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Abstract. In this paper, we study homogeneous geodesics in homogeneous Randers spaces.

we give a four dimensional example and we obtain homogeneous geodesics of this space in

some special cases.
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1. Introduction

It is an important problem in variational calculus to study the property

of geodesics on a Finsler manifold. Of particular interest are geodesics with

some special properties, for example homogeneous geodesics. A geodesic of a

Finsler space (M,F ) is called homogenous if it is an orbit of a one parameter

group of isometries of M . Geodesics of left invariant Riemannian metrics on

Lie groups were studied by A. I. Arnold extending Euler’s theory of rigid-body

motion [1]. In differential geometry homogeneous geodesics have been studied

by many authors. In 1965 R. Hermann showed that homogeneous geodesics

which are orbits of a given 1-parameter group of isometries a(t) correspond to

the critical points of the norm of Killing vector field X which generates a(t). B.

Kostant [3] and E. B. Vinberg [9] and O. Kowalski and L. Vanhecke [6] found

a simple condition that the orbit γ(t) = a(t)o through the point o = eK of an

1-parameter subgroup a(t) = exp tX ⊂ G of the isometry group G of a homoge-

neous Riemannian manifold M = G/K, is a geodesic. In [7], the author studied

homogenous geodesics in homogeneous Finsler spaces. Also, D. Latifi and A.
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Razavi [8] studied homogeneous geodesics in a three-dimensional connected Lie

group G equipped with a left invariant Randers metric and showed that there is

a three-dimensional unimodular Lie group with a left invariant non-Berwaldian

Randers metric which admits exactly one homogeneous geodesic through the

identity element. In [5], Kowalski and Szenthe showed that any homogeneous

Riemannian space admits at least one homogeneous geodesic on each origin

point. Then Yan and S. Deng generalized this result to homogeneous Randers

spaces in [10]. Recently, in [11], authors proved that any homogeneous Finsler

space (M,F ) admits at least one homogeneous geodesic through each point.

2. Preliminaries

In this section, we recall briefly some known facts about Finsler spaces. For

details, see [2].

Definition 2.1. A Finsler manifold (M,F ) is a differentiable manifold M

equipped with a Finsler metric F . A Finsler metric on M is a continuous map,

F : TM −→ R differentiable outside the zero section T 0M and satisfying three

conditions:

(1) F is positively homogeneous, that is, F (µX) = µF (X) for all positive

µ ∈ R and tangent vectors X ∈ TM .

(2) If F (X) = 0 then X = 0.

(3) Strong convexity condition: for any nonzero V ∈ TxM , the symmetric

bilinear form gV : TxM × TxM −→ R given by

gV (X,Y ) =
1

2

∂2

∂s∂t
|s=t=0 F 2(V + sX + tY )

is positive definite.

According to [2], the pulled-back bundle π∗TM admits a unique linear con-

nection, called Chern connection. Its connection forms are characterized by

the torsion freeness and g−compatibility.

Let V = vi∂/∂xi be a non-vanishing vector field on an open subset U ⊂ M .

One can introduce a linear connection ∇V on the tangent bundle over U as

following:

∇V
∂

∂xi

∂

∂xj
= Γk

ij(x, v)
∂

∂xk

where Γk
ij(x, v) are the Chern connection coefficient.
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Let (M,F ) be a Finsler manifold. The Finsler metric F induces a well-

defined vector field on TM \ {0}, G = yi − 2Gi ∂
∂yi where Gi is defined by

Gi =
1

4
gij{[F 2]xkyjyk − [F 2]xj}.

We call Gi the geodesic coefficients of F . A map σ : (a, b) −→ M is called a

geodesic of F if it is a C∞ curve, and the canonical lift σ̇ is an integral curve

of G in TM \ {0}, i.e. it satisfies

d

dt
(σ, σ̇) = G(σ, σ̇) (2.1)

Lemma 2.1. [2] In a standard local coordinate system, (1) becomes

σ̈i(t) + 2Gi
(
σ(t), σ̇(t)

)
= 0 (2.2)

Definition 2.2. A Finsler space (M,F ) is called homogeneous Finsler space

if I(M,F ), the group of isometries of (M,F ), acts transitively on M .

