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Abstract. Let ∇ be a symmetric connection on an n-dimensional manifold

Mn and T ∗Mn its cotangent bundle. In this paper, firstly, we determine the

infinitesimal fiber-preserving projective(IFP) transformations on T ∗Mn with

respect to the Riemannian connection of the modified Riemannian extension

g̃∇,c where c is a symmetric (0, 2)-tensor field on Mn. Then we prove that, if

(T ∗Mn, g̃∇,c) admits a non-affine infinitesimal fiber-preserving projective trans-

formation, then Mn is locally flat, where ∇ is the Levi-Civita connection of a

Riemannian metric g onMn. Finally, the infinitesimal complete lift, horizontal

and vertical lift projective transformations on (T ∗Mn, g̃∇,c) are studied.

Keywords: Modified Riemannian extension; Infinitesimal fiber-preserving trans-

formations; Infinitesimal projective transformations.

1. Introduction

Let Mn be a connected n-dimension manifold and T ∗Mn its cotangent bun-

dle. We assume that the all geometric objects, which will be considered in this

paper, are differentiable of class C∞. Also the set of all tensor fields of type

(r, s) on Mn and T ∗Mn are denoted by ℑr
s(Mn) and ℑr

s(T
∗Mn), respectively.

Let ∇ be an affine connection on Mn. If a transformation on Mn preserves

the geodesics as point sets, then it is called projective transformation. Also,
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a transformation on Mn which preserves the connection is called affine trans-

formation. Therefore, an affine transformation is a projective transformation

which preserves the geodesics with the affine parameter.

A vector field V onMn with the local one-parameter group {ϕt} is called an

infinitesimal projective (affine) transformation, if for every t, ϕt be a projective

(affine) transformation on Mn.

It is well known that, a vector field V is an infinitesimal projective transfor-

mation if and only if for every X,Y ∈ ℑ1
0(Mn), we have

(LV ∇)(X,Y ) = Ω(X)Y +Ω(Y )X,

where Ω is an one form on Mn and LV is the Lie derivation with respect to V .

In this case Ω is called the associated one form of V . One can see that V is an

infinitesimal affine transformation if and only if Ω = 0[25].

Now let ϕ̃ be a transformation on T ∗Mn. If ϕ̃ preserves the fibers, then it is

called the fiber-preserving transformation. Let Ṽ be a vector field on T ∗Mn and

{ϕ̃t} the local one-parameter group generated by Ṽ . If ϕ̃t, for every t, be a fiber-

preserving transformation, then Ṽ is called an infinitesimal fiber-preserving

transformation. Infinitesimal fiber-preserving transformations form a rich class

of infinitesimal transformations on T ∗Mn which include infinitesimal complete

lift, horizontal lift and vertical lift transformations as special subclasses. For

more details see [22].

Let ∇ be a torsion free linear connection on Mn. Patterson and Walker

defined a pseudo-Riemannian metric g̃∇ on T ∗Mn, the cotangent bundle of

Mn, as follow

g̃∇(HX,H Y ) = 0,

g̃∇(HX,V ω) = g̃∇(V ω,H X) = ω(X),

g̃∇(V ω,V θ) = 0,

where HX,H Y and V ω,V θ are horizontal and vertical lift of X,Y ∈ ℑ1
0(Mn)

and ω, θ ∈ ℑ0
1(Mn), respectively[19]. The metric g̃∇ is called the Riemann-

ian extension of symmetric affine connection ∇ and investigated by many

authors[1, 2, 3, 4, 6, 9, 15, 20]. These metrics are interesting, because they

are the simplest examples of non-Lorentzian Walker metrics. Walker metrics

play a distinguished role in geometry and physics[8, 16]. For more details about

Walker metrics see [6].

It would be noted that Riemannian extensions provide a way between the

geometry of affine connection ∇ and the geometry pseudo-Riemannian metric

g̃∇. For instance, Afifi proved that is ∇ projectively flat if and only if g̃∇ is

locally conformally flat [1].

