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Abstract— Improving fuel efficiency and enhancing the dynamic performance of hybrid electric vehicles are critical challenges in modern
powertrain control design. This paper proposes a novel optimized fuzzy logic-based energy management strategy specifically developed for
a Class B HEV. The main objective is to reduce fuel consumption and emissions while ensuring effective power distribution among key
drivetrain components. The study introduces a two-stage methodology: first, an optimal sizing of the powertrain components—internal
combustion engine, electric motor, and battery—is achieved using a genetic algorithm, ensuring the most efficient configuration for vehicle
performance. Second, three different energy management strategies are implemented and compared: a conventional rule-based control,
a standard fuzzy logic controller, and the proposed optimized fuzzy controller. Simulation results demonstrate that the optimized fuzzy
strategy significantly improves fuel economy and emission performance compared to the other methods. Specifically, it achieves up to 20%
better fuel efficiency than the rule-based controller while maintaining smooth power transitions. The study also highlights the impact of
component sizing on control effectiveness, reinforcing the advantage of co-optimization of both sizing and control logic. The findings
suggest that integrating intelligent optimization techniques such as GA with fuzzy control logic provides a superior approach to energy
management in HEVs. This makes the proposed method a promising solution for next-generation hybrid vehicle applications aiming for
both environmental sustainability and high performance.

Keywords—Hybrid electric vehicle, energy management strategy, fuzzy logic controller, genetic algorithm, powertrain optimization, fuel
efficiency, emissions reduction.

1. INTRODUCTION

The rapid growth of global transportation demands has
intensified concerns regarding fuel consumption, environmental
pollution, and energy sustainability. As fossil fuel reserves deplete
and greenhouse gas emissions continue to rise, the transportation
sector faces mounting pressure to adopt cleaner and more efficient
technologies. Hybrid Electric Vehicles (HEVs), which integrate
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traditional internal combustion engines with electric propulsion
systems, have emerged as a promising transitional solution toward
fully electrified transportation. However, designing and optimizing
HEVs remain complex challenges due to the presence of multiple
power sources, the need for efficient energy management strategies,
and the variability of real-world driving conditions. This study
contributes to this evolving field by exploring advanced energy
management techniques aimed at enhancing HEV performance
while reducing environmental impact.

1.1. Research motivation
Demand and supply of energy, global warming, and sustainability

have posed tremendous challenges to the world [1]. The harmful
emissions from conventional vehicles, which operate using
fossil fuels and internal combustion engines (ICEs), are major
contributors to these global issues [2]. To address this, the
transportation sector must transition to cleaner energy sources.
Although Electric Vehicles (EVs) offer a promising alternative,

53

https://orcid.org/0000-0002-6230-5278
https://orcid.org/0000-0003-4799-8827
https://orcid.org/0009-0004-3760-4489
https://orcid.org/0009-0008-9063-0124
https://orcid.org/0000-0002-9000-216X
https://orcid.org/0000-0002-0802-8599
https://orcid.org/0009-0002-0329-2582
https://doi.org/10.22098/JOAPE.2024.17112.2334
https://creativecommons.org/licenses/by-nc/4.0/


S. Khalilov et al.: Designing an Energy Management Control System in Hybrid Vehicles Using an Optimized Fuzzy Method 54

their limited driving range and lengthy charging times restrict their
practical implementation [3].

Hybrid Electric Vehicles (HEVs), which combine ICEs with
electric power sources, offer a balanced solution by reducing fuel
consumption while maintaining conventional vehicle functionality
[3]. These vehicles typically use the ICE as the main power
source and a battery as a secondary source [4]. Among available
technologies, proton exchange membrane batteries have gained
attention due to their low operating temperatures, compact size,
and high power density [5]. However, their slow dynamic response
requires support from secondary energy storage systems. Advanced
fuzzy-based control frameworks, such as parallel fuzzy PID
mechanisms, have shown strong potential in managing complex,
nonlinear systems like microgrids by delivering adaptive and
robust dynamic responses through optimization techniques [6].
These findings further support the suitability of intelligent fuzzy
controllers in HEVs, where similar control challenges arise due
to the multi-source energy architecture and dynamic operating
conditions. Lithium-ion batteries, despite being costly, are widely
adopted for their superior energy and power density, making them
highly suitable for automotive applications [7].

