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Abstract. In this paper, we study the class of semi-C-reducible Finsler man-
ifolds. Under a condition, we prove that every semi-C-reducible Finsler spaces
with a semi-P-reducible metric has constant characteristic scalar along Finsle-
rian geodesics or reduces to a Landsberg metric. By this fact, we characterize
the class of semi-P-reducible spaces equipped with an («, 3)-metric. More pre-
cisely, we proved that such metrics are Berwaldian B = 0, or have vanishing
S-curvature S = 0 or satisfy a well-known ODE. This yields an extension of
Tayebi-Najafi’s classification for 3-dimensional («, 8)-metric of Landsberg-type.
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1. INTRODUCTION

Let (M, F) be a Finsler manifold and ¢ : [a,b] — M be a piecewise C'*°
curve from c¢(a) = p to ¢(b) = ¢. For every u € T, M, let us define

P.:T,M — T,M

by P.(u) := U(b), where U = U(t) is the parallel vector field along ¢ such
that U(a) = u. P, is called the parallel translation along ¢. In [2], Ichijyo
showed that if F' is a Berwald metric, then all tangent spaces (T, M, F,) are
linearly isometric to each other. Let us consider the Riemannian metric g, on
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T, My := T, M — {0} which is defined by

Gz = gij(x,y)0y" @0y,  gij = %[FQ]UW
is the fundamental tensor of F and {6y* := dy’+ N. ;dacj } is the natural coframe
on T, M associated with the natural basis {0/0x|,} for T, M. If F is a Lands-
berg metric, then for any C'*° curve ¢, P, preserves the induced Riemannian
metrics on the tangent spaces, i.e., P, : (T, M, §,) — (T4M, §,) is an isometry.
By definition, every Berwald metric is a Landsberg metric, but the converse
may not hold. Thus, we get the following

{Berwald metrics} C {Landsberg metrics}.

Let (M, F) be an n-dimensional Finsler manifold. The second derivatives of
F2? at y € T, My is an inner product g, on T, M. The third order derivatives
of F? at y € T, My is a symmetric trilinear forms C, on T, M. We call g, and
C, the fundamental form and the Cartan torsion, respectively.

Set I, :=>"" , Cy(ei,e;,) where {e;} is an orthonormal basis for (T, M, g,).
I, is called the mean Cartan torsion of F'. A Finsler metric F' is called semi-
C-reducible if its Cartan tensor is given by

P Q
Cijre = 1 {hijllc + hjil; + hkifj} + ||IH2L‘IJ‘II€7

where P = P(z,y) and Q = Q(z,y) are scalar function on TM, h;; is the
angular metric, and ||I||*> = ¢“I;I;. The function P is called characteristic
scalar of F'. By definition, we have P+ Q = 1. In the case of P = 1, F reduces
to a C-reducible Finsler metric

1
Cijk = m{h@‘[k + hjin + hkifj}.

In [4], Matsumoto proved that any Randers metric is C-reducible. Later on,
Matsumoto-Ho6jo proves that the converse is true too [3]. A Randers metric
F = o+ is just a Riemannian metric « perturbated by a one form 8. Randers
metrics have important applications both in mathematics and physics.

The rate of change of C,, along geodesics is the Landsberg curvature L, on
T,M for any y € T,My. F is said to be Landsbergian if L = 0. There is a
weaker notion of metrics- weakly Landsberg metrics. Set J, := > "1 | Ly (e;, €5, ).
Then J, is called the mean Landsberg curvature. A Finsler metric F is said to
be weakly Landsbergian if J = 0. As a generalization of C-reducible metrics,
Matsumoto-Shimada introduced the notion of L-reducible metrics [5]. Indeed,
F' is said to be L-reducible Finsler metric if its Landsberg curvature can be
written as the follows

1
Liji = ﬁ{Jihjk + Jihix + thij}~ (L.1)
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As an extension of L-reducible metric, Rastogi introduced a new class of Finsler
spaces named by semi-P-reducible spaces which contains the notion of C-
reducible and L-reducible metrics, as a special case [8]. A Finsler metric F
is called semi-P-reducible if its Landsberg tensor is given by

Lije = M Jibgse + Jhus + T } + 30T i, (1.2)

where A = A(z,y) and pu = p(x,y) are scalar functions on T'M.

