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Abstract. In this paper, we study a special class of Finsler metrics F = F (x, y) in Rn

that satisfy F (−x, y) = F (x, y). We show the induced distance function of F satisfies

dF (p, q) = dF (−q,−p) for all p, q ∈ Rn. The geodesics of these metrics have special property

and many well-known Finsler metrics belong to this class. We prove that these metrics with

constant S-curvature satisfy S = 0.
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1. Introduction

The study of distance functions induced by Finsler metrics is one of the

important problems in Finsler geometry. The distance functions of some classes

of Finsler metrics have special properties. For example the distance function

of reversible Finsler manifold (M,F ) is symmetric, i.e., dF (p, q) = dF (q, p)[2].

The Finsler metric is called reversible if F satisfies F (x,−y) = F (x, y). The

Riemannian metrics are the most interesting class of reversible Finsler metrics.

In this paper, we are going to investigate distance function of Finsler metrics

that satisfies

F (−x, y) = F (x, y). (1.1)

Many interesting Finsler metric belong to this class. We have the following two

well-known special cases.
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Example 1.1. ([1]) Consider Randers metric

F =

√
(1− |a|2|x|4)|y|2 + (|x|2 < a, y > −2 < a, x >< x, y >)2

1− |a|2|x|4

−|x|2 < a, y > −2 < a, x >< x, y >

1− |a|2|x|4
,

where a ∈ Rn is a constant vector, |.| and <,> denote the Euclidean norm

and inner product in Rn. The above defined Randers metric F is of isotropic

S-curvature and scalar flag curvature, i.e.,

S = (n+ 1) < a, x > F, K =
3 < a, y >

F
+ 3 < a, x >2 −2|a|2|x|2.

This metric satisfies (1.1).

Example 1.2. Another class of Finsler metric that satisfy (1.1) has the fol-

lowing formula

αµ(x, y) :=

√
|y|2 + µ

(
|x|2|y|2− < x, y >2

)
1 + µ|x|2

y ∈ Rn

where µ is a positive constant. These Riemannian metrics are projectively flat

metrics

Gi = −µ < x, y >

1 + µ|x|2
yi

and has constant flag curvature µ. Indeed, Ri
k = µF 2hi

k.

First we prove the following.

Theorem 1.3. Let (M,F ) be a Finsler metric that satisfies (1.1) and dF is

distance function inducted by F . Then dF satisfies

dF (p, q) = dF (−q,−p)

for all p, q ∈ Rn.

A curve γ : [0, 1] → M is called a geodesic of (M,F ) if it minimizes the

Finslerian length for all piecewise C∞ curves that keep their end points fixed.

The Finsler metric F is called with reversible geodesics if and only if for any

geodesic γ : [0, 1] → M of F, the reverse curve γ̄(t) := γ(1− t) is also a geodesic

of F. All reversible Finsler metrics have this property[2]. Finsler metrics that

satisfy F (x, y) = F (−x, y) have similar geodetic properties.

Theorem 1.4. Let F be a Finsler metrics on Rn such that F (−x, y) = F (x, y)

for any vector x ∈ Rn. Then σ : [0, 1] → M is a geodesic of F if and only if

σ̄(t) := −σ(1− t) is a geodesic of F .
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The S-curvature is one of the most important non-Riemannian quantities

in RiemannFinsler geometry which was first introduced by Zhongmin Shen

when he studied volumn comparison in Finsler geometry [5]. Recent study

shows that the S-curvature plays a very important role in Finsler geometry

[3][4]. The Finsler metrics with constant S-curvature are of some important

geometric structures which deserve to be studied deeply. For example, Shen

has proved the following rigidity theorem: for a Finsler metric F with constant

S-curvature on an n-dimensional closed manifold M , if F has negative flag

curvature, then it must be Riemannian [4]. For our main aim, we can prove

the following

Theorem 1.5. Let F be a Finsler metrics on Rn that satisfies (1.1). Suppose

that F has constant S-curvature. Then S = 0.

Let us put

F (x, y) :=

√
|y|2 − (|x|2|y|2− < x, y >2)+ < x, y >

1− |x|2
, y ∈ TxB

n = Rn, (1.2)

F is called the Funk metric. The Funk metric has interesting curvature prop-

erties. It satisfies

Lijk = cFCijk (1.3)

where c is a constant. In this paper, we prove every Finsler metric that satisfies

(1.1) and (1.3) is a Landsberg metric.

Theorem 1.6. Let F be a Finsler metric that satisfies (1.1). Suppose F is

also general relative isotropic Landsberg metric,

Lijk = cFCijk, (1.4)

where c is a constant. Then F is a Landsberg metric.

2. Preliminary

Let M be an n-dimensional C∞ manifold. Denote by TxM the tangent

space at x ∈ M , and by TM = ∪x∈MTxM the tangent bundle of M . A Finsler

metric on M is a function F : TM → [0,∞) which has the following properties:

(i) F is C∞ on TM0 := TM \ {0};
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ; (iii) for

each y ∈ TxM , the following quadratic form gy on TxM is positive definite,

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s,t=0, u, v ∈ TxM.