1.2. Literature review
A recent review on energy management in HEVs and HESS EVs

underscores the effectiveness of Fuzzy Logic Controllers (FLCs)
due to their simplicity, performance, and real-time capability
[8]. It also highlights various FLC types and their applications,
supporting the need for continued advancement in optimized
FLC-based strategies. Another recent review emphasizes the
broad applicability of Fuzzy Logic Controllers (FLCs) across
various subsystems in electric, hybrid, and fuel cell vehicles,
highlighting their adaptability, robustness, and effectiveness in
scenarios where mathematical modeling is challenging. The study
also notes the importance of optimization algorithms for fine-
tuning FLC parameters for maximum performance [9]. Although
primarily focused on electromagnetic compatibility (EMC), recent
research into surrogate models has demonstrated the critical
role of sampling strategies in improving simulation accuracy for
uncertainty analysis and optimization tasks. These insights are
also relevant to HEV control design, where surrogate modeling
can support efficient parameter tuning and system optimization
under complex, uncertain driving conditions [10]. Recent advances
in energy management strategies for hydrogen fuel cell electric
vehicles (HFCEVs) highlight the limitations of rule-based controls
in handling complex, multi-objective systems—challenges also
relevant to HEVs. The study emphasizes the potential of
artificial intelligence (AI)-based algorithms, including hybrid and
reinforcement learning methods, to enhance performance and
cost-effectiveness, offering insights applicable to HEV control
system optimization [11]. The identified limitations of rule-based
systems in HFCEVs parallel challenges in HEVs, particularly
in managing complex, multi-objective control tasks. AI-based
methods, especially reinforcement learning and hybrid algorithms,
are presented as promising alternatives for enhancing energy
management performance—an approach that aligns with ongoing
efforts to optimize HEV control strategies [12].

Fuzzy Logic Controllers (FLCs) have emerged as suitable
solutions for HEV energy management. Optimized FLCs, in
particular, can provide rapid responses without depending on
historical data, although their design complexity requires careful
analysis [5]. Control strategies for HEVs generally fall into two
categories: predictive and real-time. Predictive methods involve
forecasting future driving conditions using dynamic programming,
while real-time methods rely on empirical rule-based algorithms,
particularly fuzzy logic [13]. Despite their practicality, rule-based
fuzzy controllers often face challenges such as sensitivity to
parameter tuning and limited adaptability [14, 15]. Emerging
strategies, such as equivalent fuel consumption minimization,

combine predictive techniques with real-time adaptability to
overcome these limitations [4, 17]. This paper builds upon such
predictive control strategies, using a genetic algorithm (GA) to
optimize fuzzy parameters in a hierarchical control structure.
In terms of data-driven approaches, research has extensively
examined driving behavior and traffic conditions to inform HEV
design. Studies in [1, 2] have developed regional driving cycles
based on real-world data, a practice also adopted in Iran where
satellite tracking systems have enabled the construction of local
driving cycles through statistical analysis. Research in [13, 18, 19]
has applied genetic algorithms to optimize power management
strategies in HEVs and plug-in HEVs, offering valuable insight into
performance comparisons between different architectures. A related
study applies Teaching–Learning-Based Optimization to tune fuzzy
controllers in hybrid energy storage systems, improving energy
efficiency and system dynamics [20]. While [21] systematically
reviews the application of artificial intelligence algorithms in hybrid
electric powertrain control, focusing on broad architectures and
future prospects, our work specifically implements and evaluates a
GA-optimized fuzzy controller within a real-time hierarchical EMS,
with experimental comparisons under realistic driving conditions..
Although similar in integrating rule-based, fuzzy, and genetic
algorithms, their focus is primarily on power-split configurations.
In contrast, our study targets parallel HEVs and uniquely compares
rule-based, fuzzy, and genetic-fuzzy strategies under real driving
conditions using a unified evaluation framework. A particle swarm
optimization (PSO)-based fuzzy logic controller was developed
to manage a lithium-ion battery–ultracapacitor hybrid energy
storage system (HESS) in EVs, focusing on minimizing battery
stress and thermal load to improve lifespan [22]. While their
approach targets battery health under temperature constraints,
our work emphasizes broader system-level efficiency in HEVs
through a comparative evaluation of multiple control strategies
enhanced by genetic optimization. In summary, existing literature
demonstrates significant progress in the application of intelligent
energy management strategies for EVs and HEVs, particularly
through fuzzy logic and optimization techniques. However, most
prior studies focus on either specific vehicle architectures or
isolated control strategies. This highlights a gap in comprehensive,
comparative evaluations under realistic driving conditions. Our
work addresses this by integrating rule-based, fuzzy, and genetic-
fuzzy methods into a unified framework tailored for parallel
HEVs, enabling a holistic assessment of control performance
and energy efficiency. Table 1 provides a comparative summary
of recent studies related to energy management strategies in
hybrid and electric vehicles. It highlights the scope, methodologies,
optimization approaches, and contributions of each work in relation
to our proposed method. This structured comparison clarifies the
novelty of our study in employing genetic algorithm optimization
within a fuzzy logic control framework, validated under real-world
driving conditions for a parallel HEV architecture.