3. Homogeneous geodesics in Homogeneous Randers spaces

Suppose given a Riemannian metric α and a differential 1-form β. There is

a vector field X satisfying β(y) = α(y,X) for all y, we say that X is dual to β

with respect to α. Define ∥ β ∥:=∥ X ∥=
√
α(X,X). If ∥ β ∥< 1 everywhere,

F (y) :=
√
α(y, y) + β(y) =

√
α(y, y) + α(y,X)

defines a Finsler metric. This type of Finsler metric is called a Randers metric.

Since y ̸= 0 implies ∥ y ∥=
√
α(y, y) > 0, we have

F (y) =∥ y ∥
(
1 + α(

y

∥ y ∥
, X)

)
≥∥ y ∥ (1− ∥ X ∥) > 0,

showing that F satisfies condition (2) of definition 2.1. Condition (1) is obvi-

ous. For the proof of (3) we refer to [2].

Let G be a connected Lie group, H ⊂ G a closed subgroup, M = G
H the

corresponding homogeneous manifold formed by the left coset gH, g ∈ G. A

Randers space (M,F ) defined by a Riemanian metric α and a 1-form β with

∥ β ∥< 1, or equivalently, a smooth vector field X with ∥ X ∥< 1 is said to

be homogeneous if a connected group of isometries G acts transitively on M .

Such M , can be identified with (G/H,F ), where H is the isotropy group at a

fixed point o of M . The Lie algebra g of G admits a reductive decomposition

g = h + m, where m ⊂ g is a subspace of g isomorphic to the tangent space

ToM and h is the Lie algebra of H. A homogeneous geodesic through the origin
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o ∈ M = G/H is a geodesic γ(t) which is an orbit of a one parameter subgroup

of G, that is

γ(t) = exp(tZ)(o), t ∈ R

where Z is a nonzero vector of g.

The following result is a fundamental tool to study homogeneous geodesics:

Lemma 3.1. [6, 7] Let (G/H,F ) be a homogeneous Finsler space with the

reductive decomposition g = h+ m, then a vector X ∈ g 0 is a geodesic vector

if and only if

gXm
(Xm, [X,Z]m) = 0, ∀Z ∈ m, (3.1)

where the subscript m means the corresponding projection, and g is the funda-

mental tensor of F on m.

4. Four dimensional example

we shall study a 4-dimensional example which has some interesting proper-

ties. The underlying manifold is R4[x, y, u, v] with Randers metric defined by

the vector field X and Riemannian metric

g = (−x+
√

x2 + y2 + 1)du2 + (x+
√
x2 + y2 + 1)dv2 − 2ydudv

+

[
(1 + y2)dx2 + (1 + x2)dy2 − 2xydxdy

1 + x2 + y2

]
The space (R4, g) can be written as a homogeneous space G/H where G is the

5-dimensional group of equiaffine transformations of a Euclidean space and H

is the subgroup of all rotations of the plane around the origin [4]. Then there

exists a reductive decomposition g = m+h, an orthonormal basis (e1, e2, e3, e4)

of m and a generator B of h such that the following multiplication table holds

[4]:

[e1, e2] = 0, [e1, e3] = −e1, [e1, e4] = e1,

[e2, e3] = e2, [e2, e4] = e1, [e3, e4] = −2B,

[B, e1] = −e2, [B, e2] = e1, [B, e3] = 2e4, [B, e4] = −2e3.

obviously we have [g, g] = g.

Each geodesic vector must be an element of g, let us say

y = y1e1 + y2e2 + y3e3 + y4e4 + αB.

From condition (3), we obtain the following system of equations:
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x1(y3 − y4)− αx2 +
y1(y3 − y4)− αy2√
y21 + y22 + y23 + y24

= 0, (4.1)

x1(α− y4)− x2y3 +
y1(α− y4)− y2y3√
y21 + y22 + y23 + y24

= 0, (4.2)

−x1y1 + x2y2 + 2αx4 +
−y21 + y22 + 2αy4√
y21 + y22 + y23 + y24

= 0, (4.3)

x1(y1 + y2)− 2αx3 +
y1(y1 + y2)− 2αy3√
y21 + y22 + y23 + y24

= 0 (4.4)

Also, we obtain:

(y3 − α)(x1 + x2 +
y1 + y2√

y21 + y22 + y23 + y24
) = 0, (4.5)

(x1 + x2)y2 + 2α(x4 − x3) +
(y1 + y2)y2 + 2α(y4 − y3)√

y21 + y22 + y23 + y24
= 0. (4.6)

We consider some special cases:

I: X = x3e3
II: X = x4e4
III: X = x3(e3 + e4)

IV: X = x1(e1 − e2)

In all of cases, from (8), we conclude

(y3 − α)(y1 + y2) = 0

Case I. Suppose first that y1 = −y2 and y3 ̸= α. From (6), we obtain 2αy4 =

0.