In [6, 7] a modification of Riemannian extension is defined that denoted by

g̃∇,c = g̃∇ + π∗c,
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where c ∈ ℑ0
2(Mn) is a symmetric tensor field and π : T ∗Mn → Mn is the

natural projection. g̃∇,c is a pseudo-Riemannian metric on T ∗Mn of signa-

ture (n, n) and is called modified Riemannian extension and studied by many

authors[5, 6, 7, 10]. This metric is much less rigid than that of the Riemannian

extensions[6].

One of the interesting and important problems in the context of Riemann-

ian geometry is the classification of Riemannian manifolds, when the (peusdo-

)Riemannian manifold or its tangent bundle admits an infinitesimal projective

transformation, see [11, 12, 13] and [17, 18, 21, 23, 24]. For instance, in [17], it

is proved that if a complete Riemannian manifold Mn, with the parallel Ricci

tensor, admits a non-affine infinitesimal projective transformation, then Mn is

a space of positive constant curvature. Also, it is proved that a simply contact

Riemannian manifoldMn is isometric to a unit sphere ifMn admits a non-affine

infinitesimal projective transformation[18].

In [12] and [21], the following theorem is proved.

Theorem A: Let (Mn, g) be a complete Riemannian manifold and TMn its

tangent bundle. If TMn, with respect to the Riemannian connection 1) the

Sasaki metric or 2) the complete lift metric, admits a non-affine infinitesimal

projective transformation, then Mn is locally flat.

For details about Sasaki metric and complete lift metric one can see [26].

The aim of this paper is to study of the infinitesimal fiber-preserving pro-

jective (IFP) transformations on T ∗Mn with respect to the Levi-Civita con-

nection of the modified Riemannian extension g̃∇,c where c ∈ ℑ0
2(Mn) is a

symmetric tensor field on Mn. Firstly, the necessary and sufficient conditions

are obtained that under which an infinitesimal fiber-preserving transformation

on (T ∗Mn, g̃∇,c) to be projective. Then, we show that the theorem A is true

about of the modified Riemannian extension g̃∇,c on T ∗Mn, when ∇ is the

Levi-Civita connection of a Riemannian metric g on Mn. Finally, the infinites-

imal complete lift, horizontal lift and vertical lift projective transformations on

(T ∗Mn, g̃∇,c) are studied.

2. Preliminaries

Here, we give some of the necessary definitions and theorems on Mn and

T ∗Mn, that are needed later. The details of them can be founded in [26, 27].

In this paper, indices a, b, c, i, j, k, . . . have range in {1, . . . , n}.
LetMn be a manifold and covered by local coordinate systems (U, xi), where

xi are the coordinate functions on the coordinate neighborhood U . The cotan-

gent bundle ofMn is defined by T ∗Mn :=
∪

x∈M T ∗
x (Mn), where T

∗
x (Mn) is the
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cotangent space ofMn at a point x ∈Mn. The induced local coordinate system

on T ∗Mn, from (U, xi), is denoted by (π−1(U), xi, pi), where π : T ∗Mn → Mn

is the natural projection and pi are the components of covector p in each cotan-

gent space T ∗
x (Mn), with respect to coframe {dxi}.

Let Mn be an n-dimensional manifold and ∇ be a symmetric connection on

Mn. The coefficients of ∇ with respect to frame field {∂i := ∂
∂xi } are denoted

by Γh
ji, i.e.,

∇∂j∂i = Γh
ji∂h.

Now, using the symmetric Connection ∇, we can define the local frame field

{Ei, Eī} on each induced coordinate neighborhood π−1(U) of T ∗Mn, as follows

Ei := ∂i + paΓ
a
hi∂h̄, Eī := ∂ī,

where ∂ī := ∂/∂pi. This frame field is called the adapted frame on T ∗Mn and

can be useful for the tensor calculations on T ∗Mn. The dual frame of {Ei, Eī}
is {dxh, δph}, where

δph := dph − pbΓ
b
hidx

i.

The following lemma is proved by the straightforward calculations.

Lemma 2.1. The Lie brackets of the adapted frame {Ei, Eī} satisfy the fol-

lowing identities:

1. [Ej , Ei] = pbR
b
ijaEā,

2. [Ej , Eī] = −Γi
jaEā,

3. [Ej̄ , Ej̄ ] = 0,

where Rb
ija are the coefficients of the Riemannian curvature tensor of

symmetric connection ∇.