1.3. Gap challenge

Despite the progress in HEV control systems, existing fuzzy
controllers often lack the flexibility needed for diverse, real-
world driving conditions due to their reliance on static rule
sets. Optimized fuzzy systems offer improvements but face
implementation challenges in real-time environments. Additionally,
there is a lack of unified frameworks that combine optimal
component sizing with adaptive control strategies under realistic
operating scenarios.

Most prior works focus either on control algorithm development
or component optimization in isolation. Few have conducted
comprehensive performance evaluations comparing rule-based,
fuzzy, and genetic-fuzzy controllers using the same testbed.
Addressing these gaps is essential to develop an integrated,
efficient, and real-time-capable HEV control strategy.



Journal of Operation and Automation in Power Engineering, vol. 12, no. Special Issue, Dec. 2024 55

Table 1. Comparison of recent studies on energy management strategies for HEVs and EVs.

Ref. Year Method / Strategy Vehicle Type / Architecture Optimization Used Real Driving Conditions Comparative Analysis Contribution Focus
[8] 2024 FLC Review HEV, HESS No No No Review of FLC in hybrid systems
[9] 2024 FLC Review HEV, EV, FCV No No No Broad FLC applicability and tuning discussion

[10] 2024 Surrogate modeling for EMC EV Yes (sampling strategy) No No Simulation enhancement for EMC-related models
[11] 2024 AI/Hybrid EMS for HFCEV HFCEV AI-based (Hybrid, RL) No No AI for EMS in complex systems
[12] 2024 AI review for HEV EMS HEV AI-based (Reinforcement learning) No No Intelligent techniques review
[13] 2024 ANFIS-based Predictive EMS Heavy HEV Adaptive FIS, Prediction No No Predictive EMS with adaptive horizon
[14] 2024 Wavelet + Real-time EMS HESS EV Wavelet Transform No No Time-frequency-based real-time control
[15] 2022 HESS EMS Review EV No No No Review of Li-ion + SC EMS architectures
[16] 2024 FLC Review for HEV/HESS HEV, HESS No No No Robustness and real-time capability of FLC
[17] 2024 GA-Optimized FLC for FCHEV FCHEV Genetic Algorithm No No GA-based tuning for FLC
[18] 2020 Multi-objective GA-FLC EV, HESS Genetic Algorithm No No Dual energy source EMS with GA optimization
[19] 2003 Policy Review HEV programs No No No U.S. DoE + PNGV policy perspective
[20] 2024 TLBO-Optimized FLC for HESS EV Teaching–Learning-Based Optimization No No TLBO algorithm for fuzzy EMS
[21] 2025 AI-Based Control Strategies (Review) Hybrid Electric Vehicles (HEVs) Various AI Algorithms (e.g., RL, NN, GA, etc.) Yes Yes Comprehensive review of AI control methods for HEVs
[22] 2024 PSO-Optimized FLC for HESS EV Particle Swarm Optimization No No Battery lifespan and thermal management

This Work – Rule-Based, FLC, GA-Optimized FLC Parallel HEV Genetic Algorithm Yes Yes Unified comparison, real driving cycles, parallel architecture

1.4. Novelty and main contributions
This study introduces a novel and integrated energy management

framework for parallel hybrid electric vehicles (HEVs), which
uniquely combines intelligent control with powertrain component
optimization. The primary contributions of this research are as
follows:

1) Hybrid fuzzy-GA control strategy: A key innovation is
the development of an optimized fuzzy energy management
system, in which the fuzzy controller’s parameters—typically
tuned through expert knowledge—are automatically fine-
tuned using a genetic algorithm (GA). This hybrid design
enhances the system’s adaptability and decision-making
efficiency under varying driving conditions.