In this paper, we prove that every semi-C-reducible Finsler spaces with
a semi-P-reducible metric has constant characteristic scalar along Finslerian
geodesics or reduces to a Landsberg metric. More precisely, we prove the fol-
lowing.

Theorem 1.1. Let (M, F) be semi-C-reducible manifold of dimension n > 3.
Suppose that F is a semi-P-reducible Finsler metric such that

3ul|l TP+ (n+ 1A #£ 1. (1.3)

Then one of the following holds

(1) F is a Landsberg metric;
(2) Characteristic scalar of F is a constant along any Finslerian geodesics.

Then we focus on semi-P-reducible manifold equipped with an («, 8)-metric
and prove the following.

Theorem 1.2. Let (M, F) be semi-P-reducible manifold of dimension n > 3
equipped with an («, 8)-metric F' = ap(s), s = B/, such that

Sul|l I+ (n+ 1A # 1. (1.4)

Then one of the following holds

(1) F is a Berwald metric;
(2) S=0;
(3) & = ¢(s) is given by the ODE

—cC

60— 50) o — s+ (0 = )] =M, (1.5)
where ¢ is a nonzero real constant, ko is a real number and b :=||5||-

Every Landsberg metric is a special semi-P-reducible Finsler metric with
A = p = 0. Then Theorem 1.2 is an extension of Tayebi-Najafi’s Theorem about
the classification of the class of 3-dimensional («, 8)-metrics with vanishing
Landsberg curvature in [12].
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2. PRELIMINARIES

A Finsler metric on a manifold M is a nonnegative function F' on T'M having
the following properties: (i) Fis C*° on TM\{0}; (ii) F'(\y) = AF(y), YA > 0,
y € TM; and (iii) for each y € T, M, the following quadratic form g, on T, M
is positive definite,

, u,v € Ty M. (2.1)

1
gy(uv) =3 [Py +sutt)]|

At each point z € M, F,, := F|p,u is an Euclidean norm if and only if g, is
independent of y € T, M \ {0}.

To measure the non-Euclidean feature of Fy, define C, : T, M x T, M x
T.M — R by
1d
2dt
The family C := {Cy},eran (o} is called the Cartan torsion. Obviously, F' is
Riemannian metric if and only if C,, = 0 (see [19]). The norm of Cartan torsion
C at point x € M is defined by

, u,v,w € Ty M. (2.2)

Cy(u,v,w) := o

|:gy+tw (u, U)]

F(z,y)|Cy (v, v, )|

IClls:= sup 7
yoeT M0} [gy (v, v)]2
and the norm of Cartan torsion on M is defined by ||C|| := sup,¢c/ [|C|2-

Taking a trace of Cartan torsion yields the mean Cartan torsion I, It is
defined by:
i o 0
— =z
L,(w) =97 () Cy (w577 5.7
The norm of mean Cartan torsion I at point x € M is defined by
F(z, y)[Ly (v)|

11|z := sup — . (2.3)
yweTM\{0}  [8y (v, v)]2
and the norm of mean Cartan torsion on M is defined by ||I|| := sup,c; [|I]]2-

For an n-dimensional Finsler manifold (M, F'), there is a special vector field
G which is induced by F on TMy := TM\{0}. In a standard coordinates
(xt,y?) for T My, it is given by
0

i 0

G:yl @a

where

gil 32 F2 i 8F2
Z{axkayly T ol }

The homogeneous scalar functions G* are called the geodesic coefficients of F'.
The vector field G is called the associated spray to (M, F).

G'(z,y) =
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For a non-zero vector y € T, My, define By, : T, M x T, M x T, M — T, M

by By (u, v,w) := By, (y)u/vFw! 3% ., where
; Gt
? .
Bl = Oyl dyk oyt

B is called the Berwald curvature and F' is called a Berwald metric if B = 0.
There is another quantity that characterize Berwald metrics. Let us define
C, : T.M xT,M xT,M xT,M — R by C,(u,v,w,2) = Cijruviw*z!, where

Cijkl == Cijkpr-
It is proved that for a Finsler metric, B = 0 if and only if C = 0 (see Lemma
10.1.1 in [9]).

The horizontal covariant derivatives of C along geodesics give rise to the
Landsberg curvature L, : T, M ® T, M ® T, M — R defined by

Ly (’U,, v, ’lU) = Lt]k(y)uzv‘]wk7

where

Liji = Cijr)sy°,
u=u'd/0z"|;, v =0'0/0x!|, and w = w'd/dz*|,. The family L := {Ly, }yern,
is called the Landsberg curvature. A Finsler metric is called a Landsberg metric
if L=0.

