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Abstract- Unlike other rotor angle stability assessment methods which only deal with either transient or small-signal 

(SS) stability, in this paper, a new stability prediction approach has been proposed which considers both transient and 

SS stability status. Therefore, the proposed method, which utilizes Multi-Layer Perceptron-based deep learning model, 

can comprehensively predict the post-disturbance rotor angle stability. Since the proposed method uses the voltage of 

the generating units directly measured by WAMS in the early moments after the disturbance occurrence and does not 

need to calculate the generators' rotor angle (which requires a high computational burden), it can timely predict the 

stability stiffness using data provided by PMUs installed at generators' buses. In this respect, this method provides a 

proper chance for the system operators to take appropriate corrective measures. To evaluate the proposed method's 

efficiency, it has been implemented and tested on IEEE14-bus and IEEE 39-bus test systems. The dynamic simulation 

results show that although the proposed method requires fewer PMUs than previous methods that exist in the literature, 

it can timely evaluate the stability status. Also, to properly show the power system stability stiffness from the transient 

and SS stability point of view, the suggested method accurately classifies the post-disturbance operating point into 

Unstable, Alarm, or Normal categories.    

Keyword: Transient stability, small-signal stability, rotor angle stability, deep learning, dynamic stability assessment. 

 

1. INTRODUCTION 

The rotor angle stability indicates the ability of 

synchronous generators (SGs) to remain synchronism 

when a contingency occurs in a power system. 

According to the size of a disturbance, this type of 

instability can be divided into two categories, including 

large-signal (transient) and SS stability, which are vital 

subsets of the network stability and have a significant 

influence on the planning and operation of these 

systems.  

When a disturbance causes the operating point to pass 

the stability boundaries, if desired remedial actions are 

not taken at the right time, the rotor angle of some 

generators will increase/decrease continuously or show 

undamped oscillatory behavior which causes the 

separation of the generators' rotor angles and may lead 

to cascading outages and blackouts [1]. Besides, in the 

post-disturbance condition, even if the synchronism is 

maintained and the system moves towards a stable 

equilibrium point, in a short time, the low damping ratio 

of the system may push the operating point towards the 

instability boundary and cause SS instability. Therefore, 

in order to perform an efficient corrective action, it is 

essential to predict both the transient and SS stability 

status rapidly and perform the required remedial actions. 

The power networks' dynamic response is described 

using Differential-Algebraic Equations (DAE) which 

consider the dynamic behavior of power systems 

equipment (FACTs, Loads, SGs control systems, etc.) 

[2]. In order to analyze the post-disturbance operating 

point from SS stability point of view, the linearized 

DAE can be used to determine the dominant 

eigenvalues which significantly affect the dynamic 

behavior of the network [3].  

The transient stability assessment procedures can be 

classified into model-free and model-based methods. 

Among model-based methods, the time domain 

simulation-based approaches are the most accurate ones 

[4]. However, these methods are time-consuming and 

have a high computational burden. In addition, although 

energy function-based methods can quickly evaluate the 

transient stability, they omit the higher order of 

synchronous generator models and also, neglect their 

controllers [5]. Equal Area Criterion method and 
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sensitivity analysis technique [6] are other model-based 

methods that are used widely in literature and due to the 

nonlinear behavior of the system equipment, they 

cannot predict the stability status. On the other hand, 

model-free methods do not require the network model in 

the online application and usually use artificial 

intelligence tools and curve-fitting approaches [6]. 

During the last decade, due to the existence of the wide-

area measurement system (WAMS), which makes the 

dynamic behavior of power systems visible, artificial 

intelligence-based methods have been widely used for 

high-speed assessment of the power system stability 

status in online applications [7]. The model-free based 

methods that predict transient stability mainly include 

decision tree (DT) [8], Long Short-Term Memory 

(LSTM), Artificial Neural Network (ANN), 

Convolutional Neural Network (CNN), and Support 

Vector Machine (SVM) [9-10]. These tools are trained 

using data obtained from offline simulations and then, 

used for fast assessment of the stability status in the 

online applications. 

