- 1. H. Akbar-Zadeh, Sur les espaces de Finsler a` courbures sectionnelles constantes. Acad.
Roy. Belg. Bull. Cl. Sci. 74(5)(1988), 281-322.
- 2. S.S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientic Publishers, 2004.
- 3. B. Chen, Z. Shen and L. Zhao, Constructions of Einstein Finsler metrics by warped
product, preprint, (2016).
- 4. L. Huaifu, M. Xiaohuan and Z. Hongzhen, Finsler warped product metrics with special
Riemannian curvature properties. Science China Math.
- 5. B. Li and Z. Shen, On some non-Riemannian quantities in Finsler Geometry. Canad.
Math. Bull. 56(2013), 184-293.
- 6. H. Liu, X. Mo and H. Zhang, Finsler warped product metrics with special Riemannian
curvature properties, Science China Mathematics. 2019; 1-18.
- 7. H. Liu and X. Mo, Finsler warped product metrics of Douglas type. Canadian Mathematical Bulletin, https://cms.math.ca/10.4153/CMB-2017-077-0.
- 8. X. Mo, On the non-Riemannian quantity H of a Finsler metric, Differ. Geom. Appl.
27(1)(2009), 7-14.
- 9. X. Mo, A class of Finsler metrics with almost vanishing H-curvature, Balkan. J. Geom.
Appl. 21(2016), 58-66.
- 10. P. J. McCarthy and S. F. Rutz, The general general four-dimensional spherically symmetric Finsler space, Gen. Relativity Gravitation. 25(1993), 589-602.
- 11. B. Najafi, Z. Shen and A. Tayebi, Finsler metrics of scalar flag curvature with special
non-Riemannian curvature properties, Geometriae Dedicata. 131(2008), 87-97.
- 12. B. Najafi, B. Bidabad and A. Tayebi, On R-quadratic Finsler metrics, Iran. J. Sci.
Tech. Tran. A. Science. 31(2007), 439-443.
- 13. S. Rutz, Symmetry in Finsler spaces, Finsler geometry. Contemp. Math. 196(1996),
289-300.
- 14. E. S. Sevim, Z. Shen and S. Ulgen, Spherically symmetric Finsler metrics with constant
Ricci and flag curvature, 2015.
- 15. Z. Shen, On some non-Riemannian quantities in Finsler geometry, Canad. Math. Bull.
56(2013), 184-193.
- 16. Z. Shen, Volume comparison and its applications in Riemannian-Finsler geometry, Advances in Math. 128(1997), 306-328.
- 17. D. Tang, On the non-Riemannian quantity H in Finsler geometry, Differ. Geom. Appl.
29(2011), 207-213.
- 18. A. Tayebi and M. Razgordani, On H-curvature of (α, β)-metrics, Turkish J. Math.
44(2020), 207-222.
- 19. A. Tayebi and H. Sadeghi, Generalized P-reducible (α, β)-metrics with vanishing Scurvature, Ann. Polon. Math. 114(2015), 67-79.
|