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Abstract— Accurate state estimation is crucial for the effective control and management of power grids, as it provides a comprehensive
understanding of voltage magnitude and phase angle at network buses. Incorrect estimations may lead to damaging decisions and network
collapse. This paper addresses the significance of precise state estimation in distribution networks and proposes an efficient algorithm
for optimal measurement device allocation, aiming to minimize estimation errors. The algorithm considers both investment and technical
constraints, utilizing an optimal alternative current (AC) power flow model that eliminates the need for exact values of active and reactive
load demands. The proposed method identifies optimal locations for installing a specific number of phasor measurement units (PMUs)
across the network. The application of the algorithm to 33-bus and 69-bus test systems demonstrates its effectiveness in enhancing state
estimation accuracy. Results reveal that optimizing the number and location of measurement devices significantly improves outcomes. A
comparative analysis with the conventional weighted least squares (WLS) algorithm underscores the applicability of the proposed model,
particularly in distribution networks with limited measurement devices. The proposed method formulates optimal meter placement problems
in distribution networks based on an optimal power flow model, which has a superior performance in both accuracy and convergence
without needing to exact nodal demands for state estimation. This research contributes to the advancement of state estimation procedures,
offering a practical approach to enhance accuracy and reliability in power grid management.

Keywords—Alternative current optimal power flow, distribution network, meter placement, state estimation.

NOMENCLATURE

Indices
l Index of branches
m/k Index of network buses
Abbreviations
ACOPF Alternative Current Optimal Power Flow
DG Distributed Generation
DMS Distribution Management System
DSM Demand-Side Management
DSSE Distribution System State Estimation
FZIB Fully Zero Injection Buses
MILP Mixed Integer Linear Programming
PMU Phasor Measurement Unit
PZIB Partially Zero Injection Buses
RER Renewable Energy Resources
WLS Weighted Least Squares
Variables and Parameters
∆V ,∆θ Maximum error of measurement device
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∆load
P Maximum allowable change of active powers compared

to power flow values
∆load

Q Maximum allowable change of reactive powers compared
to power flow values

θ̂k Estimated voltage phase angle of bus k
P̂ load
k , Q̂load

k Estimated active/reactive load demand at bus k
V̂k Estimated voltage magnitude of bus k
PMUk Binary variable indicating presence of PMU at bus k
θmax, θmin Maximum/Minimum allowed voltage phase angle
θpfk Voltage phase angle at bus k from AC power flow
Akm Matrix associated with the connectivity of buses
BLine

km Susceptance of branch between bus k and bus m
GLine

km Conductance of branch between bus k and bus m
ILine
km Current in branch between bus k and bus m
Imax
km Maximum allowed current of branch between bus k and

bus m
No Maximum number of available meters
PGen
k , QGen

k Active/Reactive power generated at bus k
P load
k , Qload

k Active/Reactive load demand at bus k from AC
power flow

PLine
km , QLine

km Active/Reactive power flow in branch between bus
k and bus m

V max, V min Maximum/Minimum allowed voltage magnitude
V pf
k Voltage magnitude at bus k from AC power flow

Z Objective function value

1. INTRODUCTION
Electrical distribution networks are recognized as highly intricate

engineering systems characterized by their extensive infrastructure
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and substantial equipment inventory. While the primary function
of distribution networks is to reliably and economically supply
electricity to consumers, they face a myriad of faults and
disturbances that pose risks to their performance [1]. The
emergence of smart grids, incorporating distributed generation
(DG), renewable energy resources (RER), and demand-side
management (DSM), has altered the traditional unidirectional
power flow in distribution feeders to a bidirectional mode.
While this transformation brings economic and environmental
benefits, it also presents significant technical challenges requiring
substantial operational changes in electrical distribution networks
[2]. In light of these developments, ensuring the accurate and
real-time monitoring of distribution networks becomes imperative
for effective control and security maintenance. The monitoring
process involves collecting data from the distribution network
through installed measuring equipment, which is transmitted to the
control center via telecommunication links. The subsequent data
processing is carried out by the distribution management system
(DMS), with the distribution system state estimator serving as
a fundamental component in the security evaluation of power
distribution networks. As the primary module within the DMS,
the state estimator plays a pivotal role in refining input data for
other modules [3]. The power system state variables, specifically
the voltage magnitude and phase angle of network buses, offer
a holistic understanding of the network. Conversely, inaccurate
estimation of these variables can lead to erroneous decisions,
potentially resulting in severe damages or network collapse.

To address this, employing appropriate distribution system state
estimation (DSSE) algorithms is crucial for accurately assessing
the operational status of the system. However, the efficacy of
state estimation relies on an adequate number of strategically
placed measuring devices throughout the power distribution
network [4]. Establishing an optimal measurement infrastructure
becomes paramount to supplying the requisite real-time data for
DSSE algorithms to generate precise results. Given the numerous
substations and feeders in distribution networks, it is economically
unfeasible to install measuring equipment in every substation.
Hence, determining the optimal number and location of measuring
devices becomes a critical technical and economic consideration
[5].