Let X be a vector field and ω be a covector field on Mn that expressed by

X = Xi∂i and ω = ωidx
i on a local coordinate system (U, xi), respectively.

We can define vector fields horizontal lift HX and complete lift CX of X and

vertical lift V ω of ω on T ∗Mn as follows

HX := XiEi,
CX := XiEi − pa∇iX

aEī,
V ω = ωiEī, (2.1)

where ∇i := ∇∂i .

An important class of vector fields on T ∗Mn is the fiber-preserving vector

fields, which is determined in the following lemma.

Lemma 2.2. [22] Let Ṽ = Ṽ hEh+Ṽ
h̄Eh̄ be a vector field on T ∗Mn. Then Ṽ is

an infinitesimal fiber-preserving transformation if and only if Ṽ h are functions

on Mn.

Thus, the class of fiber-preserving vector fields is include horizontal lift,

vertical lift and complete lift vector fields, and any fiber-preserving vector field

Ṽ = V hEh + Ṽ h̄Eh̄
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on T ∗Mn induces a vector field V := V h∂h on Mn. Using a simple calculation,

we have the following lemma.

Lemma 2.3. Let Ṽ = V hEh + Ṽ h̄Eh̄ be a fiber-preserving vector field on

T ∗Mn. Then we have

1. [Ṽ , Ei] = −(∂iV
a)Ea − (V cpbR

b
ica − Ṽ b̄Γb

ai + EiṼ
ā)Eā,

2. [Ṽ , Eī] = −(V bΓi
ba + EīṼ

ā)Eā.

From a symmetric affine connection ∇ on manifold Mn, we can define a

pseudo-Riemannian metric g̃∇ on T ∗Mn the cotangent bundle of Mn, that is

called Riemannian extension of symmetric affine connection ∇. This metric is

defined by

g̃∇(HX,H Y ) = 0,

g̃∇(HX,V ω) = g̃∇(V ω,H X) = ω(X),

g̃∇(V ω,V θ) = 0,

where HX,H Y and V ω,V θ are horizontal and vertical lift of X,Y ∈ ℑ1
0(Mn)

and ω, θ ∈ ℑ0
1(Mn), respectively[19].

A modification of g̃∇ is considered in [6] which is defined by

g̃∇,c(
HX,H Y ) = c(X,Y ),

g̃∇,c(
HX,V ω) = g̃∇,c(

V ω,H X) = ω(X),

g̃∇,c(
V ω,V θ) = 0,

where c ∈ ℑ0
2(Mn) is a symmetric tensor field. This metric is called modified

Riemannian extension. It is easy te see that

g̃∇,c = g̃∇ + π∗c.

The coefficients of the Levi-Civita connection ∇̃, of modified Riemannian

extension g̃∇,c with respect to the adapted frame field {Ei, Eī} are computed

in [10]. In fact, the following lemma is proved.

Lemma 2.4. [10] Let ∇̃ be the Riemannian connection of modified Riemannian

extension g̃∇,c where c ∈ ℑ0
2(Mn) is a symmetric tensor field on Mn, then we

have

∇̃EjEi = Γh
jiEh +

{
paR

a
hji +

1
2 (∇ichj +∇jchi −∇hcij)

}
Eh̄,

∇̃EjEī = −Γi
jhEh̄,

∇̃Ej̄
Ei = 0,

∇̃Ej̄
Eī = 0,

where Γh
ji and Rh

aji are the coefficients of the symmetric affine connection ∇
and the Riemannian curvature of ∇, respectively and ∇i := ∇∂i .
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3. Main Results

