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Abstract. The aim of the present paper is to provide an intrinsic investigation of two

special Finsler spaces whose defining properties are related to Berwald connection, namely,

Finsler space of scalar curvature and of constant curvature. Some characterizations of a

Finsler space of scalar curvature are proved. Necessary and sufficient conditions under which

a Finsler space of scalar curvature reduces to a Finsler space of constant curvature are inves-

tigated.
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1. Introduction

Special Finsler spaces are investigated locally by many authors (cf., for exam-

ple, [2]-[5], [7], [8], [10]). On the other hand, the global or intrinsic investigation

of such spaces is rare in the literature. Some contributions in this direction are

found in [9] and [12].

In the present paper, we treat intrinsically two types of special Finsler spaces:

Finsler space of scalar curvature and Finsler space of constant curvature. Some

characterizations of Finsler spaces of scalar curvature are proved. Necessary
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and sufficient conditions for Finsler space of scalar curvature to reduces to a

Finsler space of constant curvature are investigated.

It should be noted that some important results of [7], [8] and [10] are re-

trieved from the obtained global results, when localized.

2. Notation and Preliminaries

In this section, we give a brief account of the basic concepts of the pullback

approach to intrinsic Finsler geometry necessary for this work. For more details,

we refer to [1], [6] and [9]. The following notation will be used throughout this

paper:

M : a real differentiable manifold of finite dimension n and class C∞,

F(M): the -algebra of differentiable functions on M ,

π : M −→ M : the subbundle of nonzero vectors tangent to M ,

P : π−1(TM) −→ M : the pullback of the tangent bundle TM by π,

X(π(M)): the F(M)-module of differentiable sections of π−1(TM),

iX : the interior product with respect to X ∈ X(M),

Elements of X(π(M)) will be called π-vector fields and will be denoted by

barred letters X. Tensor fields on π−1(TM) will be called π-tensor fields. The

fundamental π-vector field is the π-vector field η defined by η(u) = (u, u) for

all u ∈ M . We have the following short exact sequence of vector bundles:

0 −→ π−1(TM)
γ−→ T (M)

ρ−→ π−1(TM) −→ 0,

the bundle morphisms ρ and γ being defined as usual [11].

LetD be a linear connection (or simply a connection) on the pullback bundle

π−1(TM). The connection (or the deflection) map associated with D is defined

by

K : TM −→ π−1(TM) : X 7−→ DXη.

A tangent vector X ∈ Tu(M) at u ∈ M is horizontal if K(X) = 0 . The vector

space Hu(M) = {X ∈ Tu(M) : K(X) = 0} is the horizontal space at u. A

connection D is said to be regular if Tu(M) = Vu(M)⊕Hu(M) ∀u ∈ M , where

Vu(M) is the vertical space at u. Let β := (ρ|H(M))
−1, called the horizontal

map of the connection D, then

ρ ◦ β = idπ−1(TM), β ◦ ρ = idH(M) on H(M).

For a regular connection D, the horizontal and vertical covariant derivatives
1

D

and
2

D are defined, for a vector (1)π-form A, for example, by

(
1

D A)(X,Y ) := (DβXA)(Y ), (
2

D A)(X,Y ) := (DγXA)(Y ).

The horizontal ((h)h-) and mixed ((h)hv-) torsion tensors of the connection

D are defined respectively by

Q(X,Y ) := T(βX, βY ), T (X,Y ) := T(γX, βY ) ∀X,Y ∈ X(π(M)),



Characterization of Finsler Spaces of Scalar Curvature 17

where T(X,Y ) = DXρY − DY ρX − ρ[X,Y ] is the (classical) torsion of the

connection D

The horizontal (h-), mixed (hv-) and vertical (v-) curvature tensors of D are

defined respectively by

R(X,Y )Z := K(βX, βY )Z, P (X,Y )Z := K(βX, γY )Z,

S(X,Y )Z := K(γX, γY )Z,

where K(X,Y )ρZ = −DXDY ρZ + DY DXρZ + D[X,Y ]ρZ is the (classical)

curvature tensor of the connection D.