In [6], the allocation of measurement devices in distribution
networks is tackled with a dual focus on reducing annual energy
losses and enhancing the accuracy of the state estimator. These
objectives are addressed through a multi-objective formulation
solved by the Biased Random-Key Genetic Algorithm. In [7],
a method is proposed utilizing dominance and decomposition
techniques, framing the optimal placement of meters as a
constrained multi-objective optimization problem that considers
the relative error percentage of average voltage magnitude and
phase angle, along with cost considerations. Authors in [8] present
two meter placement methods based on system parameters and
power flow equations to determine optimal installation locations,
aiming to minimize voltage residuals at selected reference states.
The authors in [6–8] propose a multi-objective optimization, which
necessarily does not result in the best DSSE accuracy. In [9],
a µPMU placement technique is introduced, emphasizing fault
detection in distribution networks. Methods like partially zero
injection buses (PZIB) and fully zero injection buses (FZIB)
[10] are employed for optimal µPMU placement, formulated as
a binary integer linear programming problem. [11] presents a
topology estimation approach for low voltage distribution networks
using smart meters and energy meters of customers. A sensor
placement strategy is proposed in [12] to capture voltage magnitude
fluctuations in distribution networks, which detect all possible
voltage limit violations under multiple switching configurations.
However, [9–12] do not address the accuracy of state estimation,
potentially leading to suboptimal results for DSSE.

A multi-objective evolutionary algorithm for meter placement
in active distribution networks is presented in [13], aiming to

minimize both total cost and state estimation error. [14] explores
the impact of smart meter placement on DSSE algorithms,
suggesting installing smart meters on buses with the highest
energy consumption. Applying only smart meters could not deliver
high accuracy. In [15], assuming a radial distribution network,
measuring devices are installed at load buses and slack bus,
providing voltage magnitude and active/reactive power flow data.
The proposed method is heuristic and it is not necessarily the
optimal solution. [16] utilizes Cuckoo search optimization for
optimal general meter and PMU placement, while [17] minimizes
DSSE error using mixed-integer linear programming (MILP).
[18] investigates real-time monitoring requirements for advanced
volt-var control, defining a meter placement problem for CVR
monitoring, yet not considering voltage phase angle estimation
and µPMU placement modeling, potentially leading to inaccurate
branch current estimation and network loss [19].

Similarly, [20] proposes an evolutionary algorithm for meter
placement in active distribution networks, considering investment
cost and relative error of voltage magnitude and phase angle.
[21] employs a multi-objective optimization model to balance low
investment costs with acceptable state estimation performance.
[22] introduces a multi-objective function for PMU placement,
considering all state estimation error components with adaptive
decision coefficients. In [23], a multi-objective evolutionary
algorithm is used to minimize investment cost and enhance DSSE
accuracy, implemented through particle swarm optimization and
validated with Monte Carlo simulation. [24] incorporates voltage
and power flow measurement placement to improve DSSE accuracy,
formulated as a mixed-integer semi-definite programming model.
The authors in [25] propose an optimal meter placement strategy
considering monitoring uncertainty and related economic issues.
This algorithm is based on three modules: state estimation, optimal
placement, and voltage control. In [20–25], DSSE problems are
formulated using the weighted least squares (WLS) minimization
method, addressing the challenge of ill-conditioning in the gain
matrix. However, the computational complexity and stability of
results remain concerns.

This paper focuses on improving DSSE accuracy, considering
meter placement as a multi-objective optimization problem, where
various factors such as budget, operator preferences, and technical
aspects are treated as constraints. It is noteworthy that the
increased use of µPMUs in recent years, due to their ability to
measure voltage magnitude and phase angle with high accuracy in
microseconds, prompts this paper to explore the optimal allocation
of these devices in distribution networks for accurate branch
current estimation and minimizing power loss in distribution
feeders. In a distribution network, the state estimator aims to
provide the best estimate of state variables despite errors in
measured values. These measured values are categorized into
actual measurements (voltage, current, and power flow values) and
pseudo-measurements (estimated or predicted values of network
loads with high variance). Limited real-time measurements,
usually confined to the main substation, make online monitoring
of feeder measurements challenging. Consequently, DSSE for
power distribution networks often relies on pseudo-measurements.
Designing a DSSE algorithm with high accuracy in the presence
of a limited number of real-time measurements is crucial. This
study investigates determining the optimal combination of meters
for monitoring a distribution network with a restricted number of
real-time measurements. The key contributions of this paper are
outlined as follows:

• Formulate the problem of optimal placement of µPMUs in
distribution networks to enhance state estimation accuracy,
utilizing the AC optimal power flow (ACOPF).

• Incorporate pseudo-measurements, such as historical or
forecasted load data, into the DSSE problem to achieve the
desired state estimation accuracy, even when faced with a
restricted number of real-time measurements.