2) Integrated component sizing and control: Unlike most prior
studies that treat powertrain sizing and energy management
as separate problems, this work proposes a co-optimization
approach in which major powertrain components are sized
concurrently with the tuning of the control strategy. This
ensures better synergy between hardware configuration and
software control.

3) Comparative evaluation of control strategies: A detailed
comparative analysis is conducted across three strategies:
conventional rule-based, basic fuzzy, and the proposed GA-
optimized fuzzy controller. The performance is assessed in
terms of fuel consumption, emission levels, and dynamic
response, using realistic driving cycles and validated against
Euro 6 emission standards.

4) Real-world applicability: The proposed strategy is applied
to a Class B HEV model and tested under standard driving
cycles, demonstrating a significant improvement in fuel
economy (up to 20% compared to rule-based) while ensuring
compliance with strict emissions regulations.

Despite its advantages, the proposed method involves higher
computational cost due to the optimization layer, which may limit
its real-time applicability without sufficient processing resources.
Moreover, the system’s performance was validated on a simulation
platform; future work will be needed to confirm these results
in hardware-in-the-loop (HIL) or full vehicle implementations.
Overall, this research fills a critical gap in the literature by
unifying optimal sizing and intelligent control into a practical and
high-performance energy management strategy for HEVs.

1.5. Paper organization
The remainder of this paper is structured as follows: Section 2

presents the methodology, including the genetic algorithm-based
component sizing, fuzzy control system design, and development
of the hybrid genetic-fuzzy strategy. Section 3 provides the results
and discussion, encompassing simulation outcomes, performance
comparisons, and sensitivity analyses of various control approaches.
Finally, Section 4 concludes the study by summarizing key findings,
discussing current limitations, and suggesting directions for future
research.

2. HEV MODEL
In order to enhance the performance and robustness of the fuzzy

logic controller (FLC) in managing the complex energy demands
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Fig. 1. Optimized FLC in HEV dynamics.

of hybrid electric vehicles (HEVs), optimization techniques are
essential. Traditional fuzzy controllers, while effective, may not
always deliver optimal performance across a range of driving
conditions, fuel consumption, or emissions. This is particularly
true when considering dynamic and highly variable factors such
as battery state-of-charge (SoC), engine load, and vehicle speed.
Genetic algorithms (GA) provide a powerful, adaptive optimization
approach capable of tuning the fuzzy controller’s membership
functions and rule base, thereby refining its performance in
real-world scenarios. In the following section, we delve into the
specific optimization framework employed in this study, detailing
the GA-based method used to optimize the fuzzy controller and its
components.

2.1. Sizing
HEV powertrains are a lot more intricate in comparison with

conventional vehicles and it is mainly due to the fact that their
powertrains are composed of a variety of constituents such as
electric motors, state-of-the-art controllers, electrical converters,
and energy storage systems besides the typical components like
ICEs, transmissions, and so forth. The complexity of HEV
powertrains has made them as one of the hottest topics in the
area of HEV development. Needless to say, operational efficiency
and the price of a HEV powertrain is heavily influenced by the
selected configuration and the powertrain parameters need to be
adjusted in the right way so that they can meet the preferred
performance. In this study, a parametric design approach is utilized
to estimate the size of prime components which are electric
motor, ICE, and battery. The sole employment of parametric
design definitely will not result in an optimum estimation of the
components size and it needs further investigation by means of
optimization algorithms. The applicable optimization algorithms
for the component sizing of the HEVs can be grouped into
three broad categories of gradient-based versus derivative free,
local versus global, and deterministic versus stochastic. In the
process of a HEV development, the vehicle performance and
fuel economy are usually perceived as the main objectives which



S. Khalilov et al.: Designing an Energy Management Control System in Hybrid Vehicles Using an Optimized Fuzzy Method 56

normally involve a lot of local minima and can be noisy and
discontinuous. Gradient-based approaches trace the local minima
by the utilization of derivative data and the crucial complication
of local methods is also that they are not capable of delving into
the whole search domain and as a result they cannot find the
global minima. On the contrary, Derivative-free methods such GA,
divided rectangles (DIRECT) [18], and so on can be viewed as
efficient global algorithms since they investigate the entire search
space to discover the global minima. It is worthy of mention
that the major disparity between DIRECT and other mentioned
methods like GA is that DIRECT is deterministic but GA is
stochastic which makes them eminently suitable for dealing with
the existed noise and discontinuity of the objective function. This
system consists of a series of stages, in each of which all parts
are working simultaneously in parallel. This system fails when all
components of a given stage fail. The fuzzy mathematical model
of this structure is as follows [23]:

max R̃s(t, n1, n2, . . . , nN ) =
N∏
i=1

{
1−

(
1− R̃i

)ni
}
=

N∏
i=1

{
1−

(
1− e−λ̃it

)ni
} (1)

