Characterization of the Killing and homothetic vector fields on Lorentzian pr-waves three-manifolds with Recurrent Curvature

\author{
P. Atashpeykar ${ }^{a *}$ and A. Haji-Badali ${ }^{b}$
 ${ }^{a, b}$ Department of Mathematics, Basic Sciences Faculty, University of Bonab, Bonab 5551761167, Iran.
 ```
E-mail: p.atashpeykar@ubonab.ac.ir

``` \\ E-mail: haji.badali@ubonab.ac.ir
}

Abstract. We consider the Lorentzian pr-waves three-manifolds with recurrent curvature. We obtain a full classification of the Killing and homothetic vector fields of these spaces.

Keywords: Pr-waves manifolds, Killing vector fields, Homothetic vector fields, Lorentzian.

\section*{1. Introduction}

A Lorentzian manifold with a parallel light-like vector field is called Brinkmannwave, due to [1]. A Brinkmann-wave manifold \((M, g)\) is called pp-wave if its curvature tensor \(R\) satisfies the trace condition \(\operatorname{tr}_{(3,5)(4,6)}(R \otimes R)=0\). In [2], Schimming proved that an \((n+2)\)-dimensional pp-wave manifold admits coordinates \(\left(x, y_{1}, \ldots, y_{n}, z\right)\) such that \(g\) has the form
\[
\begin{equation*}
g=2 d x d z+\sum_{k=1, \ldots, n}\left(d y_{k}\right)^{2}+f(d z)^{2}, \text { with } \partial_{x} f=0 . \tag{1.1}
\end{equation*}
\]

In [3], Leistner gave another equivalence for pp-wave manifold. More precisely, he proved that a Brinkmann-wave manifolds \((M, g)\) with parallel light-like vector field \(X\) and induced parallel distributions \(\Xi\) and \(\Xi^{\perp}\) is a pp-wave if and

\footnotetext{
* Corresponding Author

AMS 2020 Mathematics Subject Classification: 53C60, 53C30.
}
only if its curvature tensor satisfies
\[
\begin{equation*}
R(U, V): \Xi^{\perp} \rightarrow \Xi, \text { for all } U, V \in T M, \tag{1.2}
\end{equation*}
\]
or equivalently \(R\left(Y_{1}, Y_{2}\right)=0\) for all \(Y_{1}, Y_{2} \in \Xi^{\perp}\). From this description, it follows that a pp-wave manifold is Ricci-isotropic, which means that the image of the Ricci operator is totally light-like, and has vanishing scalar curvature [3]. Furthermore, Leistner introduced a new class of non-irreducible Lorentzian manifolds satisfying (1.2) but only for a recurrent vector field \(X\), that is, \(\nabla X=\) \(\omega \otimes X\) where \(\omega\) is a one-form on \(M\). Following [3], such manifolds are called pr-waves. Moreover, a description in terms of local coordinates similar to the one for pp-waves manifolds was given in [3]: a Lorentzian manifold ( \(M, g\) ) of dimension \(n+2>2\) is a pr-wave if and only if around any point \(o \in M\) exist coordinates \(\left(x, y_{1}, \ldots, y_{n}, z\right)\) in which the metric \(g\) has the following form:
\[
g=2 d x d z+\sum_{k=1, \ldots, n}\left(d y_{k}\right)^{2}+f(d z)^{2},
\]
where \(f\) is a real valued smooth function on \((M, g)\).
In this paper, we shall investigate killing and homothetic vector fields on the Lorentzian pr-waves three-manifolds with recurrect curvature. If \((M, g)\) denotes a Lorentzian manifold and \(T\) a tensor on \((M, g)\), codifying some either mathematical or physical quantity, a symmetry of \(T\) is a one-parameter group of diffeomorphisms of \((M, g)\), leaving \(T\) invariant. As such, it corresponds to a vector field \(X\) satisfying \(\mathcal{L}_{X} T=0\), where \(\mathcal{L}\) denotes the Lie derivative. Isometries are a well known example of symmetries, for which \(T=g\) is the metric tensor. The corresponding vector field \(X\) is then a Killing vector field. Homotheties and conformal motions on \((M, g)\) are again examples of symmetries. (see, for example, [[4], [5], [6], [7], [8], [9]] and references therein).