• Enhance both the convergence and accuracy of the output,



Journal of Operation and Automation in Power Engineering, Vol. , No. X, XXXX (Proofed) 3

surpassing conventional methods based on WLS.
The subsequent sections of this paper are organized as follows.

Section 2 introduces the model for optimal placement of µPMUs
in distribution networks, with the objective of enhancing state
estimation accuracy through the ACOPF model. Section 3 is
dedicated to presenting simulation results and assessing the
effectiveness of the proposed algorithm in diverse case studies.
Concluding remarks are provided in Section 4.

2. PROPOSED MODEL

In this section, the conventional WLS algorithm for state
estimation in power systems is briefly introduced. Then, the
proposed algorithm is presented in two separate subsections:
objective function and problem formulation. Finally, the overall
solution procedure is explained in Subsection 2.4.

2.1. WLS algorithm

The weighted least squares (WLS) is one of the most commonly
used algorithms to solve the state estimation problem in power
systems. This method usually minimizes the following objective
function which provides the maximum likelihood estimation [19]:

MinJ(x) = [z − h(x)]TR−1
z [z − h(x)] (1)

For a given network configuration, a nonlinear equation
expressing the relationship between measurements and system
states can be written as:

z = h(x) + ez (2)

where x and z are (n×1) state vector and (m×1) measurement
vector, respectively in which n and m are number of network
buses and measurement, respectively. h(x) is the vector of m
non-linear functions linking the m measured variables to the n
estimated state. If σ2

zi is assumed to be the variance of ith

measurement, ez ∼ N (O, Rz) is a Gaussian noise vector with
a mean of zero and a measurement error covariance matrix
Rz= diag{σ2

z1, σ
2
z2, σ

2
zm}.

The estimated states’ vector x̂ that minimizes J(x) is obtained
from the following condition [19]:

∂J(x)

∂x
|x=x̂ = −HT (x̂)R−1

z [z −H(x̂)] = 0 (3)

The estimated vector can be calculated by Jacobian matrix
H = ∂h(x)

∂x
|x=x̂ as:

x̂ = G−1HTR−1
z z (4)

The matrix G is called the Gain matrix and formulated as
G =HTR−1

z H . If the estimation error is defined as |x− x̂|, then
the optimal meters placement problem will lead to the selection of
the vector z by installing the limited number of measurements in
the network buses in such a way that |x− x̂| remains minimum.

However, provided that the network is fully observable, the
matrix G will be symmetric, sparse, and positive definite.
The network is observable when the size of the independent
measurement vector is more than the number of states in the
system. Therefore, as the real-time meters are very limited in
distribution networks, they are not sufficient for making the system
fully observable. For this reason, WLS method is not suitable for
DSSE in networks with low observability.

2.2. Objective function
In this section, the proposed model for the optimal placement

of µPMUs in distribution networks is discussed based on optimal
AC power flow equations. Since the main goal of this paper is
to improve the accuracy of the DSSE algorithm, the objective
function of the optimization problem is defined as follows:

Z =

n∑
k=1

{∣∣∣∣∣ V̂k − V pf
k

V pf
k

∣∣∣∣∣+ ∣∣∣θ̂k − θpfk

∣∣∣} (5)

In Eq. (5), Z represents the state estimation error in terms of
network state variables (voltage magnitude and phase angle). V̂k

and θ̂k are the estimated state variables resulting from the DSSE
algorithm, while the V pf

k and θpfk are respectively, magnitude
and phase angle of the bus voltages which are obtained from the
real-time measurements. As observed, the relative error between
the estimated values and the outcomes of AC power flow values
(at a certain snapshot) is considered as the estimation error. The

first term of the objective function (| V̂k−V
pf
k

V
pf
k

|) is the normalized
estimation error of voltage magnitudes. Similarly, the second term
(
∣∣∣θ̂k − θpfk

∣∣∣) is the total estimation error of voltage phase angles.
It should be noted that due to the lack of real measurement

data for test networks, the power flow results in a certain state of
the network have been used as the output of the measurements.
Moreover, to avoid numerical problems, the second term of
the objective function is adopted to calculate the relative phase
angle error. Because the phase angles are usually very small in
distribution networks. This helps two terms of objective function
remain at the same level and hence, the optimization algorithm
considers scalable weight for both terms.

2.3. Problem formulation
Eq. (6) to Eq. (16) show the mathematical formulation of the

proposed µPMU placement problem based on ACOPF.