The cotracted curvatures of D or the (v)h-, (v)hv- and (v)v-torsion tensors are

defined respectively by

R̂(X,Y ) := R(X,Y )η, P̂ (X,Y ) := P (X,Y )η, Ŝ(X,Y ) := S(X,Y )η.

Theorem 2.1. [11] Let (M,L) be a Finsler manifold. There exists a unique

regular connection D◦ on π−1(TM) such that

(a): D◦
h◦XL = 0,

(b): D◦ is torsion-free : T◦ = 0,

(c): The (v)hv-torsion tensor P̂ ◦ of D◦ vanishes : P̂ ◦(X,Y ) = 0.

Such a connection is called Berwald connection associated with (M,L).

Throughout the paper R◦, R̂◦ and H := iη R̂◦ will denote respectively the

h-curvature, the (v)h-torsion and the deviation tensor of Berwald connection

D◦. Moreover,
1

D◦ and
2

D◦ will denote respectively the horizontal covariant

derivative and the vertical covariant derivative associated with D◦.

3. Finsler Space of Scalar Curvature

In this section, we establish intrinsically some characterizations of the prop-

erty of being of scalar curvature.

Let (M,L) be a Finsler manifold and g the Finsler metric defined by L.

Denote ℓ := L−1iη g, ϕ(X) := X − L−1ℓ(X)η and ℏ(X,Y ) := g(ϕ(X), Y ) =

g(X,Y )− ℓ(X)ℓ(Y ) , the angular metric tensor.

Definition 3.1. [12] A Finsler manifold (M,L) of dimension n ≥ 3 is said to

be of scalar curvature if the deviation tensor H satisfies

H(X) = kL2ϕ(X),

where k is a scalar function on M , positively homogenous of degree zero in y

(h(0)) , called scalar curvature

In particular, if the scalar curvature k is constant, then (M,L) is called a

Finsler manifold of constant curvature.

ω is h(r) in y iff D◦
γη ω = rω.
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Definition 3.2. [12] An operator P, called the projection operator of indicatrix,

is defined as follows:

(a) If ω is a π-tensor field of type (1,p), then

(P · ω)(X1, ..., Xp) := ϕ(ω(ϕ(X1), ..., ϕ(Xp))).

(b) If ω is a π-tensor field of type (0,p), then

(P · ω)(X1, ..., Xp) := ω(ϕ(X1), ..., ϕ(Xp)).

(c) In particular, a π-tensor field ω is said to be an indicatory tensor if it

satisfies P · ω = ω.

Remark 3.3. The projection P preserves tensor type. The π-tensor fields ϕ

and ℏ are indicatory. Moreover, for any π-tensor field ω, P · ω is indicatory.

The following result provides some characterizations of Finsler spaces of

scalar curvature.

Theorem 3.4. Let (M,L) be a Finsler manifold of dimension n ≥ 3. The

following assertion are equivalent:

(a): (M,L) is of scalar curvature k,

(b): The (v)h-torsion tensor R̂◦ satisfies

R̂◦(X,Y ) = AX,Y {Lϕ(Y )[kℓ(X) +
1

3
C(X)]}. (3.1)

(c): The h-curvature tensor R◦ has the form

R◦(X,Y )Z = AX,Y

{
ϕ(Y )

[
ℓ(Z)(kℓ(X) +

1

3
C(X)) +

1

3
B(Z,X)

+
2

3
ℓ(X)C(Z) + kℏ(Z,X)

]
+

1

3
ℓ(X)C(Y )ϕ(Z)

+L−1ℏ(X,Z)η
[
kℓ(Y ) +

1

3
C(Y )

]}
, (3.2)

where AX,Y ω(X,Y ) := ω(X,Y )− ω(Y ,X), and

C(X) := L(
2

D◦ k)(X), B(X,Y ) := L(P·
2

D◦ C)(X,Y ) (3.3)

To prove this theorem, we need the following three lemmas, which can easily

be proved.