C̃s(t, n1, n2, . . . , nN ) =

N∑
i=1

C̃ini ≤ C̃ (2)

W̃s(t, n1, n2, . . . , nN ) =

N∑
i=1

W̃ini ≤ W̃ (3)

ni ≥ 0, integer for i = 1, 2, . . . , N (4)

In this work, the parametric sizing procedure is conducted for
finding the appropriate size of components by means of GA and
the results are further compared profoundly in the succeeding
sections. The procedure of the GA in control strategy has been
illustrated in Fig. 2.

 

Figure 2. GA flowchart 
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In current research, Partnership for the Next Generation of
Vehicles constraints, discussed in [19], are incorporated into the
objective function formulation as penalties so as not to sacrifice
the vehicle performance while trying to reach higher fuel economy.
In order to integrate the above optimization algorithms into
the measurement process formulation, an objective function is

required. The objective function in this study aims to optimize the
energy management of a hybrid electric vehicle (HEV) system.
It incorporates fuel consumption, emissions, and penalties for
violating system constraints, ensuring that the HEV performs
optimally while respecting the vehicle’s performance constraints.

A) Detailed formulation of the objective function [24]

F (x) = Fc + Fe −
Ncon∑
i=1

αiCi(x) (5)

Where:
F(x) is the total objective function.
FC is the fuel consumption, typically measured in liters per 100

km (L/100km) or equivalent fuel economy.
Fe is the emission function, which includes the emissions of

nitrogen oxides (NOx), carbon monoxide (CO), and hydrocarbons
(HC).
αi is the penalty factor for the i-th constraint .
Ci(x) is the penalty function corresponding to the i-th constraint.
Ncon is the total number of constraints imposed on the system.
B) Detailed descriptions of parameters

1) Fuel consumption Fc :
Fuel consumption is a critical performance metric and is

typically modeled as a function of the energy split between the
internal combustion engine (ICE) and the electric motor (EM)
[25]:

Fc =

∫ tf

t0

PICE(t)

Efuel
dt (6)

Where:
PICE(t) is the power delivered by the internal combustion

engine at time t.
Efuel is the energy content of the fuel, typically given in Joules

per liter (J/L).
2) Emissions Fe :
Emissions Fe are typically computed as a function of engine

power, driving conditions, and fuel consumption. A simple model
can be [26]:

Fe =∑
i=NOx,CO,HC

∫ tf
t0
Eemission(PICE(t), speed(t), load(t))dt

(7)

Where:
Eemission is the emission factor for each type of pollutant

(NOx, CO, HC), which can be modeled as a function of engine
power PICE(t), vehicle speed speed (t), and load load (t).

3) Penalty function Ci(x) :
Each constraint Ci(x) represents a limitation on the vehicle’s

operation. Common constraints include limits on the battery’s
state of charge (SOC), power output of the engine, and vehicle
acceleration [27]. For example:

C) SOC constraint

CSOC(x) = |SOC(t)− SOCt arg et| (8)

Where SOC(t) is the state of charge at time t and SOCtarget

is the target SOC value for optimal battery operation.
D) Power constraints [28]

Cpower(x) = |Ptotal(t)− Pmax| (9)

Where Ptotal(t) is the total power demand at time t and Pmax

is the maximum allowable power output of the system.
The penalty factor αi determines how heavily each constraint

is penalized if violated. These factors are chosen based on the
relative importance of each constraint in the overall optimization.



Journal of Operation and Automation in Power Engineering, vol. 12, no. Special Issue, Dec. 2024 57

2.2. Proposed energy management control strategy
The proposed energy management strategy for the hybrid

vehicle aims to optimally distribute the required torque between
the internal combustion engine (ICE) and the electric motor
(EM), ensuring efficiency while satisfying driving conditions and
minimizing fuel consumption and emissions. The control system
uses a fuzzy logic approach, where two primary inputs are used:
the driver’s requested torque and the battery’s state of charge
(SOC).