During the last years, deep learning tools which 

utilize the neural network architecture have been used to 

evaluate the stability status [11-13]. However, these 

methods only analyze the transient stability status and 

do not consider the SS stability of the post-disturbance 

operating point. In other words, although (in those 

networks whose dominant eigenvalues are close to the 

imaginary axis) any changes in the system loading 

and/or topology may result in instability, these research 

works neglect it and only assess the transient stability 

status. For instance, in Ref. [10], the autoencoder 

algorithm is used to select the proper feature set and 

then, the selected features (including the rotor angle of 

generators) are used to train a CNN-based classifier to 

assess the stability status. However, there are two 

separate training sections for CNN and autoencoder 

[12]. Also, such a feature set cannot be achieved directly 

from PMU measurements and requires time-consuming 

calculation. In Ref. [9], two LSTM networks are utilized 

distinctly for transient stability status prediction by post 

fault information, including voltage phasor and the rate 

of change of frequency (ROCOF) measurements. 

Meanwhile, a few research works have been proposed 

to detect SS stability using machine learning algorithms. 

For example, references [13] and [14] have tried to 

detect the damping ratio of system modes. However, 

these methods do not predict the final stability status 

and only receive data measured by WAMS and detect 

dominant eigenvalues in the next time-step (i.e., the near 

future). Also, although the method proposed in Ref. [15] 

predicts (i.e., far future) the transient stability status, it 

detects (i.e., near future) the small-signal stability (it 

cannot predict the small-signal stability). To overcome 

the problem mentioned above, in this paper, an 

integrated online method has been proposed to 

simultaneously predict the SS and transient stability 

status of the post-disturbance operating point. Table 1 

compares the performance of the proposed method with 

some other methods that exist in the literature. As 

shown, while the proposed method considers different 

types of disturbances at all transmission lines, it (unlike 

other methods) quickly predicts both SS and transient 

stability and accurately classify the post-disturbance 

operating point into Unstable, Alarm, or Normal 

categories. 

In this respect, the contribution of the proposed 

approach can be listed as follows: 

• In this paper, an integrated method has been 

proposed for SS and transient stability status 

prediction utilizing online data received from 

PMUs. Therefore, the main contribution of this 

paper lies in the comprehensive rotor angle stability 

prediction and providing valuable information for 

the system operator to perform timely and optimal 

corrective actions. 

• Unlike most of the previous approaches proposed in 

the literature, in this paper, the proposed feature set 

is directly calculated using data measured by 

WAMS and does not need to calculate the 

generators' rotor angle (which requires a high 

computational burden [15]). 

Table 1. Comparison of the proposed method with some 

approaches proposed in the literature 

Ref. 
Test 

system 

Required 

time 
Contingencies Transient 

Small 

signal 

[10] 127 bus 0.083 s LLL all lines  - 

[16] 
118 bus 
145 bus 

0.123 s LLL all lines  - 

[17] 
39 bus 

140 bus 
0.150 s LLL all lines  - 

[18] 2100 bus N/A LLL 
Some 

lines 
 - 

[19] 39 bus 0.053 s LLL all lines  - 

[3] 39 bus 0.60 s LLL 
Some 

lines 
 - 

[15] 

39 bus 

68 bus 
145 bus 

0.210 s LLL all lines  
 

(detection) 

P
ro

p
o

sed
 

m
eth

o
d
 

14 bus 
39 bus 

0.033 s 

LLL 

LL 
LLG 

LG 

all lines  
 

(prediction) 
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Fig. 1. The ANN-based MPL schematic 

 
Fig. 2. The Hierarchical structure of WAMS 

• The proposed feature set only requires data 

measured by those PMUs installed at generators' 

buses. In this respect, compared to other methods, 

this method requires fewer PMUs. 

• A Multi-Layer Perceptron (MLP)-based deep 

learning model is used for SS and transient stability 

status prediction. In this respect, unlike other 

stability status prediction algorithms that only 

determine the stability or instability of the post-

disturbance operating point, the proposed method is 

designed to assess the post-disturbance stiffness 

using multiple output labels that indicate Normal, 

Alarm, and Unstable conditions.  

