogi introduced a new class of Finsler

spaces named by semi-P-reducible spaces which contains the notion of C-

reducible and L-reducible metrics, as a special case [8]. A Finsler metric F

is called semi-P-reducible if its Landsberg tensor is given by

Lijk = λ
{
Jihjk + Jjhki + Jkhij

}
+ 3µJiJjJk, (1.2)

where λ = λ(x, y) and µ = µ(x, y) are scalar functions on TM .

In this paper, we prove that every semi-C-reducible Finsler spaces with

a semi-P-reducible metric has constant characteristic scalar along Finslerian

geodesics or reduces to a Landsberg metric. More precisely, we prove the fol-

lowing.

Theorem 1.1. Let (M,F ) be semi-C-reducible manifold of dimension n ≥ 3.

Suppose that F is a semi-P-reducible Finsler metric such that

3µ||J||2 + (n+ 1)λ ̸= 1. (1.3)

Then one of the following holds

(1) F is a Landsberg metric;

(2) Characteristic scalar of F is a constant along any Finslerian geodesics.

Then we focus on semi-P-reducible manifold equipped with an (α, β)-metric

and prove the following.

Theorem 1.2. Let (M,F ) be semi-P-reducible manifold of dimension n ≥ 3

equipped with an (α, β)-metric F = αϕ(s), s = β/α, such that

3µ||J||2 + (n+ 1)λ ̸= 1. (1.4)

Then one of the following holds

(1) F is a Berwald metric;

(2) S = 0;

(3) ϕ = ϕ(s) is given by the ODE

ϕ4−4c(ϕ− sϕ′)4−c
[
ϕ− sϕ′ + (b2 − s2)ϕ′′

]−c

= ek0 , (1.5)

where c is a nonzero real constant, k0 is a real number and b := ||β||α.

Every Landsberg metric is a special semi-P-reducible Finsler metric with

λ = µ = 0. Then Theorem 1.2 is an extension of Tayebi-Najafi’s Theorem about

the classification of the class of 3-dimensional (α, β)-metrics with vanishing

Landsberg curvature in [12].
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2. Preliminaries

A Finsler metric on a manifoldM is a nonnegative function F on TM having

the following properties: (i) F is C∞ on TM \{0}; (ii) F (λy) = λF (y), ∀λ > 0,

y ∈ TM ; and (iii) for each y ∈ TxM , the following quadratic form gy on TxM

is positive definite,

gy(u, v) :=
1

2

[
F 2(y + su+ tv)

]∣∣∣
s,t=0

, u, v ∈ TxM. (2.1)

At each point x ∈ M , Fx := F |TxM is an Euclidean norm if and only if gy is

independent of y ∈ TxM \ {0}.

To measure the non-Euclidean feature of Fx, define Cy : TxM × TxM ×
TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]∣∣∣
t=0

, u, v, w ∈ TxM. (2.2)

The family C := {Cy}y∈TM\{0} is called the Cartan torsion. Obviously, F is

Riemannian metric if and only if Cy = 0 (see [19]). The norm of Cartan torsion

C at point x ∈ M is defined by

∥C∥x := sup
y,v∈TxM\{0}

F (x, y)|Cy(v, v, v)|
[gy(v, v)]

3
2

.

and the norm of Cartan torsion on M is defined by ∥C∥ := supx∈M ∥C∥x.

Taking a trace of Cartan torsion yields the mean Cartan torsion Iy It is

defined by:

Iy(u) := gij(y) Cy

(
u,

∂

∂xi
,

∂

∂xj

)
The norm of mean Cartan torsion I at point x ∈ M is defined by

∥I∥x := sup
y,v∈TxM\{0}

F (x, y)|Iy(v)|
[gy(v, v)]

1
2

. (2.3)

and the norm of mean Cartan torsion on M is defined by ∥I∥ := supx∈M ∥I∥x.

For an n-dimensional Finsler manifold (M,F ), there is a special vector field

G which is induced by F on TM0 := TM\{0}. In a standard coordinates

(xi, yi) for TM0, it is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where

Gi(x, y) :=
gil

4

{ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

}
The homogeneous scalar functions Gi are called the geodesic coefficients of F .