PGen
k − P̂ load

k =

n∑
m=1

AkmPLine
km

(6)

QGen
k − Q̂load

k =

n∑
m=1

AkmQLine
km

(7)

PLine
km =

V̂ 2
k G

Line
km − V̂kV̂mGLine

km cos(θ̂k − θ̂m)−
V̂kV̂mBLine

km sin(θ̂k − θ̂m)

(8)

QLine
km =

−V̂ 2
k B

Line
km + V̂kV̂mBLine

km cos(θ̂k − θ̂m)−
V̂kV̂mGLine

km sin(θ̂k − θ̂m)

(9)

ILine
km =√[

(GLine
km )

2
+ (BLine

km )
2
] [

V̂ 2
k + V̂ 2

m − 2V̂kV̂mcos(θ̂k − θ̂m)
] (10)

−Imax
km ≤ ILine

km ≤ Imax
km (11)

(1−∆load
P )P load

k ≤ P̂ load
k ≤ (1 + ∆load

P )P load
k (12)

(1−∆load
Q )Qload

k ≤ Q̂load
k ≤ (1 + ∆load

Q )Qload
k (13)
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V min + [(1−∆V )V pf
k − V min]PMUk ≤ V̂

≤ V max + [(1 + ∆V )V pf
k − V max]PMUk

(14)

θmin + [(1−∆θ)θpfk − θmin]PMUk ≤ θ̂

≤ θmax + [(1 + ∆θ)θpfk − θmax]PMUk
(15)

n∑
k=1

PMUk ≤ No (16)

Eqs. (6) and (7) represent the active and reactive power balance
at each bus of the network, respectively. Akm is the element (k,m)
of the network adjacency matrix such that if there is a branch
between buses k and m, Akm = 1 and otherwise Akm = 0. PGen

k

and QGen
k are the active and reactive power generation at each

bus, respectively. Note that, these values are equal to zero for all
buses except the first bus at the beginning point of the feeder.
However, if there is distributed generation in the network, it can
be easily modeled through these variables.

The active and reactive power consumption at each bus are
modeled through P̂ load

k and θ̂loadk , respectively. As it can be seen,
these variables are considered as estimated parameters so that in
cases where the load data in the distribution networks are not
precisely known, it can help to improve the estimation procedure.
More details are given in the description of Eqs. (8) and (9) in the
following.

Eqs. (8) and (9) express the active and reactive power flows
through the branches of the network which are dependent on
the estimated voltage magnitude and phase angle as well as the
branch’s parameters. It is noticed that, GLine

km and BLine
km are the

elements belonging to the network conductance and susceptance
matrix. The current passing through the branches of the network
is also obtained from Eq. (10). Moreover, the thermal capacity
limitations of the lines are also taken into account in Eq. (11).

Eqs. (12) and (13) model the minimum and maximum limits
of the estimated active and reactive power of loads. Since the
exact amounts of loads are usually not known in the database of
power distribution companies to carry out power flow calculations,
so these values are known as pseudo-measurements and are
determined using historical data. Since the accuracy of pseudo-
measurements is often low and it can have a significant impact
on the estimation results, therefore, an acceptable range for active
and reactive power of the loads at each bus is intended here. This
could help the optimization problem to adjust the values of these
quantities so that the best estimation is achieved according to the
actual measurements made in the network. On this basis, flexibility
of the formulation will be increased to achieve better results.
∆load

P and ∆load
Q are the permissible ranges for the changes of

estimated active and reactive power of loads according to their
historical data.

Eq. (14) limits the voltage of network buses. As it can be seen,
this equation specifies the voltage range in two ways depending
on the existence of µPMU in the related bus. If there is no
measuring device on a bus (PMUk = 0), the estimated voltage
must fall within the permissible voltage range (e.g. 0.9-1.0 pu).
On the other hand, if the measuring device is placed in a bus
(PMUk = 1), the bus voltage is set to the actual measured
value which is obtained from AC power flow considering a small
deviation equal to the measurement error (∆V ). Similarly, Eq. (15)
also applies the permissible changes of the voltage phase angle of
the network buses in the case of the existence/absence of µPMU
in the corresponding bus.

Finally, PMUk is a binary decision variable vector that is
considered equal to 1 if bus k is selected for meter installation
and vice versa. Consequently, Eq. (16) is used to determine the
maximum number of available meters that should be installed
in the network subject to investment constraints. Note that it

is assumed a µPMU is installed on bus No.1 to measure the
magnitude and phase angle of the voltage. It means that if the
number of µPMUs that can be installed in the system is set to
one, the allocation algorithm will place a meter in the first bus,
automatically. In addition, the magnitude and phase angle of bus
No. 1 are set to 1 per unit and zero, respectively.

2.4. Solution procedure
The overall solution procedure is depicted in Fig. 1. At the first

step, network data (including adjacency matrix, thermal capacity
and impedance of power lines), load and generation data (based
on historical profiles) and fixes parameters (such as maximum and
minimum limits of variables) are required inputs to the model.
Next, the optimal meter placement problem is formulated using
the proposed algorithm based on ACOPF. It should be noted that
a power flow analysis should be performed to determine a specific
snapshot of the network. The power flow results are needed to
utilize as the real measurements on studied test networks. At
third step, the estimated magnitudes and phase angels of nodal
voltages will be the output results to calculate the DSSE error as
the objective function. Finally, the binary vector PMUk shows
the obtained optimal location of meters to maximize the DSSE
accuracy using a limited number of µPMUs.

