- 1. S. I. Amari and H. Nagaoka, Methods of information geometry, Translations of Mathematical Monographs, AMS, 191, Oxford Univ. Press, 2000.
- 2. P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The Theory of Sprays and Finsler
spaces with Applications in Physics and Biology, Kluwer Academic Publishers, Netherlands, 58, 1993.
- 3. V. I. Arnold, Sur la g´eom´etrie diff´erentielle des groupes de Lie de dimension infinie et
ses applications `alhydrodynamique des fluides parfaites, Ann. Inst. Fourier (Grenoble), 16 (1960), 319-361.
- 4. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, GTM200, Springer-Verlag 2000.
- 5. E. Cartan, Les espaces de Finsler, Actualites Scientifiques et Industrielles no. 79, Paris,
Hermann, 1934.
- 6. S. S. Chern, Finsler geometry is just Riemannian geometry without the quadratic restriction, Notices Amer. Math. Soc., 43 (9) (1996), 959-963.
- 7. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics,
Vol. 6, World Scientific Publishers, 2005.
- 8. S. Deng, Homogeneous Finsler Spaces, Springer Monographs in Mathematics, New York,
2012.
- 9. S. Deng and Z. Hou, The group of isometries of a Finsler space, Pacific J. Math, 207
(2002), 149-155.
- 10. Z. Duˇsek, The affine approach to homogeneous geodesics in homogeneous Finsler spaces,
preprint, arXiv:1703.01199.
- 11. P. Finsler, U¨ber Kurven und Fl¨achen in allgemeinen R¨aumen, (Dissertation, G¨ottingen,
1918), Birkha¨user Verlag, Basel, 1951.
- 12. C. Gordon, Homogeneous Riemannian manifolds whose geodesics are Orbits, Prog. Nonlinear Differ. Eq. App., 20 (1996), 155-174.
- 13. P. Habibi, D. Latifi and M. Toomanian, Homogeneous geodesics and the critical points
of the restricted Finsler funtion, J. Cont. Math. Anal., 4 (6) (2011), 12-16.
- 14. M. Hosseini and H. R. Salimi Moghaddam, On the existence of homogeneous geodesics
in homogeneous (α, β)-spaces, Preprint arXiv:1710.02407[math.DG].
- 15. V.V. Kajzer, Conjugate points of left invariant metrics on Lie group, Sov. Math., 34
(1990), 3244 [translation from. Izv. Vyssh. Uchebn. Zaved. Mat. 342 (1990), 27-37].
- 16. A. Kaplan, On the geometry of groups of Heisenberg type, Bull. Lond. Math. Soc., 15
(1983), 35-42.
- 17. K. Kaur and G. Shanker, Ricci curvature of a homogeneous Finsler space with exponential
metric, Differential Geometry - Dynamical Systems, 22 (2020), 130-140.
- 18. K. Kaur and G. Shanker, Flag curvature of a naturally reductive homogeneous Finsler
space with infinite series metric, Applied Sciences, 22 (2020), 114-127.
- 19. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, Vol. 1, 1963; Vol. 2, 1969.
- 20. B. Kostant, Holonomy and Lie algebra of motions in Riemannian manifolds, Trans. Am.
Math. Soc., 80 (1995), 520-542.
- 21. O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous
Riemannian manifolds, Geom. Dedicata, 81 (2000), 209-214 [Erratum: Geom. Dedicata 84 (2001), 331-332].
- 22. O. Kowalski and L. Vanhecke, Riemannian manifolds with homogeneous geodesics, Boll.
Un. Math. Ital. 5 (1991), 189-246.
- 23. O. Kowalski and Z. Vl´asˇek, Homogeneous Riemannian manifolds with only one homogeneous geodesic, Publ. Math. Debr., 62 (3-4) (2003), 437-446.
- 24. E. A. Lacomba, Mechanical Systems with Symmetry on Homogeneous Spaces, Trans.
Amer. Math. Soc., 185 (1973), 477-491.
- 25. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys., 57
(2007), 1421-1433.
- 26. D. Latifi and A. Razavi, Homogeneous geodesics of left invariant Randers metrics on a
three-dimensional Lie group, Int. J. Cont. Math. Sci., 4 (2009), 873-881.
- 27. M. Matsumoto, On a C-reducible Finsler space, Tensor N. S., 24 (1972), 29-37.
- 28. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev.,
59 (1941), 195-199.
- 29. G. Shanker and K. Kaur, Homogeneous Finsler spaces with some special (α, β)-metrics,
Preprint, arXiv:1712.06328v2[math.DG].
- 30. G. Shanker and K. Kaur, Naturally reductive homogeneous space with an invariant
(α, β)-metric, Lobachevskii Journal of Mathematics, 40 (2) (2019), 210-218.
- 31. G. Shanker and K. Kaur, Homogeneous Finsler space with infinite series (α, β)-metric,
Applied Sciences, 21 (2019), 219-235.
- 32. G. Shanker and K. Kaur, Homogeneous Finsler space with exponential metric, Advances
in Geometry, 20 (3) (2020), 391-400.
- 33. J. Szenthe, Hoogeneous geodesics of left invariant metrics, Univ. Iagel. Acta Math., 38
(2000), 99-103.
- 34. J. Szenthe, Stationary geodesics of left invariant Lagrangians, J. Phys. A: Math. Gen.,
34 (2001), 165-175.
- 35. A. Tayebi and B. Najafi, On m-th root Finsler metrics, Journal of Geometry and Physics,
61 (8) (2011), 1479-1484.
- 36. A. Tayebi and M. S. Nia, A new class of projectively flat Finsler metrics with constant
flag curvature K = 1, Differential Geometry and its Applications, 41 (2015), 123-133.
- 37. G. Z. T´oth, On Lagrangian and Hamiltonian systems with homogeneous trajectories, J.
Phys. A: Math. Theor., 43 (2010), 385206 (19pp).
- 38. E.B. Vinberg, Invariant linear connections in a homogeneous manifold, Trudy MMO, 9
(1960), 191-210.
- 39. Z. Yan and S. Deng, Finsler spaces whose geodesics are orbits, Differ. Geom. Appl., 36
(2014), 1-23.
- 40. Z. Yan and S. Deng, Existence of homogeneous geodesics on homogeneous Randers
spaces, Houston J. Math., (2016) (in preparation)
- 41. Z. Yan, Existence of homogeneous geodesics on homogeneous Finsler spaces of odd dimension, Monatsh Math., 182 (2017), 165-171.
- 42. Z. Yan and Libing Huang, On the existence of homogeneous geodesic in homogeneous
Finsler spaces, J. Geom. Phys., 124 (2018), 264-267.
|