Lemma 3.5. For a Finsler manifold (M,L), we have:

(a): iη ℓ = L, iη ϕ = 0, iη ℏ = 0.

(b):
1

D◦ L = 0,
1

D◦ ℓ = 0.

(c):
2

D◦ L = ℓ,
2

D◦ ℓ = L−1ℏ.

(d):
2

D◦ ϕ = −L−2ℏ⊗ η + Lϕ⊗ ℓ.
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(e): P · ℓ = 0, P · ℏ = ℏ.

Lemma 3.6. The π-scalar form C, defined by (3.3), has the following proper-

ties:

(a): iη C = 0

(b): P · C = C (C is indicatory)

(c): (
2

D◦ C)(η,X) = 0 (C is h(0)),

(d): (
2

D◦ C)(X, η) = −C(X).

Lemma 3.7. The π-scalar form B, defined by (3.3), has the following proper-

ties:

(a): iη B = 0

(b): P ·B = B (B is indicatory)

(c): (
2

D◦ B)(η,X, Y ) = 0 (B is h(0)),

(d): B(X,Y ) = L(
2

D◦ C)(X,Y ) + C(X)ℓ(Y ),

(e): B is symmetric.

(f): (
2

D◦ B)(X, η, Y ) = (
2

D◦ B)(X,Y , η) = −B(X,Y ).

Proof of Theorem 3.4:

(a) ⇒ (b): Let (M,L) be a Finsler manifold of scaler curvature k. Then,

by Definition 3.1, the deviation tensor H has the form

H(X) = kL2ϕ(X). (3.4)

On the other hand, from Theorem 4.6 of [13], we have

R̂◦(X,Y ) =
1

3
AX,Y (

2

D◦ H)(X,Y ). (3.5)

From which, together with (3.4) and Lemma 3.5, we get

R̂◦(X,Y ) =
1

3
AX,Y [L

2(
2

D◦ k)⊗ ϕ+ k(
2

D◦ L2)⊗ ϕ+ kL2(
2

D◦ ϕ)](X,Y )

=
1

3
AX,Y [LC ⊗ ϕ+ 2Lkℓ⊗ ϕ− kℏ⊗ η + Lϕ⊗ ℓ](X,Y )

=
1

3
AX,Y [LC ⊗ ϕ+ 3Lkℓ⊗ ϕ− kℏ⊗ η](X,Y ).

Hence, the result follows.

(b) ⇒ (c): Suppose that the (v)h-torsion tensor R̂◦ satisfies (3.1):

R̂◦(X,Y ) = AX,Y {Lϕ(Y )[kℓ(X) +
1

3
C(X)]}. (3.6)

In view of Theorem 4.6 of [13], we have

R◦(X,Y )Z = (
2

D◦ R̂◦)(Z,X, Y ).
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From which, taking into account (3.6) and Lemmas 3.5, 3.6 and 3.7, the result

follows.

(c) ⇒ (a): Suppose that the h-curvature tensor R◦ has the form (3.2):

R◦(X,Y )Z = AX,Y

{
ϕ(Y )

[
ℓ(Z)(kℓ(X) +

1

3
C(X)) +

1

3
B(Z,X)

+
2

3
ℓ(X)C(Z) + kℏ(Z,X)

]
+

1

3
ℓ(X)C(Y )ϕ(Z)

+L−1ℏ(X,Z)η
[
kℓ(Y ) +

1

3
C(Y )

]}
,

Setting X = η and Z = η into the above equation, taking into account Lemmas

3.5, 3.6 and 3.7, the result follows. □

Let R◦(X,Y , Z,W ) := g(R◦(X,Y )Z,W ), then we have:

Corollary 3.8. For a Finsler manifold of scalar curvature k, the h-curvature

tensor R◦ satisfies:

(a) R◦(X,Y , Z,W )−R◦(X,Y ,W,Z) = AX,Y {ℏ(Z,X)N(W,Y ) + ℏ(W,Y )N(Z,X)}.