The system follows a Mamdani-type fuzzy inference model,
in which the inputs are fuzzified and processed through a
rule-based decision-making system. The output, ICE torque, is
then defuzzified to provide a crisp value, which dictates how much
torque should be provided by the ICE. The remaining required
torque is supplied by the electric motor.

The fuzzy controller is structured as follows:
1. Inputs:
o Driver’s Requested Torque (Treq): The torque demand from

the driver is normalized between 0 and 1.
o Battery State of Charge (SOC): The battery’s charge level is

normalized, with 0 indicating a low charge and 1 representing a
full charge.

2. Fuzzification:
o Both inputs are divided into fuzzy sets: Low, Medium, and

High. This process converts the crisp inputs into fuzzy values that
reflect their degree of membership in each set.

3. Inference engine:
o A rule base, consisting of expert-designed fuzzy rules, is

used to process the fuzzified inputs and determine the ICE torque
required. The fuzzy inference system evaluates the inputs to
generate a fuzzy output.

4. Defuzzification:
o The fuzzy output is defuzzified using the center of gravity

method, providing a crisp value for the ICE torque.
5. Output:
o The defuzzified output represents the ICE torque, and the

remaining torque is supplied by the electric motor.
The general equation representing the fuzzy controller is [29]:

TICE = ffuzzy(SOC, Treq) (10)

Where:
• TICE is the output torque from the internal combustion

engine,
• SOC is the battery state of charge,
• Treq is the driver’s requested torque.
The fuzzy controller is designed using a Mamdani-type inference

system to manage the energy distribution between the internal
combustion engine (ICE) and electric motor (EM). In the design
of the fuzzy-based energy management control system for hybrid
electric vehicles (HEVs), the selection of inputs such as the load
demand (driver’s requested torque) and the battery state of charge
(SOC) is essential for optimizing system performance. These
inputs were chosen based on their direct impact on the operation
and energy distribution within the HEV.

1. Load demand: The load demand, represented by the
driver’s requested torque, is a critical input as it determines
the amount of power needed from the system at any given
moment. The energy management system must respond to these
demands by appropriately distributing the workload between the
internal combustion engine (ICE) and the electric motor (EM).
Incorporating this input allows the controller to manage energy
flow efficiently and ensure that the vehicle meets the required
performance without unnecessary fuel consumption or emissions.

2. Battery state of charge: The SOC provides essential
information about the remaining energy in the battery and
is crucial for determining when the battery should be charged
or discharged. By including this input, the controller can avoid
overcharging or deep discharging, which could lead to reduced

battery life. The SOC helps balance the power split between
the ICE and the electric motor, ensuring that energy from the
battery is used optimally and that the vehicle maintains the desired
performance levels without depleting the battery too quickly.

 

Figure 3. Structure of the Fuzzy Controller for Energy Management in HEVs 
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Fig. 3. Structure of the fuzzy controller for energy management in HEVs.

As shown in Fig. 3, the controller receives two normalized
inputs: the driver’s requested torque and the battery’s state of charge
(SOC). These inputs pass through fuzzification modules where
they are mapped to linguistic variables. Based on a predefined rule
base (Table 1), the inference mechanism determines the appropriate
output torque command for the ICE. The defuzzification module
then converts the fuzzy output into a crisp value that defines the
ICE torque, while the remaining torque required is fulfilled by the
electric motor. The controller is robust, adaptable, and capable of
handling nonlinearities in real-time operating conditions.

Each of the inputs and outputs has three membership functions
and the controller has a total of nine fuzzy rules. To manage the
energy flow in the HEV efficiently, a fuzzy rule-based decision
table is developed using expert knowledge and trial-and-error
tuning. The fuzzy system utilizes two inputs: the normalized driver
torque demand and the battery SOC, each divided into three fuzzy
sets: Low, Medium, and High. The output of the fuzzy controller
is the normalized torque to be provided by the internal combustion
engine (ICE), also categorized into Zero, Low, Medium, and High
based on the operating condition. The full rule base is presented
in Table 2.

Table 2. Fuzzy rules.