3. SIMULATION RESULTS

In order to evaluate the proposed meter placement algorithm,
different scenarios are defined on two well-known test systems in
this section and the simulation results are presented in the form of
various figures and tables. Fig. 2 shows the single line diagrams
of IEEE 33 and 69 bus test networks. The data related to branch
parameters and load values is available in [26].

As discussed before, due to the unavailability of real
measurements on the test networks, the results of AC power flow
at a certain snapshot are used as the values of real measurements
in order to evaluate the accuracy of state estimation results. Due
to the fact that the meter used in this study is µPMU, the voltage
magnitude and phase angle of the buses on which µPMU is
installed is assumed as real measurements. The power flow results
(voltage magnitude and phase angle of network buses) for IEEE 33
and 69 bus test systems are given in Tables 1 and 2, respectively.

In simulation studies, all the loads have an uncertainty range
of ±40% (∆load

P = ∆load
Q = 0.4). This means that in Eqs. (12)

and (13), P̂ load
k and θ̂loadk are set within the range of 0.6

and 1.4 times the approximate values considered as the primary
pseudo-measurements. This tolerance is reasonable for the worst
errors in load forecasts. Furthermore, the maximum measurement
error of voltage magnitude (∆V ) and phase angle (∆θ) by µPMU
is considered 0.3%. This error percentage is normal for industrial
µPMUs [17]. The minimum and maximum allowed magnitude
for nodal voltages (V min/V max) is selected as 0.9 and 1.1
p.u., respectively which are common operation limits in most
distribution network companies. θmin and θmax are set to -1
and +1 according to the nominal minimum and maximum for
operational voltage phase angles.

It must be noted that the simulations were performed in GAMS
software using a PC with an Intel Core i7 2.80 GHz processor
and 4.00 GB RAM. To check the performance of the proposed
method, the following three scenarios are defined and the obtained
results are compared from different aspects:

A) Evaluating the effect of the number of meters on
DSSE accuracy

Firstly, the effect of µPMU’s number on the objective function
is investigated. Due to the limited budget of distribution companies,
there are usually a limited number of measuring devices that
should be installed in the best places throughout the network. In
this scenario, by increasing the number of µPMUs and solving
the optimization problem, the best candidate buses for µPMU
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Table 1: Power flow results for IEEE 33-bus test system 

Voltage Phase 

Angle (Degree) 

Voltage Magnitude 

(pu) 
Bus 

Voltage Phase 

Angle (Degree) 

Voltage Magnitude 

(pu) 
Bus 

-0.495 0.913 18 0.000 1.000 1 

-0.004 0.997 19 0.014 0.997 2 

-0.063 0.993 20 0.096 0.983 3 

-0.083 0.992 21 0.162 0.975 4 

-0.103 0.992 22 0.228 0.968 5 

0.065 0.979 23 0.134 0.950 6 

-0.024 0.973 24 -0.096 0.946 7 

-0.067 0.969 25 -0.060 0.941 8 

0.173 0.948 26 -0.133 0.935 9 

0.229 0.945 27 -0.196 0.929 10 

0.312 0.934 28 -0.189 0.928 11 

0.390 0.948 29 -0.177 0.927 12 

0.496 0.922 30 -0.269 0.921 13 

0.411 0.918 31 -0.347 0.919 14 

0.388 0.917 32 -0.385 0.917 15 

0.380 0.917 33 -0.408 0.921 16 

   -0.485 0.914 17 
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installation are specified and the effect of the number of meters on
the accuracy of the system state estimation is reported.

B) Comparing the estimated values of voltage magnitude
and phase angle with the actual measured values in
order to check the accuracy of state estimation on
the test networks

In this section, for some cases with a certain number of
PMUs, the estimated voltage magnitude and phase angle of the
network buses are compared with their actual values considering
the optimal installation of µPMUs.

Table 1. Power flow results for IEEE 33-bus test system.

Bus Voltage magnitude (pu) Voltage phase
angle (Degree)

Bus Voltage magnitude (pu) Voltage phase
angle (Degree)

1 1.000 0.000 18 0.913 -0.495
2 0.997 0.014 19 0.997 -0.004
3 0.983 0.096 20 0.993 -0.063
4 0.975 0.162 21 0.992 -0.083
5 0.968 0.228 22 0.992 -0.103
6 0.950 0.134 23 0.979 0.065
7 0.946 -0.096 24 0.973 -0.024
8 0.941 -0.060 25 0.969 -0.067
9 0.935 -0.133 26 0.948 0.173

10 0.929 -0.196 27 0.945 0.229
11 0.928 -0.189 28 0.934 0.312
12 0.927 -0.177 29 0.948 0.390
13 0.921 -0.269 30 0.922 0.496
14 0.919 -0.347 31 0.918 0.411
15 0.917 -0.385 32 0.917 0.388
16 0.921 -0.408 33 0.917 0.380
17 0.914 -0.485

C) Comparison with the WLS-based state estimation
method

Finally, to evaluate the performance of the proposed formulation
in comparison with other common methods of state estimation
and meter placement, the obtained results are compared with the
conventional WLS method.