For y € T, M, define J,, : T, M — R by J, (u) := J;(y)u’, where
Ji = gjkLijk.
By definition, J,(y) = 0. J is called the mean Landsberg curvature or J-
curvature. A Finsler metric F' is called a weakly Landsberg metric if J, = 0.

By definition, every Landsberg metric is a weakly Landsberg metric. Mean
Landsberg curvature can be defined as following

g =y™ —Iyy—— —2G™ .
4 ox™ oy’ oy™
By definition, we get
d
3, = 2 Lo ©®)] .

where y € T,M, 0 = o(t) is the geodesic with ¢(0) = z, ¢(0) = y and
U(t),V(t), W(t) are linearly parallel vector fields along o with U(0) = u, V(0) =
v,W(0) = w. Then the mean Landsberg curvature J, is the rate of change
of I, along geodesics for any y € T, My. It has been shown that on a weakly
Landsberg manifold, the volume function Vol(x) is a constant.
The norm of mean Landsberg J at point © € M is defined by
F(z,y)| 3y (v)]

3= sup ; (24)

yweT, M\{0}  [8y(v,v)]



Short title of the paper 135
and the norm of mean Landsberg torsion on M is defined by ||J|| := supcas || 2-

The Busemann-Hausdorff volume form dVp = op(z)dz! A --- A dz™ related
to F' is defined by

B Vol(B"(1))
Vol{(yi) €Rn F(y%@ < 1}
where B™(1) denotes the unit ball in R™.

The distortion 7 = 7(z,y) on TM associated with the Busemann-Hausdorff
volume form on M, i.e., dVgy = o(x)dx' Adx?... Adx™, is defined by following

det (gij (xv y))
o(x) '

op(x):

7(z,y) =1In
Then the S-curvature is defined by

S(a,y) = 4 [r(et), )] _

¢
where ¢ = ¢(t) is the geodesic with ¢(0) = x and ¢(0) = y. In alocal coordinates,
the S-curvature is given by
~oGg™  ,0(Ino)
"oy Y e

A Finsler metric F' on an n-dimensional manifold M is said to be of isotropic

S

S-curvature if
S=(n+1)oF,
where o = o(z) is a scalar function on M.
Let a = y/a;;(z)y’y7 be a Riemannian metric and 8 = b;(z)y’ be a 1-form

on an n-dimensional manifold M. Using « and  one can define a function on
T My as follows

F = ag¢(s), 5= —.

where ¢ = ¢(s) is a C* positive function on an open interval (—bg, by) (see [7],
[10], [11], [15], [16], [17] and [18]). The norm ||8;||« of 8 with respect to « is
defined by

1Bz lla == 1/ a® (2)bi(x)b; (z).
In order to define F, 5 must satisfy the condition ||8;||o < bo for all x € M.
For an (a, 3)-metric, let us define b;j; by bi|j9j := db; — b;0!, where 0" := da*
and 67 := T, dz* denote the Levi-Civita connection form of a. Let
rig = 5 (bag +0j10),  sij = 5(big; — bjpa),
rio 1= iy’ Too i= Ty, Ty = b, sio i= siy,

o pi — j . j
s; :=0b'sy;, 1o =190,  Ssp =87,
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Let us define

__ ¢
T
A:=1+sQ+ (® —s9)Q, (2.5)

®:=—(Q —sQ)(nA +1+5Q) — (b* = s*)(1+sQ)Q".  (2.6)

In [1], Cheng-Shen characterize (o, 8)-metrics with isotropic S-curvature.

Theorem A. Let F = ag¢(s) , s = §/a, be an non-Riemannian («, 3)-metric
on a manifold and b := ||Bz|la- Suppose that F is not a Finsler metric of
Randers type. Then F is of isotropic S-curvature, S = (n + 1)cF, if and only
if one of the following holds

(i) B satisfies
Tij = £(b2aij - bibj)7 S5 = 0, (27)

where € = e(x) is a scalar function, and ¢ = ¢(s) satisfies

PA?
where k is a constant. In this case, S = (n+ 1)cF with ¢ = ke.
(ii) B satisfies
rij =0, s;=0. (2.9)

In this case, S =0, regardless of choices of a particular ¢.