(b) R◦(X,Y , Z,W ) +R◦(X,Y ,W,Z) = AX,Y {ℏ(W,Y )F (Z,X) + ℏ(Z, Y )F (W,X)

+ℏ(W,Z)F (Y ,X)}.

where N and F are the π-tensor fields of type (0, 2) defined respectively by

N(X,Y ) : = kg(X,Y ) + ℓ(X)ℓ(Y )

+
1

3
B(X,Y ) + 2ℓ(X)C(Y ) + 2C(X)ℓ(Y ),

F (X,Y ) :=
1

3
B(X,Y ) + 2C(X)ℓ(Y ).

We end this section by the following result.

Proposition 3.9. For a Finsler manifold of scalar curvature, P ·R◦ vanishes

if and only if P ·N vanishes, where N is the π-form defined by Corollary 3.8.

Proof. Let (M,L) be a Finsler manifold of scalar curvature. Then, by Theorem

3.4, we have

(P ·R◦)(X,Y , Z,W ) = AX,Y {ℏ(Y ,W )[
1

3
B(Z,X) + kℏ(Z,X)]}. (3.7)

On the other hand, by Corollary 3.8, we obtain

(P ·N)(X,Y ) =
1

3
B(Z,X) + kℏ(Z,X).

From which together with (3.7), we get

(P ·R◦)(X,Y , Z) = AX,Y {ϕ(Y )(P ·N)(Z,X)}. (3.8)
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It is clear, from (3.8), that if P ·N = 0, then P ·R◦ = 0.

Conversely, if P ·R◦ = 0, it follows again from (3.8) that

AX,Y {ϕ(Y )(P ·N)(Z,X)} = 0.

Taking the contracted trace with respect to Y , the above relation reduces to

(n− 2)(P ·N)(Z,X) = 0.

Consequently, as n ≥ 3, P ·N vanishes. □

4. Finsler Space of Constant Curvature

In this section, we investigate intrinsically necessary and sufficient conditions

under which a Finsler manifold of scalar curvature reduces to a Finsler manifold

of constant curvature.

The following lemma is useful for subsequent use.

Lemma 4.1. For a Finsler manifold (M,L) of constant curvature, we have

AX,Y

{
A(X,Y , Z) + C(X)ℏ(Y , Z)

}
= 0,

where A is the π-tensor field of type (0,3) defined by

A(X,Y , Z) := L(P·
2

D◦ B)(X,Y , Z)

and C, B are the π-tensor fields defined by (3.3).

Proof. We have

A(X,Y , Z) = L(P·
2

D◦ B)(X,Y , Z).

= L(
2

D◦ B)(ϕ(X), ϕ(Y ), ϕ(Z)).

= L(
2

D◦ B)(X,Y , Z)− ℓ(Z)(
2

D◦ B)(X,Y , η)

−ℓ(Y )(
2

D◦ B)(X, η, Z) + L−1ℓ(Y )ℓ(Z)(
2

D◦ B)(X, η, η)

−ℓ(X)(
2

D◦ B)(η, Y , Z) + L−1ℓ(X)ℓ(Z)(
2

D◦ B)(η, Y , η)

+L−1ℓ(X)ℓ(Y )(
2

D◦ B)(η, η, Z)− L−2ℓ(X)ℓ(Y )ℓ(Z)(
2

D◦ B)(η, η, η).

In view Lemmas 3.5 and 3.7, the above Equation reduces to

A(X,Y , Z) = L(
2

D◦ B)(X,Y , Z) + ℓ(Z)B(X,Y ) + ℓ(Y )B(X,Z). (4.1)
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On the other hand, from (3.3) and Lemmas 3.5, 3.6 and 3.7, we have

(
2

D◦ B)(X,Y , Z) = ℓ(X)(
2

D◦ C)(Y , Z) + L(
2

D◦
2

D◦ C)(X,Y , Z)

+L−1ℏ(X,Z)C(Y ) + ℓ(Z)(
2

D◦ C)(X,Y )

= ℓ(X)(
2

D◦ C)(Y , Z) + L(
2

D◦
2

D◦ C)(X,Y , Z)

+L−1ℏ(X,Z)C(Y ) + L−1ℓ(Z)ℓ(X)C(Y )

+Lℓ(Z)(
2

D◦
2

D◦ k)(X,Y )

= L−1ℓ(X)B(Y , Z) + L(
2

D◦
2

D◦ C)(X,Y , Z)

+L−1ℏ(X,Z)C(Y ) + Lℓ(Z)(
2

D◦
2

D◦ k)(X,Y ).