Theorem 3.1. Let (Mn,∇) be a manifold with a symmetric affine connec-

tion ∇ and T ∗Mn its cotangent bundle with the Riemannian connection of the

modified Riemanian extension metric

g̃∇,c = g̃∇ + π∗c,

where c = (cij) ∈ ℑ0
2(Mn) is a symmetric tensor field. Then Ṽ is an IFP

transformation on T ∗Mn, with the associated one form Ω̃, if and only if there

exist ψ ∈ ℑ0
0(Mn), V = (V h) ∈ ℑ1

0(Mn), B = (Bh) ∈ ℑ0
1(Mn) and A = (Ai

h) ∈
ℑ1

1(Mn), satisfying

(1) (Ṽ h, Ṽ h̄) = (V h, Bh + paA
a
h),

(2) (Ω̃i, Ω̃ī) = (Ψi, 0),

(3) Ψi = ∂iψ, ∇jΨi = 0

(4) V a∇aR
h
bji +Rh

bai∇jV
a +Rh

bja∇iV
a +Ra

bjiA
h
a −Rh

ajiA
a
b = 0

(5) ∇iA
j
h = Ψiδ

j
h − V aRj

iah

(6) LV Γ
h
ji = ∇j∇iV

h + V aRh
aji = Ψiδ

h
j +Ψjδ

h
i ,

(7) ∇j∇iBa +BaR
a
hji = Aa

hMija − V a∇aMijh −Miah∇jV
a −Majh∇iV

a

where

Ṽ = (Ṽ h, Ṽ h̄) = Ṽ hEh + Ṽ h̄Eh̄,

Ω̃ = (Ω̃i, Ω̃ī) = Ω̃idx
i + Ω̃īδpi,

∇i := ∇∂i ,

Mijh :=
1

2
(∇ichj +∇jchi −∇hcij).

Proof. Firstly, we prove the necessary conditions. Let

Ṽ = V hEh + Ṽ h̄Eh̄

be an IFP transformation and

Ω̃ = Ω̃hdx
h + Ω̃h̄δy

h

its the associated one form on T ∗Mn, thus for any X̃, Ỹ ∈ ℑ1
0(T

∗Mn), we have

(LṼ ∇̃)(X̃, Ỹ ) = Ω̃(X̃)Ỹ + Ω̃(Ỹ )X̃. (3.1)

From

(LṼ ∇̃)(Ej̄ , Eī) = Ω̃j̄Eī + Ω̃īEj̄ ,

we have

∂j̄∂īṼ
h̄ = Ω̃j̄δ

h
i + Ω̃īδ

h
j . (3.2)

Form (3.2) we obtain that, there exist Φ = (Φi) ∈ ℑ1
0(Mn), B = (Bh) ∈ ℑ0

1(Mn)

and A = (Ai
h) ∈ ℑ1

1(Mn) which are satisfied

Ω̃ī = Φi, (3.3)



IFP transformations on the cotangent bundle with... 33

and

Ṽ h̄ = Bh + paC
a
h + phpaΦ

a. (3.4)

From

(LṼ ∇̃)(Ej̄ , Ei) = Ω̃j̄Ei + Ω̃iEj̄ ,

and (3.3) and (3.4) we have{
(∇iA

j
h + V aRj

iah) + pb
(
(∇iΦ

jδbh +∇iΦ
bδjh)

)}
Eh̄ = Φjδhi Eh + Ω̃iδ

j
hEh̄. (3.5)

Let us put

ψ :=
1

n
Aa

a.

Comparing the both sides of the equation (3.5), we see that

Φi = 0, (3.6)

Ω̃i = Ψi = ∂iψ, (3.7)

∇iA
j
h = V aRj

aih +Ψiδ
j
h, (3.8)

Lastly from

(LṼ ∇̃)(Ej , Ei) = Ω̃iEj + Ω̃jEi,

and (3.6)-(3.8) we obtain

ΨiEj +ΨjEi =
{
∇j∇iV

h + V aRh
aji

}
Eh +

{
∇j∇iBh +BaR

a
hij

+ V a∇aMijh +∇iV
aMajh +∇jV

aMiah −Aa
hMijh

+ pb
(
V a∇aR

b
hji +Rb

hai∇jV
a +Rb

hja∇iV
a +Ra

hjiA
b
h

−Rb
ajiA

a
h +∇jΨiδ

b
h

)}
Eh̄ (3.9)

from which we have

LV Γ
h
ji = ∇j∇iV

h + V aRh
aji = Ψiδ

h
j +Ψjδ

h
i , (3.10)

(that is, V := V h∂h is an infinitesimal projective transformation on Mn),

∇j∇iBh +BaR
a
hij = Aa

hMijh − V a∇aMijh −∇iV
aMajh −∇jV

aMiah,

(3.11)