3. PROOF OF THEOREM 1.1

It is proved that every C-reducible metric with vanishing Landsberg cur-
vature is a Berwald metric. On the other hand, the class of semi-P-reducible
metrics contain the class of C-reducible metrics as a special case. Thus it is
natural to find some conditions on semi-P-reducible metrics, under which these
metrics reduced to Berwald metrics. Therefore in this section, we study semi-
P-reducible manifolds with semi-C-reducible metrics and prove the Theorem
1.1. For this reason, we first prove the following.

Proof of Theorem 1.1: Let F' be a semi-C-reducible metric

P Q
Cijk = m{hijfk + hjrd; + hkilj} + Wfi.[j]k. (3.1)
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where P = P(z,y) and Q = Q(x,y) are scalar function on tangent bundle T'M
and ||I||? := ¢"I;1;. Taking the horizontal covariant derivation of (3.1) yields

P
Cigrts = =7 { husli + h]kl bl p+ By ol + halys
Q\s
S T © ALyl LT+ L,
||1Q|4< N LN L )IinIk. (3.2)

Contracting (3.2) with y® implies that

/

P
Lip= — {hUIk + hgdi + bl } n m{hiij S+ hedi + hk,;Jj}
/
|ﬁPIIL€ éi(] I+ Jmr,, )@Qh
+ Q@ LT+ LT+ L, 3.3
HIHQ K+ K+ k (3.3)
where

P = P|33157 Ql = Q\sys~
On the other hand, F' is semi-P-reducible

Liji = )\{Jihjk + Jihg + thij} +3ud; J; gy, (3.4)

where A = A(z,y) and p = p(x,y) are scalar functions on T'M. Putting (3.4)
in (3.3) yields

(>\ — i) {Jihjk + Jjhg + thij} =

1 {Lgu+n@@+ngh}

[HE
Q' Q
L1, —
[
/

P
T H{hwfﬁhjkf + hpil } (3.5)

*3MJ1'Jij +

(Jond™ + ™ L ) L

By definition of characterize scalar, we have

P+Q=1. (3.6)
Taking a horizontal derivation of (3.6) yields
P Q=0 (3.7)
Contracting (3.5) with g%/ and considering (3.7) implies that
{(n+1)A+3u|\J||2—1}Jk=0, (3.8)
where
|3]? = g" J; ;.

Since (n + 1)A + 3u||J||? # 1 then (3.8) implies that
Ji = 0.
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By (3.4), we conclude that F is a Landsberg metric. By considering
Pl — 7@/
(3.5) reduces to following

1
p,{ +l{hUIk+h]kI + gl } ||I|2”I’“} 0. (3.9)

Therefore by (3.9), it results that p is constant along geodesics or the following
is holds

%H{hijlk—khjkli—khmlj} IIIIIPH Iy. (3.10)
Contracting (3.10) with I* and using the relation
hi It = I;
yield
%H{hjknl\ﬁ + 201} = LIy, (3.11)
or equivalently
hikl[Xl1? = (n = 1) ;1. (3.12)
Since F' is a positive-definite metric, we have
Rank(hjx|[1|[*) =n — 1, Rank(I;I},) =1, (3.13)

which implies that n = 2. This contradicts the assumption n > 3. Thus I, = 0,
which is impossible. It follows that the characteristic scalar P = P(z,y) is
constant along Finslerian geodesics. (I

Proposition 3.1. Let (M, F) be a semi-P-reducible Finsler metric such that
3P+ (n+ 1A= 1. (3.14)
Then F' is L-reducible if and only if = 0.

Proof. Let
3ullJIP+ (n+DA=1
Then )
A= {1 3|3 } 1
{1 =B (3.15)

Putting (3.15) in following

Lijk = )\{Jih]’k + thki + thij} + 3,LLJiJij, (3.16)
yields

1
Lijk 1 {J bt + Jjhi + thw}

n+117"" Jlvki R v
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Thus F is L-reducible if and only if g = 0 or the following holds
1

%H{Jihjk o+ Jibwi + Jihis | = T3 (3.18)
Contracting (3.18) with J* and using the relation
hijJ' = J;
yield
%H{hijJHQ + 2050k} = Tk, (3.19)
or equivalently
higl|J||? = (n — 1)J; J. (3.20)
Since F is a positive-definite metric, we have
Rank(h;||J|?) =n -1, Rank(J;Jy) =1, (3.21)

which implies that n = 2. This contradicts the assumption n > 3. Thus J = 0,
which is impossible. Thus p = 0. O