Table 2. Power flow results for IEEE 69-bus test system.

Bus Voltage magnitude (pu) Voltage phase
angle (Degree)

Bus Voltage magnitude (pu) Voltage phase
angle (Degree)

1 1.000 0.000 36 1.000 -0.003
2 1.000 -0.001 37 1.000 -0.009
3 1.000 -0.002 38 1.000 -0.011
4 1.000 -0.006 39 1.000 -0.012
5 0.995 0.023 40 1.000 -0.013
6 0.990 0.049 41 0.999 -0.024
7 0.981 0.121 42 0.999 -0.026
8 0.979 0.138 43 0.999 -0.029
9 0.977 0.147 44 0.998 -0.030

10 0.972 0.232 45 0.998 -0.031
11 0.971 0.251 46 0.998 -0.031
12 0.968 0.304 47 1.000 -0.042
13 0.965 0.350 48 0.999 -0.053
14 0.962 0.397 49 0.995 -0.192
15 0.960 0.400 50 0.994 -0.211
16 0.959 0.451 51 0.979 0.139
17 0.958 0.466 52 0.979 0.139
18 0.958 0.466 53 0.975 0.169
19 0.958 0.473 54 0.971 0.195
20 0.957 0.480 55 0.967 0.230
21 0.957 0.489 56 0.956 0.410
22 0.957 0.489 57 0.945 0.590
23 0.957 0.491 58 0.934 0.770
24 0.957 0.493 59 0.925 0.945
25 0.956 0.495 60 0.918 0.982
26 0.956 0.497 61 0.912 1.119
27 0.956 0.498 62 0.912 1.122
28 1.000 -0.003 63 0.911 1.132
29 1.000 -0.005 64 0.910 1.143
30 1.000 -0.003 65 0.909 1.148
31 1.000 -0.002 66 0.971 0.252
32 0.999 0.001 67 0.971 0.252
33 0.999 0.003 68 0.968 0.310
34 0.999 0.009 69 0.968 0.310
35 0.999 0.010

Table 3. Optimal location of µPMUs for IEEE 33-bus test system.

Number of µPMUs DSEE Error Installation Location
1 0.559 1
2 0.403 1,3
3 0.310 1,3,33
4 0.254 1,3,14,19
5 0.183 1,3,4,13,19
6 0.127 1,2,3,19,21,23
7 0.084 1,2,3,5,17,25,27
8 0.079 1,5,11,15,16,17,19,20
9 0.059 1,2,3,13,16,17,19,20,25

10 0.014 1,2,4,7,9,17,20,24,27,29

3.1. Evaluating the effect of the number of meters on DSSE
accuracy
In this scenario, the number of µPMUs is increased (according

to Eq. (16)) step by step and the proposed algorithm determines
optimal location of µPMUs to minimize the state estimation error.
In fact, this algorithm can suggest optimal locations of the meters



A.F. Shahvarooghi et al.: Enhancing State Estimation Accuracy in Distribution Networks: An Optimized Algorithm for Strategic Meter Placement 6

Table 4. Optimal location of µPMUs for IEEE 69-bus test system.

Number of µPMUs DSEE error Installation location
1 0.679 1
2 0.580 1,45
3 0.451 1,28,43
4 0.365 1,3,28,36
5 0.170 1,3,7,35,51
6 0.149 1,3,28,36,39,51
7 0.119 1,3,8,28,36,39,51
8 0.114 1,3,4,28,35,36,51,66
9 0.109 1,3,4,28,35,36,39,51,66

10 0.079 1,3,4,8,28,35,36,40,48,51
15 0.059 1,3,4,11,12,28,35,36,39,40,46,48,50,51,69
20 0.025 1,3,4,11,12,14,16,17,18,20,21,26,27,28,35,36,39,46,51,67
25 0.016 1,3,4,9,11,12,13,18,21,22,26,27,28,33,35,36,39,43,46,48,50,55,62,65,67
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According to the previous studies and based on the experimental results, usually the required number of meters to achieve the 

desired DSSE result is equal to one-third of the number of network buses [20]. For example, the required number of meters is 

about 11 for the 33-bus test network. In addition, due to the limited budget and network operator’s unwillingness to use several 

meters due to their high costs, the maximum value of one-third seems reasonable. However, it is obvious that as the number 

of meters increases, the state estimation error will be decreased.  