\section*{2. Killing and homothetic vector fields of pr-wave three-manifold}

We first classify Killing and homothetic and affine vector fields of \((M, g)\). The classifications we obtain are summarized in the following theorem. Put \(f_{x}:=\partial_{x} f, f_{y}:=\partial_{y} f\) and \(f_{z}:=\partial_{z} f\).

Theorem 1. Let \(X=X^{1} \partial_{x}+X^{2} \partial_{y}+X^{3} \partial_{z}\) be an arbitrary vector field on the three-dimensional pr-wave manifold \((M, g)\). Then
(i) \(X\) is a Killing vector field if and only if
\[
\begin{equation*}
X^{1}=-f_{1}^{\prime}(z) y-f_{2}^{\prime}(z) x+f_{3}(z), X^{2}=f_{1}(z), X^{3}=f_{2}(z) \tag{2.1}
\end{equation*}
\]
where \(f_{i}(z)\) are arbitrary smooth functions on \(M\), satisfying
\[
\begin{array}{r}
2 f_{2}^{\prime}(z) f-2 f_{1}^{\prime \prime}(z) y-2 f_{2}^{\prime \prime}(z) x+2 f_{3}^{\prime}(z)+\left(f_{3}(z)-f_{1}^{\prime}(z) y\right. \\
\left.-f_{2}^{\prime}(z) x\right) f_{x}+f_{3}(z) f_{y}+f_{2}(z) f_{z}=0 \tag{2.2}
\end{array}
\]
(ii) \(X\) is a homothetic, non-Killing vector field if and only if
\[
X^{1}=-f_{1}^{\prime}(z) y+\left(\eta-f_{2}^{\prime}(z)\right) x+f_{3}(z), X^{2}=\frac{1}{2} \eta y+f_{1}(z), X^{3}=f_{2}(z)
\]
where \(\eta \neq 0\) is a real constant and
\[
\begin{aligned}
& -\eta f+2 f_{2}^{\prime}(z) f-2 f_{1}^{\prime \prime}(z) y-2 f_{2}^{\prime \prime}(z) x+2 f_{3}^{\prime}(z)+\left(f_{3}(z)-f_{1}^{\prime}(z) y+\left(\eta-f_{2}^{\prime}(z)\right) x\right) f_{x} \\
& +\left(\frac{1}{2} \eta y+f_{3}(z)\right) f_{y}+f_{2}(z) f_{z}=0
\end{aligned}
\]

Proof. We start from an arbitrary smooth vector field \(X=X^{1} \partial_{x}+X^{2} \partial_{y}+X^{3} \partial_{z}\) on the three-dimensional pr-wave manifold \((M, g)\), and calculate \(\mathcal{L}_{X} g\). we assume \(\partial_{x}=\partial_{1}, \partial_{y}=\partial_{2}, \partial_{z}=\partial_{3}\). With regard to
\[
\left(\mathcal{L}_{X} g\right)_{\mu \nu}=X^{i} \partial_{i} g_{\mu \nu}+g_{i \nu} \partial_{\mu} X^{i}+g_{\mu i} \partial_{\nu} X^{i}
\]