Let (M,F ) be a Finsler manifold. The third-order derivatives of 1
2F

2
x at

y ∈ TxM0 is a symmetric trilinear form Cy on TxM which is called Cartan

torsion. The rate of change of Cartan torsion C along geodesics is called the

Landsberg curvature L. A Finsler metric satisfies L = 0 is called a Landsberg
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metric. A Finsler metric F on a manifold M is said to be general relative

isotropic Landsberg metric , if

Lijk = λCijk (2.1)

where λ is a positively 1-homogeneous scalar function.

If γ : [0, 1] → M is a piecewise C∞ curve on M , then its Finslerian length

is defined as

LF (γ) :=

∫ 1

0

F (γ(t), γ̇(t)) dt.

and the Finslerian distance function dF : M ×M → [0,∞) is defined by

dF (p, q) = inf
γ

LF (γ),

where the infimum is taken over all piecewise C∞ curves on M joining the

points p, q ∈ M . Given a Finsler manifold (M,F ), then a global vector field G

is induced by F on TM0, which in a standard coordinate (xi, yi) for TM0 is

given by G = yi ∂
∂xi − 2Gi(x, y) ∂

∂yi , where

Gi :=
1

4
gil

[ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

]
, y ∈ TxM, (2.2)

where gij := (gij)
−1. G is called the spray associated to (M,F ). A C∞ map

σ := σ(t) in (M,F ) is called a geodesic of F if it satisfies

σ̈i(t) + 2Gi
(
σ(t), σ̇(t)

)
= 0

For a Finsler metric F on an n-dimensional manifold M , the Busemann-

Hausdorff volume form dVF = σF (x)dx
1 · · · dxn is defined by

σF (x) :=
Vol(Bn(1))

Vol
[
(yi) ∈ Rn

∣∣ F (
yi|x

)
< 1

] .
Let Gi denote the geodesic coefficients of F in the same local coordinate system.

Then for y = yi|x ∈ TxM , the S-curvature is defined by

S(y) :=
Gi

yi
(x, y)− yi

xi

[
lnσF (x)

]
.

This quantity was first introduced by Shen for a volume comparison theorem

[5]. A Finsler metric F on an n-dimensional manifoldM is said to have isotropic

S-curvature if there is a scalar function c = c(x) on M such that

S = (n+ 1)cF

F is said to have constant S-curvature if c = constant.
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3. Proof of Theorems

Proof of Theorem 1.3: By definition we have

dF (p, q) = inf
γ

∫ 1

0

F
(
γ(t), γ̇(t)

)
dt, (3.1)

for any curve γ : [0, 1] → M that γ(0) = p and γ(1) = q. It is easy to see that

dF (p, q) = inf
γ

∫ 1

0

F
(
γ(t), γ̇(t)

)
dt = inf

γ

∫ 1

0

F
(
γ(1− t), γ̇(1− t)

)
dt. (3.2)

Since F satisfy (1.1), from (3.2) one can see that

dF (p, q) = inf
γ

∫ 1

0

F
(
− γ(1− t), γ̇(1− t)

)
dt = dF (−q,−p).

Thus we get the proof. □

In order to prove Theorem 1.4, we first need to prove the following

Lemma 3.1. Let F be a Finsler metrics on Rn such that F (−x, y) = F (x, y)

for any vector x ∈ Rn. The spray coefficients of F satisfy:

Gi(−x, y) = −Gi(x, y) (3.3)

Proof. It is easy to see that

gij(−x, y) = gij(x, y), (3.4)

gij(−x, y) = gij(x, y), (3.5)

[F 2]xm(−x, y) = −[F 2]xm(x, y). (3.6)

By (2.2), (3.5) and (3.6), we get (3.3). □

Proof of Theorem 1.4: A direct computation yields

¨̄σi(t) + 2Gi
(
σ̄(t), ˙̄σ(t)

)
= −σ̈i(1− t) + 2Gi

(
− σ(1− t), σ̇(1− t)

)
. (3.7)

By the Lemma 3.1, we have

¨̄σi(t) + 2Gi
(
σ̄(t), ˙̄σ(t)

)
= −

[
σ̈i(1− t) + 2Gi

(
σ(1− t), σ̇(1− t)

)]
. (3.8)

Since σ = σ(t) is a geodesic of F , then

σ̈i(1− t) + 2Gi
(
σ(1− t), σ̇(1− t)

)
= 0. (3.9)

By (3.8) and (3.9) one can see that σ̄ is a geodesic of F . □

Proof of Theorem 1.5: Let Gi denote the spray coefficients of F . It is easy

to see that

σF (x) = σF (−x)
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Therefore by Lemma 3.1 we obtain

S(−x, y) = −S(x, y) (3.10)

Since F has constant S− curvature, we have

S(x, y) = (n+ 1)cF (x, y) (3.11)

where c is a constant. Thus

S(−x, y) = (n+ 1)cF (−x, y) (3.12)

From (3.10), (3.11) and (3.12) one can see that c = 0. This completes the proof

of Theorem 1.5. □

Proof of Theorem 1.6: It is easy to see that

Cijk(−x, y) = Cijk(x, y). (3.13)

Since Lijk = Cijk|ly
l, so we have

Lijk(−x, y) = −Lijk(x, y). (3.14)

By (1.4), we have

Lijk(−x, y) = cF (−x, y)Cijk(−x, y).

From (3.13) and (3.14) one can see that c = 0. This completes the proof of

Theorem 1.6.
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