For the IEEE 33-bus test network, the number of µPMUs has been changed from 1 to 10. The simulation results including 

optimal location along with the state estimation error are summarized in Table 3. Moreover, the objective function values for 

different numbers of meters are illustrated in Fig. 3. As observed, the state estimation error does not change significantly after 

the placement of 10 µPMUs. So, it is not economically logical to increase the number of meters beyond 10.   As expected, with 

the increase in the number of µPMUs, the state estimation error has also decreased.  
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optimum number of µPMUs for the IEEE 69-bus test system has been investigated in the following. According to Fig. 4 and 

the obtained state estimation error in different cases, the DSSE error value is almost constant when the number of installed 

meters exceeds 25. For this reason, it is assumed that the number of installed µPMUs for the 69-bus test system could be 1 to 

10, 15, 20 and 25. According to the above explanation, the optimal location of measuring devices as well as the state estimation 

error for each case have been reported in Table 4. Again, as the number of meters increases, the state estimation error decreases. 

It is noteworthy that for both test systems, as the number of available meters increases, their optimal location is determined by 

the algorithm in such a way that more measurements are dedicated to sub-branches to increase the accuracy of DSSE. 
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3.2. Evaluating the accuracy of state estimation results 

 

In this section, the accuracy of estimated voltage magnitude and phase angles by the proposed algorithm are evaluated on both 

test systems. Figure 5 shows the voltage magnitude of the network buses in three different cases including 1, 5 and 10 µPMUs 

installed at optimal locations in IEEE 33-bus test system. In this figure, the AC power flow results are also displayed as real 

measurements. As it can be seen, by increasing the number of µPMUs, the estimated values get closer to the actual 

measurements. In fact, by increasing µPMU numbers and installing them in the optimum locations, the state estimation result 

gets closer to the real measurements. Figure 6 also represents the estimated voltage phase angles of the network buses in the 

aforementioned situation and compares them with real measurements. The obtained results for the estimated voltage phase 

angles of the network buses reveal that accuracy of the DSSE algorithm is increased by installing more µPMUs. 

An investigation on the impacts of changing the number of µPMUs with similar assumptions has also been performed for the 

IEEE 69-bus test system. According to Fig. 7, the accuracy of the state estimation algorithm will be improved and its outputs 

get closer to the actual measurements as a result of increasing the number of µPMUs. Figure 8 also indicates the voltage phase 

angle values in the case of different numbers of µPMUs in the 69-bus test system. It can be concluded that the optimal number 

of µPMUs as well as their installation in the right places has a direct effect on accuracy of the state estimation algorithm. 

Comparing Figs. 7 and 8, it can be seen that in general, the accuracy of the voltage magnitude estimation is more favorable 

than the voltage phase angle estimation. The main reason is that in distribution networks, due to the short length power lines, 

the voltage phase angles of adjacent buses are very close to each other, making it difficult to estimate these phase angles 

accurately from the limited available measurements. However, the overall performance of the state estimation algorithm is 

very acceptable by increasing the number of measurements to about a quarter of the number of network buses. 
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the error reduction is much more noticeable than the WLS method for the proposed algorithm. In addition, with increasing the 

number of µPMUs, the error percentage has decreased more rapidly. Therefore, it can be concluded that the performance of 

the proposed method is better in comparison with the conventional WLS method. 
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To better understand the effectiveness of the proposed method compared to the WLS method, the state estimation results for 

IEEE 33-bus test system are presented by placing four µPMUs in the locations specified by the algorithms. The simulation 

results for the voltage magnitude and phase angles of the network buses are shown in Figs. 9 and 10. The simulation results 

prove that the performance of the proposed method in estimating the network condition is better than the conventional WLS 

method with the same number of µPMUs. It is noteworthy that this issue is also improved by increasing the number of meters. 

The presented simulation results in this subsection provers that, especially in the case with low number of measurements, the 

conventional WLS-based DSSE algorithm fails to provide accurate state estimation in distribution networks. This problem has 

been reported in many studies in literature. The ACOPF-based DSSE algorithm proposed in this paper can overcome this 

challenge properly by providing better performance in low observable networks. 
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due to their high costs, the maximum value of one-third seems
reasonable. However, it is obvious that as the number of meters
increases, the state estimation error will be decreased.

For the IEEE 33-bus test network, the number of µPMUs has
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Table 5. Comparison of DSSE error between the proposed method and
conventional WLS (33-bus test system).

Method/Number of µPMUs 1 2 3 4 5
Proposed method (%) 1 0.72 0.55 0.45 0.32

WLS (%) 1 0.96 0.83 0.62 0.54
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Fig. 10. Estimated voltage phase angle for two methods (33-bus test
system).

been changed from 1 to 10. The simulation results including
optimal location along with the state estimation error are
summarized in Table 3. Moreover, the objective function values for
different numbers of meters are illustrated in Fig. 3. As observed,
the state estimation error does not change significantly after the
placement of 10 µPMUs. So, it is not economically logical to
increase the number of meters beyond 10. As expected, with
the increase in the number of µPMUs, the state estimation error
has also decreased. Considering the previous assumptions as well
as changing the number of meters that can be installed in the
network, the optimum number of µPMUs for the IEEE 69-bus test
system has been investigated in the following. According to Fig.
4 and the obtained state estimation error in different cases, the
DSSE error value is almost constant when the number of installed
meters exceeds 25. For this reason, it is assumed that the number
of installed µPMUs for the 69-bus test system could be 1 to 10,
15, 20 and 25. According to the above explanation, the optimal
location of measuring devices as well as the state estimation error
for each case have been reported in Table 4. Again, as the number
of meters increases, the state estimation error decreases.