2. REQUIRED TOOLS 

2.1. Multi-Layer Perceptron (MLP) 

A multilayer perceptron (MLP) is a kind of fully 

connected artificial neural network which includes 

input, output, and some hidden layers which perform a 

non-linear transformation on the input feature set. In 

deep learning-based MLP, which is a proper tool for 

supervised classification and regression problems in 

nonlinear and complex systems, the hidden layers 

receive the weighted input data and use a bias and a 

nonlinear activation function (such as rectifier linear 

unit (ReLU), tanh, sigmoid, etc.) to generate and send 

the output to the next layer (Fig. 1) [20].   

 
Fig. 3. The proposed MLP framework in the offline training 

process and online application 

Finally, in the output layer, the dot product of the last 

hidden layer output, a bias, and an activation function is 

used to calculate the output variable(s). Obviously, the 

choice of the number of output neurons and the 

activation function depends on the type of 

classification/regression problem. In this respect, for the 

prediction of the network stability which may be labeled 

by 0 (Normal) or 1 (Alarm) or 2 (Unstable), a single 

output neuron and softmax activation function that 

output a value between zero and 2 seem to be proper 

selections. Due to the capability of MLP in the 

classification of nonlinear models, it seems to be a 

proper tool for forecasting the rotor angle stability of 

power grids which are complex and highly nonlinear 

networks. For this purpose, in the training phase, the 

back-propagation approach, which is a generalization of 

the least mean squares approach, is used to determine 

the appropriate bias and weights of the MLP classifier. 

Then, in online application, the trained MLP can be 

used for fast rotor angle (transient and SS) stability 

prediction [21]. 

2.2. Wide-area measurement system 

The need for advanced systems in monitoring, 

improving the stability and security, and increasing the 

reliability of the network, has become a necessity 

because of the extensive size of the power networks 

[22]. In traditional systems, power system operators use 

SCADA to measure electrical variables of the system. 

However, due to the lack of the ability to measure time-

synchronous values, this measurement system is not 

suitable for online monitoring of the dynamic behavior 

of networks. In this regard, during the last decade, 

WAMS are utilized worldwide to improve the 
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monitoring of these networks [23]. According to the Fig. 

2, WAMS is a hierarchical system and PMUs are at the 

end of this network. The measured parameters are sent 

from PMUs to Phasor Data Concentrators (PDCs) 

which gather PMUs data and omit incorrect data. 

Eventually, Supper Data Concentrator located at the 

highest step receives data from PDCs, and a decision-

making process can be performed at this step [24]. 

3. THE PROPOSED APPROACH FOR ONLINE 

PREDICTION OF TRANSIENT AND SMALL-

SIGNAL STABILITY 

In the proposed method, a fast and precise MLP based 

classifier is provided to assess the dynamic behavior of 

the network. In this regard, offline training process and 

online application of the classifier are depicted in Fig. 3 

which will be described in the following subsections. 

 

3.1. Generation of operating points and 

disturbances 

To reliably evaluate the network's stability, all 

possible operating points and events should be 

considered. Hence, all operating points far from or 

near the stability boundary should be used in offline 

simulations to train the MLP classifier properly. For 

this purpose, using dynamic simulations, step 

changes in the system loading (from low loading to 

high loading condition) are used to obtain new 

operating points. In addition, various contingencies 

should be considered in the event generation process. 

Therefore, in order to train a reliable classifier, 

different kinds of short circuits event with various 

fault duration at different locations on all lines are 

applied to the above-mentioned operating points to 

produce a comprehensive dataset (Table 2). The total 

number of generated events can be calculated as 

follows 

 

 (1) 

 

where NOP, Nline NfType, NfLoc, NfDuration indicates the 

number of operating points, transmission lines, fault 

types (i.e., LL, LLL, LG, and LLG), fault locations 

on each line (=3), and considered fault clearing 

period, respectively. It should be noted that in the 

offline time-domain simulations, it has been assumed 

that according to the Direct Under-reaching Transfer 

Trip (DUTT) scheme, the first zone of the distance 

relays trips faulted line based on fault duration 

mentioned in Table 2. 