We have
\[
\begin{aligned}
\left(\mathcal{L}_{X} g\right)_{11}= & \Sigma_{i=1}^{3}\left(X^{i} \partial_{i} g_{11}+g_{i 1} \partial_{1} X^{i}+g_{1 i} \partial_{1} X^{i}\right) \\
= & X^{1} \partial_{1} g_{11}+g_{11} \partial_{1} X^{1}+g_{11} \partial_{1} X^{1}+X^{2} \partial_{2} g_{11}+g_{21} \partial_{1} X^{2}+g_{12} \partial_{1} X^{2} \\
& +X^{3} \partial_{3} g_{11}+g_{31} \partial_{1} X^{3}+g_{13} \partial_{1} X^{3} \\
= & 2 \partial_{1} X^{3}, \\
\left(\mathcal{L}_{X} g\right)_{12}= & \Sigma_{i=1}^{3}\left(X^{i} \partial_{i} g_{12}+g_{i 2} \partial_{1} X^{i}+g_{1 i} \partial_{2} X^{i}\right) \\
= & X^{1} \partial_{1} g_{12}+g_{12} \partial_{1} X^{1}+g_{11} \partial_{2} X^{1}+X^{2} \partial_{2} g_{12}+g_{22} \partial_{1} X^{2}+g_{12} \partial_{2} X^{2} \\
& +X^{3} \partial_{3} g_{12}+g_{32} \partial_{1} X^{3}+g_{13} \partial_{2} X^{3} \\
= & \partial_{1} X^{2}+\partial_{2} X^{3}, \\
& \\
\left(\mathcal{L}_{X} g\right)_{13}= & \Sigma_{i=1}^{3}\left(X^{i} \partial_{i} g_{13}+g_{i 3} \partial_{1} X^{i}+g_{1 i} \partial_{3} X^{i}\right) \\
= & X^{1} \partial_{1} g_{13}+g_{13} \partial_{1} X^{1}+g_{11} \partial_{3} X^{1}+X^{2} \partial_{2} g_{13}+g_{23} \partial_{1} X^{2}+g_{12} \partial_{3} X^{2} \\
& +X^{3} \partial_{3} g_{13}+g_{33} \partial_{1} X^{3}+g_{13} \partial_{3} X^{3} \\
= & \partial_{1} X^{1}+f \partial_{1} X^{3}+\partial_{3} X^{3},
\end{aligned}
\]

By following this process we get
\[
\begin{aligned}
\mathcal{L}_{X} g & =2 \partial_{1} X^{3} d x d x+2\left(\partial_{1} X^{2}+\partial_{2} X^{3}\right) d x d y+2\left(\partial_{1} X^{1}+f \partial_{1} X^{3}+\partial_{3} X^{3}\right) d x d z+2 \partial_{2} X^{2} d y d y \\
& +2\left(\partial_{2} X^{1}+\partial_{3} X^{2}+f \partial_{2} X^{3}\right) d y d z+\left(X^{1} \partial_{1} f+2 \partial_{3} X^{1}+X^{2} \partial_{2} f+X^{3} \partial_{3} f+2 f \partial_{3} X^{3}\right) d z d z
\end{aligned}
\]

Then, \(X\) satisfies \(\mathcal{L}_{X} g=\eta g\) for some real constant \(\eta\) if and only if the following system of partial differential equations is satisfied:
\[
\begin{aligned}
& \partial_{1} X^{3}=0, \partial_{2} X^{2}=\frac{\eta}{2}, \partial_{1} X^{2}+\partial_{2} X^{3}=0, \partial_{1} X^{1}+f \partial_{1} X^{3}+\partial_{3} X^{3}=\eta, \\
& \partial_{2} X^{1}+\partial_{3} X^{2}+f \partial_{2} X^{3}=0, X^{1} \partial_{1} f+2 \partial_{3} X^{1}+X^{2} \partial_{2} f+X^{3} \partial_{3} f+2 f \partial_{3} X^{3}=\eta f .
\end{aligned}
\]

We then proceed to integrate (2.3). From the first three equations in (2.3) we get
\[
X^{2}=\frac{\eta}{2} y-f_{1}(z) x+f_{3}(z), \quad X^{3}=f_{1}(z) y+f_{2}(z)
\]

Then, the fourth equation in 2.3 yields
\[
\begin{aligned}
& X^{1}=f_{5}^{\prime}(z) x y+f_{6}^{\prime}(z) x+f_{4}(x, y) \\
& f_{1}(z)=-f_{5}(z)+c_{1} \\
& f_{2}(z)=-f_{6}(z)+\eta z+c_{2}
\end{aligned}
\]

Where \(c_{1}\) and \(c_{2}\) are real constants. substituting this into the fifth equation, we have
\[
\left(-f_{5}(z)+c_{1}\right) f+2 f_{5}^{\prime}(z) x+f_{3}^{\prime}(z)+\partial_{y} f_{4}(x, y)=0
\]

Then, we have
\[
\begin{aligned}
& f_{3}(z)=-f_{6}(z) y+c_{1} \\
& f_{4}(x, y)=f_{6}^{\prime}(z) y+f_{7}(z) \\
& f_{5}(z)=c_{1}
\end{aligned}
\]