V a∇aR
b
hji +Rb

hai∇jV
a +Rb

hja∇iV
a +Ra

hjiA
b
h −Rb

ajiA
a
h = 0, (3.12)

and

∇jΨi = 0. (3.13)

This completes the necessary conditions. The proof of the sufficient conditions

are easy. □
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It must be said that IFP transformations on T ∗Mn with respect to the Levi-

Civita connection of the modified Riemannian extension g̃∇,c are studied by

Bilen in [5], but the relation ∇jΨi = 0 is eliminated in the computations.

Now let ∇ be the Levi-Civita connection of a Riemannian metric g on Mn

and consider the modified Riemannian extension g̃∇,c on T ∗Mn. In this case

we have the following theorem.

Theorem 3.2. Let (Mn, g) be a complete n-dimensional Riemannian manifold

and T ∗Mn its cotangent bundle with the Riemannian connection of the modified

Riemannian extension metric g̃∇,c = g̃∇ + π∗c where c = (cij) ∈ ℑ0
2(Mn) is a

symmetric tensor field and ∇ is the Levi-Civita connection of g. If (T ∗Mn, g̃∇,c)

admits a non-affine IFP transformation, then Mn is locally flat.

Proof. Let Ṽ be a non-affine infinitesimal fiber-preserving projective transfor-

mation on (T ∗Mn, g̃∇,c). It is easy to see that Ψ := (Ψi) is a nonzero one form

on Mn and ∥Ψ∥ is a constant function.

We put

X := (∇aV
h −Ah

a)Ψ
a,

where Ψa := gaiΨi. Using of (3.8),(3.10) and (3.13) one can see that

LXgji = ∇jXi +∇iXj

= (∇j∇aVi −∇jAia)Ψ
a + (∇i∇aVj −∇iAja)Ψ

a

= 2(ΨaΨ
a)gji = 2∥Ψ∥gji.

This means that X is an infinitesimal non-isometric homothetic transformation

on Mn. In [14] it is proved that if a complete Riemannian manifold (Mn, g)

admits an infinitesimal non-isometric homothetic transformation then (Mn, g)

is locally flat. Therefore Mn is locally flat. □

The Riemannian curvature of g̃∇,c on T
∗Mn is computed in [10], and the con-

ditions are considered that under which (T ∗Mn, g̃∇,c) is locally flat(Theorem

2). In fact the following theorem is proved.

Theorem 3.3. [10] Let ∇ be a symmetric connection on Mn and T ∗Mn be the

cotangent bundle with the modified Riemannian extension (T ∗Mn, g̃∇,c) over

(Mn,∇). Then (T ∗Mn, g̃∇,c) is locally fla if and only if (Mn,∇) is locally flat

and the components cij of c satisfy the condition

∇i(∇kcjh −∇hcjk)−∇j(∇kcih −∇hcik) = 0. (3.14)

From Theorems 3.2 and 3.3, the following thorem is proved.

Theorem 3.4. Let (Mn, g) be a complete n-dimensional Riemannian manifold

and T ∗Mn its cotangent bundle with the Riemannian connection of the modified

Riemannian extension metric g̃∇,c = g̃∇ + π∗c where c = (cij) ∈ ℑ0
2(Mn)
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is a symmetric tensor field and ∇ is the Levi-Civita connection of g. Let

(T ∗Mn, g̃∇,c) admits a non-affine IFP transformation. Then T ∗Mn is locally

flat if and only if the tensor field c = (cij) satisfies in the equation (3.14).

Since that for c = 0 we obtain the Riemannian extension g̃∇, from Theorems

3.3 and 3.4 we immideatly obtain the following theorem.

Theorem 3.5. Let (Mn, g) be a complete n-dimensional Riemannian mani-

fold and T ∗Mn its cotangent bundle with the Riemannian connection of the

Riemannian extension metric g̃∇ where ∇ is the Levi-Civita connection of g.

If (T ∗Mn, g̃∇) admits a non-affine IFP transformation then Mn and T ∗Mn are

locally flat.