 
Fig. 4. The stability assessment procedure 

Table 2. All possible contingencies considered in training the MLP 

classifier 

Fault type Fault location Fault duration Faulted lines 

LLL 

LLG 
LL 

LG 

1%, 50%, 99%   
0.05-0.1 s 

(with the step of 0.01) 
All lines 

3.2. Dynamic simulations 

Dynamic simulations are performed to assess the 

consequence of the aforementioned contingencies in 

multiple operating points. In this paper, to obtain the 

final status of the network, two indices that analyze the 

transient and SS stability status are used: 

360

360

max

max

TSI




− 
=

+ 
 (2) 

where Δδmax is the maximum difference of rotor 

angles between any two generators [11]. Also, TSI<0 

indicates that the system will become unstable from the 

transient stability point of view. On the other hand, the 

power system is stable in terms of SS stability when all 

eigenvalues have negative real parts. Therefore, in this 

paper, the minimum damping ratio is used as a SS 

stability index which is calculated by [25]: 

2 2
SSSI



 

−
=

+

 (3) 

where α is the real part and ω is the imaginary part of 

an eigenvalue. In this paper, since SSSI < 0.05 may 

threaten the network stability, it is assumed that in such 

operating points, the system is in Alert condition [26]. 

The procedure of analyzing the transient and SS 

stability using DIgSILENT PowerFactory software is 

shown in Fig. 4. According to this flowchart, TSI<0 

indicates that the post-disturbance operating point is 

unstable and, if in the post-disturbance condition the 

system reaches a stable equilibrium point, eigenvalue 

analysis is used to classify the operating point to Alert 

and Normal as follows: 

                       0

                   0.05

                   0.05

Unstable if TSI

Rotor anglestability status Emergency if SSSI

Normal if SSSI




= 
 

 (4) 

fDurationNfLocNftypeNlineNopNstudyCasesN =
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It should be stated that in offline simulations, it has 

been supposed that the contingency occurs at t=1s and 

PMUs placed at generator buses measure the variables 

every 1/60 s [27]. 

3.3. Feature Selection and Model Training 

3.3.1. Feature selection  

Obtaining an efficient feature set that can predict both 

SS and transient stability status of the power system 

precisely is a challenging process. In the post-fault 

condition, stability status prediction of the network 

becomes easier as time passes. 

Table 3. The proposed feature set 

Symbol Feature 
Time  of 
sampling 

VG0 Pre fault voltage magnitude of generators 
Just before fault 

occurrence 

VG1 
Voltage magnitude of generators in post 

fault trajectory 
1.0167 s 

VG2 
Voltage magnitude of generators in post 

fault trajectory 
1.033 s 

Line Faulted line ------ 

F.T Type of the short circuit  ------ 

F.L Fault Location on line ------ 

F.D 
Fault Duration (fault clearance -fault 

occurrence) 
------ 

Therefore, the later the PMUs measurements are 

made, the more accurate prediction can be achieved. 

However, early assessment of the post-disturbance 

stability status will provide more chances for power 

system operators to execute necessary control actions. 

When a contingency occurs in a power system, fault-

dependent and independent variables can affect systems 

behavior. Therefore, as can be seen in Table 3, in this 

paper both factors are considered in obtaining an 

appropriate feature set. In this paper, fault-dependent 

features contain fault duration, type and, location (on 

each line), and fault-independent ones include terminal 

voltage magnitude of synchronous generators. It should 

be stated that since the voltage of the generators quickly 

responds to the disturbance, these variables have been 

selected to predict the stability status in the initial 

moments after the fault occurrence. 

3.3.2. Deep learning model and training process 

A MLP classifier, fb, trained offline and constructed 

(according to Fig. 1) using the dataset, M = {(x1, y1), . . 

. , (xM, yM)}, to map, fb(xi)=yi, by minimizing lost 

function using an optimizer. It should be stated that in 

this dataset, xi and yi represents the parameters of the 

feature set and output mapping of xi, respectively. Also, 

in this paper, the performance of three different 

optimizers (i.e., Stochastic Gradient Decent (SGD) with 

learning rate equals to 0.01, Adam, and Adadelta) will 

be analyzed [14, 28].  

