
تعداد نشریات | 26 |
تعداد شمارهها | 409 |
تعداد مقالات | 3,570 |
تعداد مشاهده مقاله | 5,547,363 |
تعداد دریافت فایل اصل مقاله | 3,792,000 |
Sensitivity analysis of climatic factors in water yield modeling in the Talar watershed; an ecosystem service perspective | ||
مدل سازی و مدیریت آب و خاک | ||
دوره 5، ویژه نامه: تغییر اقلیم و تاثیر آن بر آب و خاک، 1404، صفحه 101-120 اصل مقاله (1.19 M) | ||
نوع مقاله: Special issue on "Climate Change and Effects on Water and Soil" | ||
شناسه دیجیتال (DOI): 10.22098/mmws.2025.17808.1624 | ||
نویسندگان | ||
محسن ذبیحی* 1؛ حمیدرضا مرادی2؛ عبدالواحد خالدی درویشان3؛ مهدی غلامعلیفرد4 | ||
1دکتری علوم و مهندسی آبخیزداری، گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران | ||
2استاد گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران | ||
3دانشیار گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران | ||
4دانشیار گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران | ||
چکیده | ||
Understanding how climatic variables influence water yield is crucial for effective watershed management, particularly in regions that provide vital hydrological ecosystem services. This study investigates the sensitivity of key climatic factors— precipitation, reference evapotranspiration, and seasonality parameters—in modeling water yield ecosystem services using the InVEST model within the ecologically significant Talar watershed in northern Iran. Furthermore, the research aims to prioritize sub-watersheds based on their specific water yield to support ecosystem-based decision-making. Using a time series approach, water yield was modeled for the years 1989, 2000, and 2014, incorporating biophysical and climatic variables along with land use maps derived from Landsat TM and OLI imagery through SVM classification. A sensitivity analysis was conducted using the One-at-a-Time (OAT) method, with the year 2014 as the baseline and changes in each climatic factor assessed relative to 1989. Sub-watershed prioritization was carried out using specific water yield, defined as water yield per unit area. The results showed a declining trend in mean annual precipitation (from 552.6 mm in 1989 to 472.8 mm in 2014) and an increasing trend in temperature (from 8.92°C to 10.6°C), alongside a notable spatial shift in rainfall and evapotranspiration patterns. Sensitivity analysis revealed that water yield was most responsive to changes in precipitation, with a relative sensitivity index (Sr) approximately 0.42, indicating high model responsiveness. Reference evapotranspiration and seasonality parameters also exhibited a moderate influence. Prioritization results identified northern forested and agricultural sub-watersheds as having the highest specific water yields, highlighting their hydrological significance. These findings underscore the dominant role of precipitation variability in shaping regional hydrological services and emphasize the importance of spatially explicit watershed prioritization for sustainable water resource planning. The approach provides a practical framework for integrating ecosystem services into watershed management under climatic uncertainty and land use change, particularly in semi-humid regions like the Talar watershed. | ||
کلیدواژهها | ||
Climate variability؛ Environmental planning؛ OAT algorithm؛ Watershed services | ||
مراجع | ||
References Aghabeigi, N., Esmali Ouri, A., Mostafazade, R. and Golshan, M. (2019). The Effects of Climate Change on Runoff Using IHACRES Hydrologic Model in Some of Watersheds, Ardabil Province. Irrigation and Water Engineering, 10(2), 178-189. doi: 10.22125/iwe.2019.100750 [In Persian] Alizadeh, A. (2015). Principles of applied hydrology (40th ed.). Mashhad: Imam Reza University Press. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109. Asgari, E. , Mostafazadeh, R. and Talebi Khiavi, H. (2025). Projecting the Climate Change Impact on Water Yield in a Cold Mountainous Watershed, Ardabil. Journal of the Earth and Space Physics, 50(4), 165-177. doi: 10.22059/jesphys.2025.375570.1007601 [In Persian] Bai, Y., Ochuodho, T. O., & Yang, J. (2019). Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecological indicators, 102, 51-64. doi: 10.1016/j.ecolind.2019.01.079 Bai, Y., Wong, C. P., Jiang, B., Hughes, A. C., Wang, M., & Wang, Q. (2018). Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nature communications, 9(1), 3034. doi:10.1038/s41467-018-05306-1 Basha, U., Pandey, M., Nayak, D., Shukla, S., & Shukla, A. K. (2024). Spatial–temporal assessment of annual water yield and impact of land use changes on Upper Ganga Basin, India, using InVEST model. Journal of Hazardous, Toxic, and Radioactive Waste, 28(2), 04024003. doi: 10.1061/JHTRBP.HZENG-12 Belete, M., Deng, J., Abubakar, G. A., Teshome, M., Wang, K., Woldetsadik, M., ... & Gudo, A. (2020). Partitioning the impacts of land use/land cover change and climate variability on water supply over the source region of the Blue Nile Basin. Land Degradation & Development, 31(15), 2168-2184. doi: 10.1002/ldr.3589 Boithias, L., Acuña, V., Vergoñós, L., Ziv, G., Marcé, R., & Sabater, S. (2014). Assessment of the water supply: demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives. Science of the Total Environment, 470, 567-577. doi: 10.1016/j.scitotenv.2013.10.003 Brauman, K. A. (2015). Hydrologic ecosystem services: linking ecohydrologic processes to human well‐being in water research and watershed management. Wiley Interdisciplinary Reviews: Water, 2(4), 345-358. doi: 10.1002/wat2.1081 Daneshi, A., Brouwer, R., Najafinejad, A., Panahi, M., Zarandian, A., & Maghsood, F. F. (2021). Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. Journal of Hydrology, 593, 125621. doi: 10.1016/j.jhydrol.2020.125621 Dehghan, H., & Galdavi, S. (2024). Investigating the Variations in Water Requirement for Main Plants in the Cultivation Pattern (Case Study: Kashmar Plain of Khorasan Razavi). Water Harvesting Research, 7(2), 277-288. doi: 10.22077/jwhr.2024.8291.1156 DNRWM Mazandaran. (2001). Comprehensive detailed-executive study of the Talar watershed. Department of Natural Resources and Watershed Management of Mazandaran Province [In Persian]. Droogers, P., & Allen, R. G. (2002). Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and drainage systems, 16(1), 33-45. doi: 10.1023/A:1015508322413 Elleaume, N., Locatelli, B., Makowski, D., Vallet, A., Poulenard, J., Oszwald, J., & Lavorel, S. (2025). Uncertainties in future ecosystem services under land and climate scenarios: The case of erosion in the Alps. Ecological Modelling, 502, 111041. doi: 10.1016/j.ecolmodel.2025.111041 Gholami, A., Habibnejad Roshan, M., Shahedi, K., Vafakhah, M., & Solaymani, K. (2018). Future impacts of climate change on actual evapotranspiration and soil water in the Talar Watershed in Mazandran Province. Physical Geography Research, 50(3), 511-529. doi: 10.22059/jphgr.2018.202185.1006831 [in persian] Hamdi Ahmadabad, Y. , Liaghat, A. , Rasoulzadeh, A. and ghaderpour, R. (2019). Investigation of in the Capita Water Consumption Variation in Iran Based on the Past Two-Deca Diet. Iranian Journal of Soil and Water Research, 50(1), 77-87. doi: 10.22059/ijswr.2018.246084.667795 [in persian] Hamel, P., & Guswa, A. J. (2015). Uncertainty analysis of a spatially explicit annual water-balance model: Case study of the Cape Fear basin, North Carolina. Hydrology and Earth System Sciences, 19(2), 839-853. doi: 10.5194/hess-19-839-2015 Hamel, P., Guerry, A. D., Polasky, S., Han, B., Douglass, J. A., Hamann, M., ... & Daily, G. C. (2021). Mapping the benefits of nature in cities with the InVEST software. Npj Urban Sustainability, 1(1), 25. doi: 10.1038/s42949-021-00027-9 Iooss, B., & Lemaître, P. (2015). A review on global sensitivity analysis methods. Uncertainty management in simulation-optimization of complex systems: algorithms and applications, 101-122. doi: 10.1007/978-1-4899-7547-8_5 Jiang, W., Chen, Z., Lei, X., Jia, K., & Wu, Y. (2015). Simulating urban land use change by incorporating an autologistic regression model into a CLUE-S model. Journal of Geographical Sciences, 