From which, together (4.1), we obtain

A(X,Y , Z) = SX,Y ,Z{ℓ(X)B(Y , Z)}+ ℏ(X,Z)C(Y )

+L2
{
(

2

D◦
2

D◦ C)(X,Y , Z) + ℓ(Z)(
2

D◦
2

D◦ k)(X,Y )
}
.(4.2)

On the other hand, for every (1)π-form ω, one can show that

(
2

D◦
2

D◦ ω)(X,Y , Z)− (
2

D◦
2

D◦ ω)(Y ,X,Z) = 0 (4.3)

Then the result follows from (4.2) and (4.3). □

Theorem 4.2. A Finsler manifold (M,L) of scalar curvature k reduces to

a Finsler manifold of constant curvature k if and only if the π-scalar form

C = L
2

D◦ k vanishes.

Proof. Firstly, suppose that (M,L) is Finsler manifold of scalar curvature k. If

(M,L) reduces to a Finsler manifold of constant curvature k, then the π-scalar

form C vanishes immediately.

Conversely, suppose that (M,L) is a Finsler manifold of scalar curvature k

such that the π-scalar form C vanishes. Hence

2

D◦ k = 0. (4.4)

By (3.1), together with C = 0, we obtain

R̂◦(X,Y ) = kLℓ(X)Y − ℓ(Y )X. (4.5)

On the other hand, we have [13]:

SX,Y ,Z {(D◦
βX

R◦)(Y , Z,W ) + P ◦(R̂◦(X,Y ), Z)W} = 0.

From which, noting that the (v)hv-torsion P̂ ◦ vanishes [13], it follows that

SX,Y ,Z (D◦
βX

R̂◦)(Y ,Z) = 0. (4.6)
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Now, from (4.5) and (4.6), using (3.4) and D◦
βX

ℓ = 0, we get

L(D◦
βX

k)(ℓ(Y )Z − ℓ(Z)Y ) + L(D◦
βY

k)(ℓ(Z)X − ℓ(X)Z)

+L(D◦
βZ

k)(ℓ(X)Y − ℓ(Y )X) = 0.

Setting Z = η into the above equation, noting that ℓ(η) = L (Lemma 3.5), we

obtain

L(D◦
βXk)(ℓ(Y )η − LY ) + L(D◦

βY
k)(LX − ℓ(X)η)

+L(D◦
βηk)(ℓ(X)Y − ℓ(Y )X) = 0.

Taking the trace of both sides with respect to Y , it follows that

D◦
βXk = L−1(D◦

βηk)ℓ(X). (4.7)

Applying the v-covariant derivative with respect to Y on both sides of (4.7),

yields

ℓ(Y )D◦
βX

k + L(
2

D◦
1

D◦ k)(X,Y ) = L−1ℏ(X,Y )(D◦
βηk) + ℓ(X)(

2

D◦
1

D◦ k)(η, Y ).

From (4.4), noting that (
2

D◦
1

D◦ k)(X,Y ) = (
1

D◦
2

D◦ k)(Y ,X), the above relation

reduces to (provided that n ≥ 3)

ℓ(Y )D◦
βX

k = L−1ℏ(X,Y )(D◦
βηk).

Setting Y = η into the above equation, noting that ℓ(η) = L and ℏ(., η) = 0, it

follows that D◦
βX

k = 0. Consequently,

1

D◦ k = 0. (4.8)

Now, (4.4) and (4.8) imply that k is a constant. □
Theorem 4.3. A Finsler manifold (M,L) of scalar curvature k reduces to

a Finsler manifold of constant curvature k if and only if the π-scalar form

B = L(P·
2

D◦ C) vanishes.