In offline dynamic simulations, when a contingency 

occurs in the power system, both stability status (which 

are labeled as Unstable, Alert, and Normal) and feature 

set parameters (Table 3) are gathered to obtain a 

comprehensive dataset. Then, using python software, 

this dataset is utilized for model training based on the 

10-fold cross-validation algorithm [29]. It is worth 

mentioning that although the training process is time-

consuming, it is executed in the offline phase and will 

not affect the speed of the method in the online 

applications. According to Figure 5, the proposed 

classifier has four hidden layers, the last of which is the 

dropout layer. The dropout layer’s task is to eliminate 

additional computation burdens and prevent the model 

from becoming more complicated. In this paper, the 

dropout layer is located into MLP structure (at the end 

of hidden layers) to prevent over-fitting during the 

training process, with a rate of 0.2 [30]. The hidden 

layers contain 60, 40 and, 20 neurons, respectively, 

were obtained from extensive trial and error tests to get 

the best possible result. 

4. SIMULATION RESULTS 

The effectiveness of the suggested method is examined 

in IEEE 14-bus and IEEE 39-bus networks whose 

results will be described in the following subsections. It 

is worth mentioning that although the proposed method 

is fast, the transfer delay of PMUs' measurements will 

cause a delay in gathering the measurement, calculating 

the feature set, and predicting the stability status. 

However, since this delay is about several tens of ms 

(100 – 700 ms mentioned in [31]), it will lead to a short 

delay in post-disturbance stability assessment. 

Therefore, in these simulations, the transfer delay of 

PMUs measurements is neglected. It should be stated 

that all approaches that require synchrophasors for 

analyzing the stability status will have such a problem. 

4.1. IEEE 14-bus test system 

Based on the procedure described in Section 3, the 

offline time-domain simulations are carried out in IEEE 

14-bus test system to analyze the impact of the 1152 

short circuits (4 fault types, 6 fault duration, and 3 fault 

locations at 16 transmission lines) at two operating 

points. For instance, Fig. 6 and Fig. 7 show two 

examples of unstable and stable cases where LLL short 

circuit fault with fault duration of 0.05 s occurs at 50% 

of Line 1 and Line 7, respectively. Finally, according to 

the criteria mentioned in Eq. (4), the post-disturbance 

condition of these dynamic simulations have been 

classified into 180 unstable, 1209 Alert, and 915 Normal 

cases. 
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Fig. 5. The MLP structure. 

Then, as mentioned earlier, the results of the offline 

dynamic simulations are used to calculate the feature set 

which is fed into MLP-based deep learning classifier 

(performed in python 3.6) as a dataset. Then, by the 10-

fold cross-validation method, the classifier will be 

trained and prepared for the online application. The 

Training parameters can be seen in Table 4 that contains 

learning rate (η), number of epochs (E), number of 

batch size (B), momentum (M), and activation function 

(γ). The outcome of the MLP classifier is shown in 

Table 5. As can be seen, the proposed method can 

accurately predict both SS and transient stability status 

of the power system 0.15 s after fault occurrence. In 

addition, these results indicate that the SGD optimizer 

leads to more accurate results. 

 

 
Fig. 6. An unstable study case in IEEE 14-bus network 

 

 
Fig. 7. A stable study case in IEEE 14-bus network 

Table 4. The training parameters selected for IEEE 14-bus system 

Model η E B M γ 

MLP 0.01 200 10 0.8 ReLU 

Table 5. The result of MLP classifier against different optimizers 

in IEEE 14-bus test system 

Optimizer Classes No. of cases Accuracy 

SGD 

Normal 915 

99.87% Alert 1209 

Unstable 180 

Adam 

Normal 915 

99.74% Alert 1209 

Unstable 180 

Adadelta 

Normal 915 

89.71 % Alert 1209 

Unstable 180 

4.2. IEEE 39-bus test system 

According to the method described in section 3, in this 

test system, there will be 4896 simulated study cases in 

the offline phase that include four types of short circuit 

events in three different locations of each line (34 lines) 

with six fault duration periods at two operating points. 