As we said that, the class of fiber-preserving vector fields is include horizontal

lift, vertical lift and complete lift vector fields. Here we consider these vector

fields on (T ∗Mn, g̃∇,c). In fact we have

Theorem 3.6. Let (Mn,∇) be an n-dimensional manifold with a symmet-

ric afffine connection ∇ and T ∗Mn its cotangent bundle with the Riemann-

ian connection of the modified Riemannian extension g̃∇,c = g̃∇ + π∗c where

c = (cij) ∈ ℑ0
2(Mn) is a symmetric tensor field. Let V = V i∂i and ω = ωidx

i

be a vector field and a one form on Mn, respectively. Then the necessary and

sufficient conditions that the

(a) CV

(b) HV ,

(c) V ω

be a infinitesimal projective transformation on T ∗Mn are that

(a) (a1) LV Γ
h
ji = 0,

(a2) V
a∇aR

h
bji+R

h
bai∇jV

a+Rh
bja∇iV

a−Ra
bji∇aV

h+Rh
aji∇bV

a = 0,

(a3) ∇hV
aMija + V a∇aMijh +Miah∇jV

a +Majh∇iV
a = 0,

(b) (b1) LV Γ
h
ji = 0,

(b2) V
a∇aR

h
bji +Rh

bai∇jV
a +Rh

bja∇iV
a = 0,

(b3) V
a∇aMijh +Miah∇jV

a +Majh∇iV
a = 0,

(c) (c1) ∇j∇iωh + ωaR
a
hij = 0,

respectively, where Mijh := 1
2{∇ichj +∇jchi −∇hcij}.

Proof. Let V = V i∂i ∈ ℑ1
0(Mn) and ω = ωidx

i ∈ ℑ0
1(Mn).

(a) From
CV := V iEi − pa∇iV

aEī

one can see that

Bh = 0, and Ai
h = −∇hV

i.
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Substituting these in Theorem3.1, one can see that CV is a projective vector

field on (T ∗Mn, g̃∇,c) if and only if (a1), (a2) and (a3) hold.

(b) Form HV := V iEi, we have Bh = 0 and Ai
h = 0. Substituting these in

Theorem3.1, one can see that HV is a projective vector field on (T ∗Mn, g̃∇,c)

if and only if (b1), (b2) and (b3) hold.

(c) Form V ω = ωiEī, we have Bh = ωh and Ai
h = 0. Substituting these in

Theorem3.1, one can see that V ω is a projective vector field on (T ∗Mn, g̃∇,c)

if and only if (c) holds. □

From (a1) and (b1) in Theorem 3.6 the following corollary is obtained.

Corollary 3.7. Let (Mn,∇) be an n-dimensional manifold with a symmet-

ric afffine connection ∇ and T ∗Mn its cotangent bundle with the Riemannian

connection of the modified Riemannian extension

g̃∇,c = g̃∇ + π∗c,

where c ∈ ℑ0
2(Mn) is a symmetric tensor field. Then every infinitesimal com-

plete lift and every horizontal lift projective transformation on T ∗Mn is an in-

finitesimal affine transformation on T ∗Mn, and induced an infinitesimal affine

transformation on Mn.

Now let (Mn, g) be a Riemannian manifold and ∇ be the Levi-Civita con-

nection of g. From (c1) we have

∇j∇iω
h + ωaRh

aji = 0,

where ωi := ωhg
ih and ω♯ = ωi∂i ∈ ℑ1

0(Mn) is the vector field associated to

one form ω. Thus

Lω♯Γh
ji = ∇j∇iω

h + ωaRh
aji = 0

i.e., we prove the following corollary.

Corollary 3.8. Let (Mn, g) be a complete n-dimensional Riemannian manifold

and T ∗Mn its cotangent bundle with the Riemannian connection of the modified

Riemannian extension metric g̃∇,c = g̃∇+π∗c where c ∈ ℑ0
2(Mn) is a symmetric

tensor field and ∇ is the Levi-Civita connection of g. Then every infinitesimal

vertical lift projective transformation V ω on T ∗Mn is an infinitesimal affine

transformation on T ∗Mn, and induced an infinitesimal affine transformation

ω♯ on Mn.
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