Battery SOC Driver torque request Engine torque output
Low Low Medium
Low Medium High
Low High High

Medium Low Low
Medium Medium Medium
Medium High High

High Low Low
High Medium Low
High High Medium

To manage the energy flow in the HEV efficiently, a fuzzy
rule-based decision table is developed using expert knowledge
and trial-and-error tuning. The fuzzy system utilizes two inputs:
the normalized driver torque demand and the battery SOC, each
divided into three fuzzy sets: Low, Medium, and High. The output
of the fuzzy controller is the normalized torque to be provided by
the internal combustion engine (ICE), also categorized into Zero,
Low, Medium, and High based on the operating condition. The
full rule base is presented in Table 2.

The requested torque is normalized to a number between 0 and
1, where 0 represents zero torque, 0.5 represents the optimal torque
calculated for the combustion engine based on the engine speed
at the current moment, and 1 is the maximum torque that can be
provided by the combustion engine at this moment. To normalize
the requested torque at any moment, this torque is compared with
the optimal torque of the combustion engine at any moment. It
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should be noted that the optimal torque of the combustion engine
- the number 0.5 - changes at any moment. Similarly, the battery
charge level is normalized to a number between 0 and 1, where 0
represents the minimum allowable charge level of the batteries and
1 represents the maximum allowable charge level of the batteries.
The number 0.5 also corresponds to the target charge level value.

In order for the battery pack and the vehicle to perform
optimally, a target value for the battery charge level is defined
here. For a specific battery, this target value can be determined
using the battery charge and discharge graph. This target value
should be chosen so that it is close to the minimum charge and
discharge resistance values. For example, the charge and discharge
resistance curves for a lead-acid battery used in a hybrid vehicle
are shown in Fig. 4. For this battery, the target value for battery
charge can be considered to be 0.65.

High Low Low 

High Medium Low 

High High Medium 
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Because the output of the fuzzy controller is also the torque of
the combustion engine, the output membership functions here are
exactly the same as the first input membership functions, i.e. the
requested torque. The initial membership functions are shown in
Fig. 5.
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2.3. Fuzzy controller optimization using genetic algorithm
To enhance the performance and robustness of the fuzzy

logic controller used in the HEV energy management system,

we adopt a Genetic Algorithm (GA)-based optimization method.
This approach ensures that the membership functions and, if
desired, the fuzzy rule base are adaptively optimized to minimize
fuel consumption and emissions while preserving the vehicle’s
performance constraints.

A) Optimization framework
The GA employed in this study is a stochastic, population-based,

global optimization technique inspired by the principles of natural
selection and genetics. It is particularly effective for solving
complex, nonlinear, and discontinuous problems such as tuning
fuzzy logic controllers for hybrid vehicles.

The optimization process involves the following key steps:
1. Initialization:
o The population is initialized with a set of chromosomes. Each

chromosome encodes a potential solution, i.e., a set of parameters
that define the fuzzy controller’s membership function shapes
(e.g., triangular or trapezoidal), positions, and optionally rule base
weights.

o Chromosomes are represented as real-valued vectors where
each gene corresponds to a breakpoint or slope of a membership
function.

2. Evaluation:
o Each chromosome is decoded into a fuzzy controller.
o The HEV model is simulated under a standard driving cycle

(e.g., FTP).
o The objective function is computed for each candidate

controller, evaluating fuel consumption, emissions, and constraint
violations.

3. Objective function [30]:

F (x) = w1. Fuel Consumption+

w2. Emissions+
n∑
i=1

γi.Penaltyi(x)
(11)

• w1 and w2 are weights for fuel consumption and emissions.
• γi is the penalty factor for violating constraint i.
• Constraints include limits on battery SOC, engine torque, and

vehicle performance.
B) Constraints include
• Maintaining battery SOC within allowable bounds:

SOCmin ≤ SOC(t) ≤ SOCmax (12)

• Ensuring ICE torque stays within operational limits.
• Satisfying torque demand to maintain drivability.
These constraints ensure that the optimized controller not only

minimizes fuel consumption and emissions but also preserves
system safety and performance.

4. Selection:
o A tournament selection or roulette wheel method selects the

best-performing chromosomes based on fitness scores.
5. Crossover and mutation:
o Crossover combines parts of two parent chromosomes to

produce new offspring.
o Mutation introduces random changes to genes, ensuring

diversity and exploration of the search space.
6. Convergence check:
o The algorithm proceeds for a predefined number of generations

or until improvements fall below a set threshold.
o Convergence behavior is monitored via changes in best fitness

values across generations.
7. Output:
o The best solution found defines the optimized fuzzy

membership functions (Fig. 5) and optionally an improved rule
base.

o This controller is implemented for final simulations and result
analysis.