The vector field G is called the associated spray to (M,F ).
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For a non-zero vector y ∈ TxM0, define By : TxM × TxM × TxM → TxM

by By(u, v, w) := Bi
jkl(y)u

jvkwl ∂
∂xi |x, where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
.

B is called the Berwald curvature and F is called a Berwald metric if B = 0.

There is another quantity that characterize Berwald metrics. Let us define

C̄y : TxM ×TxM ×TxM ×TxM → R by C̄y(u, v, w, z) = C̄ijklu
ivjwkzl, where

C̄ijkl := Cijk|l.

It is proved that for a Finsler metric, B = 0 if and only if C̄ = 0 (see Lemma

10.1.1 in [9]).

The horizontal covariant derivatives of C along geodesics give rise to the

Landsberg curvature Ly : TxM ⊗ TxM ⊗ TxM → R defined by

Ly(u, v, w) := Lijk(y)u
ivjwk,

where

Lijk := Cijk|sy
s,

u = ui∂/∂xi|x, v = vi∂/∂xi|x and w = wi∂/∂xi|x. The family L := {Ly}y∈TM0

is called the Landsberg curvature. A Finsler metric is called a Landsberg metric

if L = 0.

For y ∈ TxM , define Jy : TxM → R by Jy(u) := Ji(y)u
i, where

Ji := gjkLijk.

By definition, Jy(y) = 0. J is called the mean Landsberg curvature or J-

curvature. A Finsler metric F is called a weakly Landsberg metric if Jy = 0.

By definition, every Landsberg metric is a weakly Landsberg metric. Mean

Landsberg curvature can be defined as following

Ji := ym
∂Ii
∂xm

− Im
∂Gm

∂yi
− 2Gm ∂Ii

∂ym
.

By definition, we get

Jy(u) :=
d

dt

[
Iσ̇(t)

(
U(t)

)]
t=0

,

where y ∈ TxM , σ = σ(t) is the geodesic with σ(0) = x, σ̇(0) = y and

U(t), V (t),W (t) are linearly parallel vector fields along σ with U(0) = u, V (0) =

v,W (0) = w. Then the mean Landsberg curvature Jy is the rate of change

of Iy along geodesics for any y ∈ TxM0. It has been shown that on a weakly

Landsberg manifold, the volume function V ol(x) is a constant.

The norm of mean Landsberg J at point x ∈ M is defined by

∥J∥x := sup
y,v∈TxM\{0}

F (x, y)|Jy(v)|
[gy(v, v)]

1
2

. (2.4)
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and the norm of mean Landsberg torsion onM is defined by ∥J∥ := supx∈M ∥J∥x.

The Busemann-Hausdorff volume form dVF = σF (x)dx
1 ∧ · · · ∧ dxn related

to F is defined by

σF (x) :=
Vol(Bn(1))

Vol
{
(yi) ∈ Rn

∣∣∣ F(
yi ∂

∂xi |x
)
< 1

} ,

where Bn(1) denotes the unit ball in Rn.

The distortion τ = τ(x, y) on TM associated with the Busemann-Hausdorff

volume form on M , i.e., dVBH = σ(x)dx1 ∧ dx2...∧ dxn, is defined by following

τ(x, y) = ln

√
det(gij

(
x, y)

)
σ(x)

.

Then the S-curvature is defined by

S(x, y) =
d

dt

[
τ
(
c(t), ċ(t)

)]
t=0

,

where c = c(t) is the geodesic with c(0) = x and ċ(0) = y. In a local coordinates,

the S-curvature is given by

S =
∂Gm

∂ym
− ym

∂(lnσ)

∂xm
.

A Finsler metric F on an n-dimensional manifold M is said to be of isotropic

S-curvature if

S = (n+ 1)σF,

where σ = σ(x) is a scalar function on M .