It is noteworthy that for both test systems, as the number of
available meters increases, their optimal location is determined by
the algorithm in such a way that more measurements are dedicated
to sub-branches to increase the accuracy of DSSE.

3.2. Evaluating the accuracy of state estimation results
In this section, the accuracy of estimated voltage magnitude and

phase angles by the proposed algorithm are evaluated on both test
systems. Fig. 5 shows the voltage magnitude of the network buses
in three different cases including 1, 5 and 10 µPMUs installed at

optimal locations in IEEE 33-bus test system. In this figure, the
AC power flow results are also displayed as real measurements. As
it can be seen, by increasing the number of µPMUs, the estimated
values get closer to the actual measurements. In fact, by increasing
µPMU numbers and installing them in the optimum locations, the
state estimation result gets closer to the real measurements. Fig. 6
also represents the estimated voltage phase angles of the network
buses in the aforementioned situation and compares them with
real measurements. The obtained results for the estimated voltage
phase angles of the network buses reveal that accuracy of the
DSSE algorithm is increased by installing more µPMUs.

An investigation on the impacts of changing the number of
µPMUs with similar assumptions has also been performed for the
IEEE 69-bus test system. According to Fig. 7, the accuracy of
the state estimation algorithm will be improved and its outputs
get closer to the actual measurements as a result of increasing
the number of µPMUs. Fig. 8 also indicates the voltage phase
angle values in the case of different numbers of µPMUs in the
69-bus test system. It can be concluded that the optimal number
of µPMUs as well as their installation in the right places has a
direct effect on accuracy of the state estimation algorithm.

Comparing Figs. 7 and 8, it can be seen that in general, the
accuracy of the voltage magnitude estimation is more favorable
than the voltage phase angle estimation. The main reason is that
in distribution networks, due to the short length power lines, the
voltage phase angles of adjacent buses are very close to each
other, making it difficult to estimate these phase angles accurately
from the limited available measurements. However, the overall
performance of the state estimation algorithm is very acceptable
by increasing the number of measurements to about a quarter of
the number of network buses.

3.3. Result comparison with WLS method

In this section, the effectiveness of the proposed method is
evaluated in comparison with the conventional WLS method that
has been used in many previous works. For this purpose, the
simulations are performed only on the IEEE 33-bus test system
and the state estimation results are compared in both methods.

Table 5 compares the state estimation error of the proposed
method with the WLS method in the cases with 1 to 5 µPMUs.
As it can be seen, the percentage of DSSE error has decreased
with increasing the number of µPMUs in both methods. However,
the error reduction is much more noticeable than the WLS
method for the proposed algorithm. In addition, with increasing
the number of µPMUs, the error percentage has decreased more
rapidly. Therefore, it can be concluded that the performance of
the proposed method is better in comparison with the conventional
WLS method.

To better understand the effectiveness of the proposed method
compared to the WLS method, the state estimation results for
IEEE 33-bus test system are presented by placing four µPMUs in
the locations specified by the algorithms. The simulation results
for the voltage magnitude and phase angles of the network buses
are shown in Figs. 9 and 10. The simulation results prove that
the performance of the proposed method in estimating the network
condition is better than the conventional WLS method with the
same number of µPMUs. It is noteworthy that this issue is also
improved by increasing the number of meters.

The presented simulation results in this subsection provers that,
especially in the case with low number of measurements, the
conventional WLS-based DSSE algorithm fails to provide accurate
state estimation in distribution networks. This problem has been
reported in many studies in literature. The ACOPF-based DSSE
algorithm proposed in this paper can overcome this challenge
properly by providing better performance in low observable
networks.
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4. CONCLUSION
The optimal meter placement problem in distribution networks

to improve the accuracy of the state estimation process is
of great importance for the safe and economic operation of
distribution networks. This paper presented an optimization-based
model for µPMU placement in a distribution network to improve
the accuracy of the DSSE algorithm. The effectiveness of the
proposed algorithm was evaluated on two test networks through
simulation in GAMS software. Moreover, the obtained results were
compared with the conventional WLS method, and it is revealed
that the accuracy of the proposed model is remarkably higher than
the WLS method with the same µPMU numbers. The proposed
algorithm can provide a reliable solution for the allocation of
measuring devices in distribution networks so that the best possible
locations are determined according to the network operator’s
preferences. In order to consider renewable power resources
as distributed generation in an active distribution network, the
proposed algorithm will be modified to model the uncertainty of
these power generation resources in future studies. To this end, the
solution procedure should be upgraded for efficient performance
in the presence of uncertain scenarios. Moreover, combining other
terms into objective function (multi-objective) can be the subject
of complementary studies to improve the overall operation of
distribution networks by enhanced monitoring.
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