Proof. Let (M,L) be a Finsler manifold of scalar curvature k.

If (M,L) reduces to a Finsler manifold of constant curvature k, then, by

Theorem 4.2, the π-scalar form C vanishes. Consequently, the π-scalar form B

vanishes.

Conversely, suppose that (M,L) has the property that the π-scalar form B

vanishes. Hence, the π-scalar form A of Lemma 4.1 vanishes. Consequently by

Lemma 4.1, we have

C(X)ϕ(Y )− C(Y )ϕ(X) = 0

Taking the trace of both sides of the above equation with respect to Y , noting

that Tr(ϕ) = n− 1 [12], it follows that

(n− 2)C(X) = 0.
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From which, the π-scalar form C vanishes as n ≥ 3. Consequently, by Theorem

4.2, (M,L) is of constant curvature k. □

Theorem 4.4. A Finsler manifold (M,L) of scalar curvature k reduces to

a Finsler manifold of constant curvature k if and only if the π-scalar form

A = L(P·
2

D◦ B) vanishes.

Proof. The proof is similar to that of the above theorem. □

Summing up, we have.

Theorem 4.5. Let (M,L) be a Finsler manifold of scalar curvature k. The

following assertion are equivalent:

(a): (M,L) is of constant curvature k,

(b): The (1)π-scalar form C = L
2

D◦ k vanishes,

(c): The (2)π-scalar form B = L(P·
2

D◦ C) vanishes,

(d): The (3)π-scalar form A = L(P·
2

D◦ B) vanishes.

Corollary 4.6. A Finsler manifold of scalar curvature is of constant curvature

if and only if P · F = 0, where F is the π-form defined by Corollary 3.8.

Proof. The proof follows from the identity

P · F (X,Y ) =
1

3
B(X,Y ).

which can easily be proved. □

References

1. H. Akbar-Zadeh, Initiation to global Finsler geometry, Elsevier, 2006.

2. H. Izumi and T. N. Srivastava, On R3-like Finsler spaces, Tensor, N. S., 32 (1978),

339–349.

3. H. Izumi and M. Yoshida, On Finsler spaces of perpendicular scalar curvature, Tensor,

N. S., 32 (1978), 219–224.

4. M. Matsumoto, On Finsler spaces with curvature tensors of some special forms, Tensor,

N. S., 22 (1971), 201–204.

5. M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha

Press, Otsu, Japan, 1986.

6. R. Miron and M. Anastasiei, The geometry of Lagrange spaces: Theory and applications,

Kluwer Acad. Publ., 1994.

7. H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, Berlin, 1959.

8. T. Sakaguchi, On Finsler spaces of scalar curvature, Tensor, N. S., 38 (1982), 211–219.

9. A. A. Tamim, Special Finsler manifolds, J. Egypt. Math. Soc., 10(2) (2002), 149–177.

10. M. Yoshida, On Finsler spaces of HP -scalar curvature, Tensor, N. S., 38 (1982), 205–210.

11. Nabil L. Youssef, S. H. Abed and A. Soleiman, Cartan and Berwald connections in the

pullback formalism, Algebras, Groups and Geometries, 25, 4 (2008), 363–386. arXiv:

0707.1320 [math. DG].



Characterization of Finsler Spaces of Scalar Curvature 25

12. Nabil L. Youssef, S. H. Abed and A. Soleiman, A global approach to the theory of special

Finsler manifolds, J. Math. Kyoto Univ., 48, 4 (2008), 857–893. arXiv: 0704.0053 [math.

DG].

13. Nabil L. Youssef, S. H. Abed and A. Soleiman, Geometric objects associated with the

fundumental connections in Finsler geometry, J. Egypt. Math. Soc., 18, 1 (2010), 67–

90. arXiv: 0805.2489 [math.DG].

Received: 07.02.2020

Accepted: 28.06.2020


