- 1. H. An, S. Deng, Invariant (α, β)-metrics on homogeneous manifolds, Monatsh. Math,
154(2008), 89-102.
- 2. D. Bao, S.S. Chern, Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer,
New York, (2000).
- 3. M. L. Barberis, Hypercomplex structures on four-dimensional Lie groups, Proc. Am.
Math. Soc. 125 (1997), 1043-1054.
- 4. M. L. Barberis, Hyper-Kahler Metrics Conformal to Left Invariant Metrics on FourDimensional Lie Groups, Mathematical Physics, Analysis and Geometry 6(2003), 1-8.
- 5. S. Deng, Homogeneous Finsler Spaces, Springer Monographs in Mathematics, New York,
2012.
- 6. S. Deng and Z. Hou, The group of isometries of a Finsler space, Pacific J. Math.
207(2002), 149-155.
- 7. S. Deng and Z. Hou, Invariant Randers metrics on Homogeneous Riemannian manifolds,
J. Phys. A: Math. General 37 (2004) 4353-4360; Corrigendum, ibid, 39(2006), 5249-5250.
- 8. M. Ebrahimi and D. Latifi,On Flag Curvature and Homogeneous Geodesics of Left Invariant Randers Metrics on the Semi-Direct Product a ⊕p r , Journal of Lie Theory
29(2019), 619-627.
- 9. P. Habibi, Homogeneous geodesics in Homogeneous Randers spaces-examples, Journal of
Finsler Geometry and its Applications, 1(1) (2020), 89-95.
- 10. S. Homolya and O. Kowalski, Simply connected two-step homogeneous nilmanifolds of
dimension 5, Note Mat. 26(2006), 69-77.
- 11. K. Kaur and G. Shanker, On the geodesics of a homogeneous Finsler space with a special
(α, β)-metric, Journal of Finsler Geometry and its Applications, 1(1) (2020), 26-36.
- 12. O. Kowalski and L. Vanhecke, Riemannian-manifolds with homogeneous geodesics, Boll.
Unione. Mat. Ital. 5(1991), 189-246.
- 13. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, 1969.
- 14. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys.
57(2007), 1421-1433.
- 15. D. Latifi, A. Razavi, Bi-invariant Finsler metrics on Lie groups, Aust. J. Basic Appl.
Sci. 5(2011), 507-511.
- 16. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31(1992),
43-83.
- 17. K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math.
76(1954), 33-65.
- 18. G. Randers, On an asymmetrical metric in the four-space of general relativity, Phys.
Rev. 59(1941), 195-199.
- 19. G. Shanker and S. Rani, On S-curvature of a homogeneous Finsler space with square
metric, Int. J. Geom. Meth. Mod. Physics, 17(2) (2020), 2050019.
- 20. Z. Shen, Lectures on Finsler Geometry. World Scientific, 2001.
|