Let α =
√
aij(x)yiyj be a Riemannian metric and β = bi(x)y

i be a 1-form

on an n-dimensional manifold M . Using α and β one can define a function on

TM0 as follows

F = αϕ(s), s :=
β

α
.

where ϕ = ϕ(s) is a C∞ positive function on an open interval (−b0, b0) (see [7],

[10], [11], [15], [16], [17] and [18]). The norm ∥βx∥α of β with respect to α is

defined by

∥βx∥α :=
√
aij(x)bi(x)bj(x).

In order to define F , β must satisfy the condition ∥βx∥α < b0 for all x ∈ M .

For an (α, β)-metric, let us define bi|j by bi|jθ
j := dbi − bjθ

j
i , where θi := dxi

and θji := Γj
ikdx

k denote the Levi-Civita connection form of α. Let

rij :=
1
2 (bi|j + bj|i), sij :=

1
2 (bi|j − bj|i),

ri0 := rijy
j , r00 := rijy

iyj , rj := birij , si0 := sijy
j ,

sj := bisij , r0 := rjy
j , s0 := sjy

j .
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Let us define

Q :=
ϕ′

ϕ− sϕ′ ,

∆ := 1 + sQ+ (b2 − s2)Q′, (2.5)

Φ := −(Q− sQ′)(n∆+ 1 + sQ)− (b2 − s2)(1 + sQ)Q′′. (2.6)

In [1], Cheng-Shen characterize (α, β)-metrics with isotropic S-curvature.

Theorem A. Let F = αϕ(s) , s = β/α, be an non-Riemannian (α, β)-metric

on a manifold and b := ∥βx∥α. Suppose that F is not a Finsler metric of

Randers type. Then F is of isotropic S-curvature, S = (n + 1)cF , if and only

if one of the following holds

(i) β satisfies

rij = ε(b2aij − bibj), sj = 0, (2.7)

where ε = ε(x) is a scalar function, and ϕ = ϕ(s) satisfies

Φ = −2(n+ 1)k
ϕ∆2

b2 − s2
, (2.8)

where k is a constant. In this case, S = (n+ 1)cF with c = kε.

(ii) β satisfies

rij = 0, sj = 0. (2.9)

In this case, S = 0, regardless of choices of a particular ϕ.

3. Proof of Theorem 1.1

It is proved that every C-reducible metric with vanishing Landsberg cur-

vature is a Berwald metric. On the other hand, the class of semi-P-reducible

metrics contain the class of C-reducible metrics as a special case. Thus it is

natural to find some conditions on semi-P-reducible metrics, under which these

metrics reduced to Berwald metrics. Therefore in this section, we study semi-

P-reducible manifolds with semi-C-reducible metrics and prove the Theorem

1.1. For this reason, we first prove the following.

Proof of Theorem 1.1: Let F be a semi-C-reducible metric

Cijk =
P

1 + n

{
hijIk + hjkIi + hkiIj

}
+

Q

||I||2
IiIjIk. (3.1)
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where P = P (x, y) and Q = Q(x, y) are scalar function on tangent bundle TM

and ||I||2 := gijIiIj . Taking the horizontal covariant derivation of (3.1) yields

Cijk|s =
P|s

n+ 1

{
hijIk + hjkIi + hkiIj

}
+

P

n+ 1

{
hijIk|s + hjkIi|s + hkiIj|s

}
+

Q|s

||I||2
IiIjIk +

Q

||I||2
{
Ii|sIjIk + IiIj|sIk + IiIjIk|s

}
− Q

||I||4
(
Im|sI

m + Im|sIm

)
IiIjIk. (3.2)

Contracting (3.2) with ys implies that

Lijk =
P ′

n+ 1

{
hijIk + hjkIi + hkiIj

}
+

P

n+ 1

{
hijJk + hjkJi + hkiJj

}
+

Q′

||I||2
IiIjIk − Q

C4

(
JmIm + JmIm

)
IiIjIk

+
Q

||I||2
{
JiIjIk + IiJjIk + IiIjJk

}
. (3.3)

where

P ′ := P|sy
s, Q′ := Q|sy

s.