Then, the features set is calculated and used to train an 

MLP-based deep learning classifier whose results are 

given in Table 6. Also, the training parameters are 

shown in Table 7. 

Table 6. The result of MLP classifier against different optimizers 

in IEEE 39-bus test system 

Optimizer Classes No. of cases Accuracy 

SGD 

normal 2052 

99.24% alert 2394 

unstable 450 

Adam 

normal 2052 

97.94 % alert 2394 

unstable 450 

Adadelta 

normal 2052 

48.9 % alert 2394 

unstable 450 

Table 7. The training parameters selected for IEEE 39-bus system 

Model η E B M γ 

MLP 0.01 600 6 0.8 ReLU 

According to these results, the proposed method can 

accurately predict both the SS and transient stability 

status of the test system. Also, similar to the classifier 

described in the previous subsection, these results show 

that the SGD optimizer leads to more accurate results. 

4.3. Comparison of Results 

While the methods proposed in the literature usually 

predict either transient or small-signal stability status, 
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the method proposed in this manuscript can predict both 

transient and small-signal stabilities (the only method 

that considers both transient and SS stability is [15], 

where transient stability is predicted and SS stability is 

detected). In this respect, the results of the method 

proposed in this manuscript cannot be compared with 

the methods proposed in the literature. However, to 

evaluate the performance of the different methods, their 

precision has been mentioned in Table 8 which indicates 

that the proposed method can accurately predict both 

transient and small-signal stabilities.  

Table 8. The accuracy of the different methods proposed for the 

rotor angle stability assessment 

Ref. Test system Transient or SS Accuracy 

[10] 127 bus Transient 97.3% 

[16] 
118 bus Transient 86.13% 

145 bus Transient 89.22% 

[17] 
39 bus Transient 93.73% 

145 bus Transient 96% 

[18] 2100 bus Transient 84.8% 

[19] 39 bus Transient 100% 

[3] 39 bus Transient MSE = 1.2 

[15] 

39 bus 
Transient (prediction) and SS 

(detection) 
99.5% 

68 bus 
Transient (prediction) and SS 

(detection) 
97.22% 

145 bus 
Transient (prediction) and SS 

(detection) 
98.31% 

Proposed 

method 

14 bus 
Transient (prediction) and SS 

(prediction) 
99.87% 

39 bus 
Transient (prediction) and SS 

(prediction) 
99.24% 

Also, it should be noted that (as mentioned in Table 1) the proposed 

method predicts the rotor angle stability against different types of 

faults (LLL, LL, LLG, and LG) at different fault locations. 

 
Fig. 8. The impact of the uncertainty of the measurements on the 

classifier accuracy 

4.4. Impact of the uncertainty of the measurements 

To analyze the impact of the uncertainty of the 

measurement (due to the measurement error, noise, etc.) 

the measured data which is used to train the MLP 

classifier has been randomly changed using a uniform 

distribution function. Then, the outcome variables are 

used to train a classifier whose results are given in Fig. 

8. As shown, although such an uncertainty decreases the 

classifier's accuracy, the trained classifier still has 

acceptable performance. 

5. CONCLUSION 

Due to the high computational burden and complexity 

of the power systems, those methods exist in the 

literature that assess the rotor angle stability consider 

either the transient or small-signal stability. To 

overcome this deficiency, in this paper, by proposing a 

proper feature set, an MLP-based rotor angle stability 

prediction approach has been proposed to 

simultaneously predict both small-signal and transient 

stability status of the post-disturbance operating point. 

Since the proposed method does not need to calculate 

the generators' rotor angle (which requires a high 

computational burden) and requires only data measured 

by PMUs installed at generators' buses, it can timely 

predict the rotor angle stability and provide a proper 

chance for operators to take appropriate corrective 

measures.    

The dynamic simulation results performed in 

IEEE14-bus and IEEE 39-bus test systems show that the 

proposed method can assess the stability stiffness and 

classify the post-disturbance operating point into 

Unstable, Alarm, or Normal categories with the 

precision of 99.87% (IEEE14-bus) and 99.24% (IEEE 

39-bus), respectively. 
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