4. PROOF OF THEOREM 1.2

An (a, 8)-metric is a scalar function on TM defined by F := a¢(s), s = 8/,
in which ¢ = ¢(s) is a C™ on (—bg, by) with certain regularity, o = /a;;y’y’
is a Riemannian metric, 8 = b;(z)y’ is a 1-form on M and b := ||B;||o. For
an (o, B)-metric F' := ag(s), define bl-|j9j = db; — bﬂf, where 6 := dz’ and

0] = 1"gkdac’C denote the Levi-Civita connection form of o. Put
1 1

rig = 5 (bitg +bjs), sig = 5 (big = b)),

Too == Tiy'yl,  s; = b'siy, S0 =85y,

a:= ¢(¢p — s¢’), (4.1)

Ao 3S¢” _ (b2 _ 82)¢/// 8¢” ﬂl

T —sd o+ (02— s2)g” ¢ —s¢ ¢

In [6], Najafi-Tayebi studied the semi-C-reducibility of a non-Riemannian («, 5)-
metric F' = a¢(s), s = 8/a, and showed the the characteristic scalar of F is
given by following

+(n—-2) —(n+1) (4.2)

"L s - 66— 50, (43)
where a = a(s) and A = A(s) are given by (4.1) and (4.2), respectively. In the
class of (a, f)-metrics, the quantity P = P(s), s = 8/«, characterize Randers
metrics. More precisely, we have the following.

P .=

Theorem B. Let F = a¢(s), s = 8/a, be a non-Riemannian (¢, 3)-metric on
a manifold M of dimension n > 3. Then M = 0 if and only if P = 1. Then
F is a Randers metric if and only if P = 1.
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Then, they proved the following.

Theorem C. Let F := a¢(s), s = 8/, be a non-Riemannian regular («, 3)-
metric on a manifold M of dimension n > 3. Then P = P(s) is constant along
any Finslerian geodesic if and only if one of the following holds

(i) B satisfies
ri; =0, s =0 (4.4)
(il) ¢ = ¢(s) satisfies

(n+1)[s(66" + ¢'6) — 60| = da, (4.5)

where d € R is a real constant.

Then, we conclude the following.

Lemma 4.1. Let (M, F) be semi-P-reducible manifold of dimension n > 3
equipped with an («, 8)-metric F = ap(s), s = B/, such that

3ul|l I+ (n+ 1A #£ 1. (4.6)

Then one of the following holds:
(i) F is a Berwald metric;
(i) S=0;
(iil) ¢ = &(s) satisfies

(n+1)|s(¢p9" + ¢'¢') — ¢¢'| = ¢ aA, (4.7)
where ¢ € R is a real constant.

Proof. By Theorem 1.1, F' is a Landsberg metric or the characteristic scalar of
I is a constant along any Finslerian geodesics. In the first case, F' reduces to
a Berwald metric. In the second case, by Theorem C we get two subcases: (i)
ri; = 0 and s; = 0 which by Theorem A we have S = 0; (ii) ¢ = ¢(s) satisfies
the ODE (4.7). d

Proof of Theorem 1.2: In [12], Tayebi-Najafi studied and classified the
class of 3-dimensional («, 8)-metrics with vanishing Landsberg curvature. They
proved that every 3-dimensional non-Riemannian almost regular Landsberg
(ar, B)-metric F = a¢(s), s = B/a, belongs to the one of the following three
classes of Finsler metrics:

(1) Fis a Berwald metric. In this case, F' is a Randers metric or a Kropina
metric;
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(2) ¢ is given by the ODE

H(o— 00— 58 + (1P = 5P)g"] =, (4.8)

where ¢ is a nonzero real constant, ko is a real number and b := ||5|4.
In this case, F' is a Berwald metric (regular case) or an almost regular
unicorn.

However the ODE (4.7) has the solution (4.8). Thus by Lemma 4.1 and the
mentioned Theorem, we get the proof. O

It is a long-existing open problem in Finsler geometry to find Landsberg

metrics which are not Berwaldian. Bao called such metrics unicorns in Finsler
geometry. For more recently progress, see [13] and [14].
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