On the other hand, F is semi-P-reducible

Lijk = λ
{
Jihjk + Jjhki + Jkhij

}
+ 3µJiJjJk, (3.4)

where λ = λ(x, y) and µ = µ(x, y) are scalar functions on TM . Putting (3.4)

in (3.3) yields(
λ− P

n+ 1

){
Jihjk + Jjhki + Jkhij

}
=

Q

||I||2
{
JiIjIk + IiJjIk + IiIjJk

}
−3µJiJjJk +

Q′

||I||2
IiIjIk − Q

||I||4
(
JmIm + JmIm

)
IiIjIk

+
P ′

n+ 1

{
hijIk + hjkIi + hkiIj

}
. (3.5)

By definition of characterize scalar, we have

P +Q = 1. (3.6)

Taking a horizontal derivation of (3.6) yields

P ′ +Q′ = 0. (3.7)

Contracting (3.5) with gij and considering (3.7) implies that{
(n+ 1)λ+ 3µ||J||2 − 1

}
Jk = 0, (3.8)

where

||J||2 := gijJiJj .

Since (n+ 1)λ+ 3µ||J||2 ̸= 1 then (3.8) implies that

Jk = 0.
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By (3.4), we conclude that F is a Landsberg metric. By considering

P ′ = −Q′

(3.5) reduces to following

p′

{
1

n+ 1

{
hijIk + hjkIi + hkiIj

}
− 1

||I||2
IiIjIk

}
= 0. (3.9)

Therefore by (3.9), it results that p is constant along geodesics or the following

is holds
1

n+ 1

{
hijIk + hjkIi + hkiIj

}
=

1

||I||2
IiIjIk. (3.10)

Contracting (3.10) with Ii and using the relation

hijI
i = Ij

yield
1

n+ 1

{
hjk||I||2 + 2IjIk

}
= IjIk, (3.11)

or equivalently

hjk||I||2 = (n− 1)IjIk. (3.12)

Since F is a positive-definite metric, we have

Rank(hjk||I||2) = n− 1, Rank(IjIk) = 1, (3.13)

which implies that n = 2. This contradicts the assumption n ≥ 3. Thus Ik = 0,

which is impossible. It follows that the characteristic scalar P = P (x, y) is

constant along Finslerian geodesics. □

Proposition 3.1. Let (M,F ) be a semi-P-reducible Finsler metric such that

3µ||J||2 + (n+ 1)λ = 1. (3.14)

Then F is L-reducible if and only if µ = 0.

Proof. Let

3µ||J||2 + (n+ 1)λ = 1

Then

λ =
1

n+ 1

{
1− 3µ||J||2

}
. (3.15)

Putting (3.15) in following

Lijk = λ
{
Jihjk + Jjhki + Jkhij

}
+ 3µJiJjJk, (3.16)

yields

Lijk =
1

n+ 1

{
Jihjk + Jjhki + Jkhij

}
−3µ

{
||J||2

n+ 1

{
Jihjk + Jjhki + Jkhij

}
− JiJjJk

}
. (3.17)
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Thus F is L-reducible if and only if µ = 0 or the following holds

1

n+ 1

{
Jihjk + Jjhki + Jkhij

}
=

1

||J||2
JiJjJk. (3.18)

Contracting (3.18) with J i and using the relation

hijJ
i = Jj

yield
1

n+ 1

{
hjk||J||2 + 2JjJk

}
= JjJk, (3.19)

or equivalently

hjk||J||2 = (n− 1)JjJk. (3.20)

Since F is a positive-definite metric, we have

Rank(hjk||J||2) = n− 1, Rank(JjJk) = 1, (3.21)

which implies that n = 2. This contradicts the assumption n ≥ 3. Thus Jk = 0,

which is impossible. Thus µ = 0. □

4. Proof of Theorem 1.2

An (α, β)-metric is a scalar function on TM defined by F := αϕ(s), s = β/α,

in which ϕ = ϕ(s) is a C∞ on (−b0, b0) with certain regularity, α =
√
aijyiyj

is a Riemannian metric, β = bi(x)y
i is a 1-form on M and b := ∥βx∥α. For

an (α, β)-metric F := αϕ(s), define bi|jθ
j := dbi − bjθ

j
i , where θi := dxi and

θji := Γj
ikdx

k denote the Levi-Civita connection form of α. Put

rij :=
1

2

(
bi|j + bj|i

)
, sij :=

1

2

(
bi|j − bj|i

)
,

r00 := rijy
iyj , sj := bisij , s0 := sjy

j ,

a := ϕ(ϕ− sϕ′), (4.1)