Now, the last equation in (2.3) gives
\(-\eta f+2 f_{2}^{\prime}(z) f-2 f_{1}^{\prime \prime}(z) y-2 f_{2}^{\prime \prime}(z) x+2 f_{3}^{\prime}(z)+\left(-f_{1}^{\prime}(z) y+\left(\eta-f_{2}^{\prime}(z)\right) x+f_{3}(z)\right) f_{x}\)
\(+\left(\frac{1}{2} \eta y+f_{3}(z)\right) f_{y}+f_{2}(z) f_{z}=0\).
So, we have
\[
\begin{aligned}
& X^{1}=-f_{1}^{\prime}(z) y+\left(\eta-f_{2}^{\prime}(z)\right) x+f_{3}(z) \\
& X^{2}=\frac{1}{2} \eta y+f_{1}(z) \\
& X^{3}=f_{2}(z)
\end{aligned}
\]

This proves the statement i) in the case \(\eta=0\) and the statement ii) if we assume \(\eta \neq 0\).

Example 2. The functions in equation 2.2 for the killing vector fields on the three-dimensional pr-wave manifold produce a various family of killing vector fields on the three-dimensional pr-wave manifold. for example, let \(f(x, y, z)=\) \(x\), we have
\[
f_{2}^{\prime}(z) x-2 f_{1}^{\prime \prime}(z) y-2 f_{2}^{\prime \prime}(z) x+2 f_{3}^{\prime}(z)-f_{1}^{\prime}(z) y+f_{3}(z)=0
\]

Therefore,
\[
f_{3}(z)=\left(\int\left(\frac{1}{2} f_{2}^{\prime}(z) x+f_{1}^{\prime \prime}(z) y+f_{2}^{\prime \prime}(z) x-\frac{1}{2} f_{1}^{\prime}(z) y\right) e^{\frac{1}{2} z} d z+c_{1}\right) e^{-\frac{1}{2} z}
\]
where \(c_{1}\) and \(c_{2}\) are real constants.

Now, with the arbitrary selection for function \(f_{1}(z)\) and \(f_{2}(z)\), killing vector fields are generated, which is a special example as follows:
\[
f_{1}(z)=f_{2}(z)=2 e^{-\frac{1}{2} z}
\]

So, we have
\[
f_{3}(z)=\left(y z+c_{1}\right) e^{-\frac{1}{2} z}
\]

In a special case, it can be assumed \(c_{1}=0\). Hence,
\[
f_{3}(z)=e^{-\frac{1}{2} z} y z
\]

Therefore,
\[
\begin{aligned}
& X^{1}=-2 e^{-\frac{1}{2} z} y-2 e^{-\frac{1}{2} z} x+e^{-\frac{1}{2} z} y z \\
& X^{2}=X^{3}=2 e^{-\frac{1}{2} z}
\end{aligned}
\]

\section*{References}
1. Brinkmann H.W., Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1925) 119145.
2. Schimming R., Riemannsche Räume mit ebenfrontiger und mit ebener Symmetrie, Math. Nachr. 59 (1974) 128162.
3. Leistner T., Conformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifolds, Differential Geom. Appl. 24 (2006) 458478.
4. Aichelburg P.C., Curvature collineations for gravitational pp-waves,J. Math. Phys. 11 (1970), 2458-2462.
5. Calvaruso G., Zaeim A., Invariant symmetries on non-reductive homogeneous pseudoRiemannian four manifolds,Rev. Mat. Complut. 28 (2015), 599-622.
6. Calvaruso G., Zaeim A., Geometric structures over four-dimensional generalized symmetric spaces,Collect. Math., to appear.
7. Calvino-Louzao E., Seoane-Bascoy J., Vsazquez-Abal M.E., Vsazquez-Lorenzo R., Invariant Ricci collineations on three-dimensional Lie groups,J. Geom. Phys. 96 (2015), 59-71.
8. Hall G.S., Symmetries and curvature structure in general relativity, World Scientific Lecture Notes in Physics, Vol. 46, World Scientific Publishing Co., Inc., River Edge, NJ, 2004.
9. Hall G.S., Capocci M.S., Classification and conformal symmetry in three-dimensional space-times,J. Math. Phys. 40 (1999), 1466-1478.

Received: 19.01.2020
Accepted: 20.06.2020```