If α = 0 and y4 ̸= 0, from (4), we get y1(y3 − y4) = 0, and we have two

possibilities. In this case or y1 = 0 and then y2 = 0, so we get y = y3e3 + y4e4
or y3 − y4 = 0 and we find y = y1(e1 − e2) + y3(e3 + e4).

If α ̸= 0 and y4 = 0, from (4) or (5) we obtain y1(y3 + α) = 0. In this case,

if y1 = 0, y3 ̸= −α, we have y = y3e3+αB and if y1 ̸= 0, y3 = −α we conclude

y = y1(e1 − e2) + y3(e3 −B).

Next, suppose y1 ̸= −y2 and y3 = α, from (6) we get

y4 =
y21 − y22
2y3

and then

y = y1e1 + y2e2 + y3e3 +
y21 − y22
2y3

e4 + y3B.

Finally, suppose that y1 = −y2 and y3 = α. From (6) we obtain 2αy4 = 0.

If α = 0 and y4 ̸= 0, we have y = y4e4 or y = y1(e1 − e2). If α ̸= 0 and

y4 = 0, from (4), we have 2αy1 = 0. Because of α ̸= 0, we have y1 = 0, so
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y = y3(e3 +B).□

Case II. Suppose first that y1 = −y2 and y3 ̸= α. From (7) we obtain

2αy3 = 0.

If α = 0 and y3 ̸= 0, from (4), we have y1(y3 − y4) = 0, and we have two

possibilities. In this case or y1 = 0 and then y2 = 0, so we get y = y3e3 + y4e4
or y3 − y4 = 0 and we obtain y = y1(e1 − e2) + y3(e3 + e4).

If α ̸= 0 and y3 = 0, from (4) or (5), we obtain y1(α− y4) = 0. In this case,

if y1 = 0, y4 ̸= α, we have y = y4e4 + αB and if y1 ̸= 0, y4 = α we conclude

y = y1(e1 − e2) + y4(e4 +B).

Next, suppose y1 ̸= −y2 and y3 = α, from (7), we get y1(y1 + y2)− 2y23 = 0,

and then

y3 = ±
√

y1(y1 + y2)

2

Which implies that

y = y1e1 + y2e2 ±
√

y1(y1 + y2)

2
(e3 +B) + y4e4.

Finally, suppose that y1 = −y2 and y3 = α. From (7) we obtain 2αy3 = 0 and

we have 2y23 = 0, so α = y3 = 0. From (4), we obtain y1y4 = 0, If y1 = 0, then

y2 = 0, and we have y = y4e4. If y4 = 0, then we get y = y1(e1 − e2).□

Case III. Suppose first that y1 = −y2 and y3 ̸= α. From (9), we have

2α(y3−y4) = 0. If α = 0 and y3 ̸= y4, from (4) we get y1(y3−y4) = 0, because

of y3 ̸= y4, we obtain y1 = 0, so y2 = 0, and we conclude y = y3e3 + y4e4.

If α ̸= 0 and y3 = y4, from (4) we get αy2 = 0, because of α ̸= 0, we obtain

y2 = 0, so y1 = 0, and we conclude y = y3(e3 + e4) + αB.

Now, suppose y1 ̸= −y2 and y3 = α, from (9) we get

(y1 + y2)y2 + 2y3y4 − 2y23 = 0.

The roots are

y3 =
y4 ±

√
y24 + 2((y1 + y2)y2)

2

Hence, we have

y = y1e1 + y2e2 +
y4 ±

√
y24 + 2((y1 + y2)y2)

2
(e3 +B) + y4e4.

Finally, suppose that y1 = −y2 and y3 = α. From (9) we obtain y3(y3−y4) = 0.

If y3 = 0 and y3 ̸= y4, we obtain y = y1(e1 − e2) + y4e4. If y3 = y4, then

y = y1(e1 − e2) + y3(e3 + e4 +B).□
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Case IV. In this case, homogeneous geodesics are similar to case III. This

completes the proof. □

References
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