A :=
3sϕ′′ − (b2 − s2)ϕ′′′

ϕ− sϕ′ + (b2 − s2)ϕ′′ + (n− 2)
sϕ′′

ϕ− sϕ′ − (n+ 1)
ϕ′

ϕ
. (4.2)

In [6], Najafi-Tayebi studied the semi-C-reducibility of a non-Riemannian (α, β)-

metric F = αϕ(s), s = β/α, and showed the the characteristic scalar of F is

given by following

P :=
n+ 1

aA

[
sϕϕ′′ − ϕ′(ϕ− sϕ′)

]
, (4.3)

where a = a(s) and A = A(s) are given by (4.1) and (4.2), respectively. In the

class of (α, β)-metrics, the quantity P = P (s), s = β/α, characterize Randers

metrics. More precisely, we have the following.

Theorem B. Let F = αϕ(s), s = β/α, be a non-Riemannian (α, β)-metric on

a manifold M of dimension n ≥ 3. Then M = 0 if and only if P = 1. Then

F is a Randers metric if and only if P = 1.
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Then, they proved the following.

Theorem C. Let F := αϕ(s), s = β/α, be a non-Riemannian regular (α, β)-

metric on a manifold M of dimension n ≥ 3. Then P = P (s) is constant along

any Finslerian geodesic if and only if one of the following holds

(i) β satisfies

rij = 0, si = 0. (4.4)

(ii) ϕ = ϕ(s) satisfies

(n+ 1)
[
s(ϕϕ′′ + ϕ′ϕ′)− ϕϕ′

]
= daA, (4.5)

where d ∈ R is a real constant.

Then, we conclude the following.

Lemma 4.1. Let (M,F ) be semi-P-reducible manifold of dimension n ≥ 3

equipped with an (α, β)-metric F = αϕ(s), s = β/α, such that

3µ||J||2 + (n+ 1)λ ̸= 1. (4.6)

Then one of the following holds:

(i) F is a Berwald metric;

(ii) S = 0;

(iii) ϕ = ϕ(s) satisfies

(n+ 1)
[
s(ϕϕ′′ + ϕ′ϕ′)− ϕϕ′

]
= c aA, (4.7)

where c ∈ R is a real constant.

Proof. By Theorem 1.1, F is a Landsberg metric or the characteristic scalar of

F is a constant along any Finslerian geodesics. In the first case, F reduces to

a Berwald metric. In the second case, by Theorem C we get two subcases: (i)

rij = 0 and si = 0 which by Theorem A we have S = 0; (ii) ϕ = ϕ(s) satisfies

the ODE (4.7). □

Proof of Theorem 1.2: In [12], Tayebi-Najafi studied and classified the

class of 3-dimensional (α, β)-metrics with vanishing Landsberg curvature. They

proved that every 3-dimensional non-Riemannian almost regular Landsberg

(α, β)-metric F = αϕ(s), s = β/α, belongs to the one of the following three

classes of Finsler metrics:

(1) F is a Berwald metric. In this case, F is a Randers metric or a Kropina

metric;
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(2) ϕ is given by the ODE

ϕ4−4c(ϕ− sϕ′)4−c
[
ϕ− sϕ′ + (b2 − s2)ϕ′′

]−c

= ek0 , (4.8)

where c is a nonzero real constant, k0 is a real number and b := ||β||α.
In this case, F is a Berwald metric (regular case) or an almost regular

unicorn.

However the ODE (4.7) has the solution (4.8). Thus by Lemma 4.1 and the

mentioned Theorem, we get the proof. □

It is a long-existing open problem in Finsler geometry to find Landsberg

metrics which are not Berwaldian. Bao called such metrics unicorns in Finsler

geometry. For more recently progress, see [13] and [14].
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