25(7), 836-850. doi: 10.1007/s11442-015-1205-8 Joorabian Shooshtari, S., Shayesteh, K., Gholamalifard, M., Azari, M., Serrano-Notivoli, R., & López-Moreno, J. I. (2017). Impacts of future land cover and climate change on the water balance in northern Iran. Hydrological Sciences Journal, 62(16), 2655-2673. doi: 10.1080/02626667.2017.1403028 Kumar, R., Chatterjee, C., Singh, R. D., Lohani, A. K., & Kumar, S. (2004). GIUH based Clark and Nash models for runoff estimation for an ungauged basin and their uncertainty analysis. International Journal of River Basin Management, 2(4), 281-290. doi: 10.1080/15715124.2004.9635238 Lang, Y., Song, W., & Zhang, Y. (2017). Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China. Physics and Chemistry of the Earth, Parts A/B/C, 101, 102-111. doi: 10.1016/j.pce.2017.06.003 Li, C., Wu, Y., Gao, B., Zheng, K., Wu, Y., & Li, C. (2021b). Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecological Indicators, 132, 108328. doi: 10.1016/j.ecolind.2021.108328 Li, M., Liang, D., Xia, J., Song, J., Cheng, D., Wu, J., Cao, Y., Sun, H & Li, Q. (2021a). Evaluation of water conservation function of Danjiang River Basin in Qinling Mountains, China based on InVEST model. Journal of environmental management, 286, 112212. doi: 10.1016/j.jenvman.2021.112212 Lian, X. H., Qi, Y., Wang, H. W., Zhang, J. L., & Yang, R. (2019). Assessing changes of water yield in Qinghai Lake watershed of China. Water, 12(1), 11. doi: 10.3390/w12010011 Lu, Z., Li, W., & Yue, R. (2024). Investigation of the long-term supply–demand relationships of ecosystem services at multiple scales under SSP–RCP scenarios to promote ecological sustainability in China's largest city cluster. Sustainable Cities and Society, 104, 105295. doi: 10.1016/j.scs.2024.105295 Ma, X., Zhang, P., Yang, L., Qi, Y., Liu, J., Liu, L., Fan, X & Hou, K. (2024). Assessing the relative contributions, combined effects and multiscale uncertainty of future land use and climate change on water-related ecosystem services in Southwest China using a novel integrated modelling framework. Sustainable Cities and Society, 106, 105400. doi: 10.1016/j.scs.2024.105400 Marquès, M., Bangash, R. F., Kumar, V., Sharp, R., & Schuhmacher, M. (2013). The impact of climate change on water provision under a low flow regime: A case study of the ecosystems services in the Francoli river basin. Journal of Hazardous Materials, 263, 224-232. doi: 10.1016/j.jhazmat.2013.07.049 Meraj, G., Singh, S. K., Kanga, S., & Islam, M. N. (2022). Modeling on comparison of ecosystem services concepts, tools, methods and their ecological-economic implications: A review. Modeling Earth Systems and Environment, 8(1), 15-34. doi: 10.1007/s40808-021-01131-6 Mishra, B. K., Kumar, P., Saraswat, C., Chakraborty, S., & Gautam, A. (2021). Water security in a changing environment: Concept, challenges and solutions. Water, 13(4), 490. doi: 10.3390/w13040490 Mostafazadeh, R. , Mirzaei, S. , Esmali, A. and Zabihi, M. (2018). Sensitivity analysis of the flow hydrograph components due to changes in Clark's time-area model in Mohammad-Abad watershed, Gloestan Province. Iranian Journal of Soil and Water Research, 49(1), 91-99. doi: 10.22059/ijswr.2018.221333.667580 [In Persian] Ocloo, D. M. (2025). Water yield of the Volta Basin under future land use and climate change. Environment, Development and Sustainability, 27(1), 2523-2548. doi: 10.1007/s10668-023-03977-5 Pessacg, N., Flaherty, S., Brandizi, L., Solman, S., & Pascual, M. (2015). Getting water right: A case study in water yield modelling based on precipitation data. Science of the Total Environment, 537, 225-234. doi: 10.1016/j.scitotenv.2015.07.148 Petsch, D. K., Cionek, V. D. M., Thomaz, S. M., & Dos Santos, N. C. L. (2023). Ecosystem services provided by river-floodplain ecosystems. Hydrobiologia, 850(12), 2563-2584. doi: 10.1007/s10750-022-04916-7 Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling & Software, 79, 214-232. doi: 10.1016/j.envsoft.2016.02.008 Raziei, T., Daryabari, J., Bordi, I., & Pereira, L. S. (2014). Spatial patterns and temporal trends of precipitation in Iran. Theoretical and Applied Climatology, 115, 531-540. doi: 10.1007/s00704-013-0919-8 Rozenstein, O., & Karnieli, A. (2011). Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Applied Geography, 31(2), 533-544. doi: 10.1016/j.apgeog.2010.11.006 Ruigar H, Emamgholizadeh S, Gharechelou S, Golian S. (2024). The Effect of Climate Change and Future Land Use Using the CA-Markov Model on the Streamflow of the Talar River in Mazandaran Province. J Watershed Manage Res. 15(2), 89-104. doi:10.61186/jwmr.15.2.89 [In Persian] Sánchez-Canales, M., Benito, A. L., Passuello, A., Terrado, M., Ziv, G., Acuña, V., ... & Elorza, F. J. (2012). Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed. Science of the total environment, 440, 140-153. Doi: 10.1016/j.scitotenv.2012.07.071 Sharp, R., Tallis, H.T., Ricketts, T., Guerry, A.D., Wood, S.A., Chaplin-Kramer, R., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C., Verutes, G., Kim, C.K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J., Griffin, R., Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M. Mandle, L., Hamel, P., Vogl, A.L., Rogers, L., Bierbower, W., Denu, D and Douglass, J. (2018). InVEST 3.5.0 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund. Subburayan, S., Murugappan, A., & Mohan, S. (2011). Modified Hargreaves equation for estimation of ETo in a hot and humid location in Tamilnadu State, India. International Journal of Engineering Science and Technology, 3(1), 592-600. Terrado, M., Acuña, V., Ennaanay, D., Tallis, H., Sabater, S. (2014). Impact of Climate Extremes On Hydrological Ecosystem Services in A Heavily Humanized Mediterranean Basin. Ecological indicators, Vol. 37, pp. 199-209. doi: 10.1016/j.ecolind.2013.01.016 Wang, B., Zhu, G. F., Zhong, J. T., Ma, C. F., Zhang, L., Tan, M. B., & Li, X. (2025). Uncertainty analysis and parameter optimization of a water yield ecosystem service model: A case study of the Qilian Mountains, China. Science of The Total Environment, 966, 178772. doi: 10.1016/j.scitotenv.2025.178772 Wu, C., Qiu, D., Gao, P., Mu, X., & Zhao, G. (2022). Application of the InVEST model for assessing water yield and its response to precipitation and land use in the Weihe River Basin, China. Journal of Arid Land, 14(4), 426-440. doi: 10.1007/s40333-022-0013-0 Yang, D., Liu, W., Tang, L., Chen, L., Li, X., & Xu, X. (2019). Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landscape and Urban Planning, 182, 133-143. doi: 10.1016/j.landurbplan.2018.10.011 Yin, L., Zheng, W., Shi, H., & Ding, D. (2022). Ecosystem services assessment and sensitivity analysis based on ANN model and spatial data: A case study in Miaodao Archipelago. Ecological Indicators, 135, 108511. doi: 10.1016/j.ecolind.2021.108511 Yohannes, H., Soromessa, T., Argaw, M., & Dewan, A. (2021). Impact of landscape pattern changes on hydrological ecosystem services in the Beressa watershed of the Blue Nile Basin in Ethiopia. Science of the Total Environment, 793, 148559. doi: 10.1016/j.scitotenv.2021.148559 Yousefi, S., Khatami, R., Mountrakis, G., Mirzaee, S., Pourghasemi, H.R., Tazeh, M., 2015. Accuracy Assessment of Land Cover/Land Use Classifiers in Dry and Humid Areas of Iran. Environmental Monitoring and Assessment, Vol. 187, No. 10, pp. 641. doi: 10.1007/s10661-015-4847-1 Yu, Y., Sun, X., Wang, J., & Zhang, J. (2022). Using InVEST to evaluate water yield services in Shangri-La, Northwestern Yunnan, China. PeerJ, 10, e12804. doi:10.7717/peerj.12804 Zabihi, M., Moradi, H., Gholamalifard, M., Khaledi Darvishan, A., & Fürst, C. (2020). Landscape management through change processes monitoring in Iran. Sustainability, 12(5), 1753. doi: 10.3390/su12051753 Zhang, Z., Peng, J., Xu, Z., Wang, X., & Meersmans, J. (2021). Ecosystem services supply and demand response to urbanization: A case study of the Pearl River Delta, China. Ecosystem Services, 49, 101274. doi: 10.1016/j.ecoser.2021.101274 | ||
آمار تعداد مشاهده مقاله: 26 تعداد دریافت فایل اصل مقاله: 13 |