- 1. M. Atashafrouz , Characterization of 3-dimensional left-invariant locally projectively flat
Randers metrics, Journal of Finsler Geometry and its Applications, 1(2020), 96-102.
- 2. M. Z. Laki, On generalized symmetric Finsler spaces with some special (α, β)-metrics,
Journal of Finsler Geometry and its Applications, 1(2020), 45-53.
- 3. M. Matsumoto and S. H¯oj¯o, A conclusive theorem for C-reducible Finsler spaces, Tensor.
N. S. 32(1978), 225-230.
- 4. M. Matsumoto and C. Shibata, On semi-C-reducibility, T-tensor and S4-1ikeness of
Finsler spaces, J. Math. Kyoto Univ. 19(1979), 301-314.
- 5. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31(1992),
43-84.
- 6. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important
tensors, J. Math. Kyoto Univ. 14(1974), 477-498.
- 7. M. Matsumoto and H. Shimada, On Finsler spaces with the curvature tensors Phijk and
Shijk satisfying special conditions, Rep. Math. Phys. 12(1977), 77-87.
- 8. A. Mo´or, Uber die Torsion-Und Krummungs invarianten der drei reidimensionalen ¨
Finslerchen R¨aume, Math. Nach, 16(1957), 85-99.
- 9. T. Rajabi, On the norm of Cartan torsion of two classes of (α, β)-metrics, Journal of
Finsler Geometry and its Applications, 1(2020), 66-72.
- 10. Y. Takano, On the theory of fields in Finsler spaces, Intern. Symp. Relativity and Unified
Field Theory, Calcutta, 1975.
- 11. A. Tayebi, M. Bahadori and H. Sadeghi, On spherically symmetric Finsler metrics with
some non-Riemannian curvature properties, J. Geom. Phys. 163 (2021), 104125.
- 12. A. Tayebi and M. Barzegari, Generalized Berwald spaces with (α, β)-metrics, Indagationes Mathematicae, 27(2016), 670-683.
- 13. A. Tayebi and B. Najafi, On homogeneous Landsberg surfaces, J. Geom. Phys. 168(2021),
104314.
- 14. A. Tayebi and B. Najafi, Classification of 3-dimensional Landsbergian (α, β)-mertrics,
Publ. Math. Debrecen, 96(2020), 45-62.
- 15. A. Tayebi and M. Razgordani, On conformally flat fourth root (α, β)-metrics, Differ.
Geom. Appl. 62(2019), 253-266.
- 16. A. Tayebi and H. Sadeghi, Generalized P-reducible (α, β)-metrics with vanishing Scurvature, Ann. Polon. Math. 114(1) (2015), 67-79.
- 17. A. Tayebi and H. Sadeghi, On generalized Douglas-Weyl (α, β)-metrics, Acta. Math.
Sinica. English. Series. 31(2015), 1611-1620.
|