Journal of Operation and Automation in Power Engineering, vol. 12, no. Special Issue, Dec. 2024 59

o Crossover combines parts of two parent chromosomes to produce new offspring. 

o Mutation introduces random changes to genes, ensuring diversity and exploration 

of the search space. 

6. Convergence check: 

o The algorithm proceeds for a predefined number of generations or until 

improvements fall below a set threshold. 

o Convergence behavior is monitored via changes in best fitness values across 

generations. 

7. Output: 

o The best solution found defines the optimized fuzzy membership functions 

(Figure 5) and optionally an improved rule base. 

o This controller is implemented for final simulations and result analysis. 

 

 

Figure 6. Genetic Algorithm-based Optimization of Fuzzy Controller 

GA encoding details 

A detailed flowchart illustrating the GA-based fuzzy controller optimization process is presented 

in Figure 6. 

• Each fuzzy input and output (e.g., Torque Request, SOC, ICE Torque Output) is 

initialized with basic triangular functions. During GA optimization, the position of 

breakpoints (e.g., centers, spreads) of these functions are encoded into the chromosome. 

GA adjusts these parameters to improve control performance. 

• In a more advanced version, rule weights or even rule selection (binary on/off genes) can 

be encoded. This allows GA not only to tune the shapes of membership functions but also 

to evolve or simplify the fuzzy rule base, leading to better generalization and reduced rule 

complexity. 

Fig. 6. Genetic algorithm-based optimization of fuzzy controller.

C) GA encoding details
A detailed flowchart illustrating the GA-based fuzzy controller

optimization process is presented in Fig. 6.
• Each fuzzy input and output (e.g., Torque Request, SOC,

ICE Torque Output) is initialized with basic triangular functions.
During GA optimization, the position of breakpoints (e.g., centers,
spreads) of these functions are encoded into the chromosome. GA
adjusts these parameters to improve control performance.
• In a more advanced version, rule weights or even rule selection

(binary on/off genes) can be encoded. This allows GA not only
to tune the shapes of membership functions but also to evolve or
simplify the fuzzy rule base, leading to better generalization and
reduced rule complexity.

2.4. Integration of the GA-optimized fuzzy controller in
HEV energy management
To effectively manage the power flow between the internal

combustion engine (ICE) and the electric motor (EM) in hybrid
electric vehicles (HEVs), the proposed controller is embedded
within a hierarchical energy management system (EMS). The
controller is optimized using a Genetic Algorithm (GA), ensuring
adaptive performance under varying driving conditions and load
demands.

As illustrated in Fig. 7, the controller receives key real-time
input signals including:
• Torque demand from the driver,
• Battery state of charge (SOC),
• Vehicle speed and other dynamic variables.
These inputs are processed by a fuzzy inference system, whose

membership functions and rules have been optimized offline using
GA. The output of this system determines the optimal power
distribution strategy, balancing energy from the ICE and EM to:
• Minimize fuel consumption,
• Protect battery life by maintaining SOC within limits,
• Maintain smooth and responsive vehicle performance.
The GA-based tuning allows the fuzzy controller to surpass

conventional rule-based strategies by providing:
• Better adaptability to nonlinear system dynamics,
• More efficient fuel usage under various driving cycles,

• Greater robustness to uncertainties and driving pattern
variations.

This integrated control strategy is implemented within a modular
EMS framework that dispatches the computed commands to the
powertrain actuators in real-time. The hierarchical structure also
allows room for predictive modules or learning-based enhancements
in future implementations.
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3. RESULTS
One of the main variables affecting the performance of hybrid

vehicles is the battery charge level during the actual driving cycle
and its rate of change, because the rate of change, in addition
to the amount of battery use, is also an indicator of the battery
health. Therefore, in Fig. 8, the changes in the battery charge
level before and after optimization are combined. As can be seen,
the lower line graph, which is the changes after optimization, has
a steeper slope than the upper line graph, which indicates that
more battery consumption has been used after optimization. This
difference implies that the fuzzy-genetic controller, considering
that it has optimized for a distance of 20 km, which is less than
about 80 km, has used more battery power based on its objective
function to reduce both fuel consumption and pollutants.
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The battery SoC trend in Figure 9 indicates a more aggressive but controlled use of battery energy in the 

optimized controller. The sharper decline in SoC reflects that the fuzzy-genetic controller relies more on 

the electric motor, reducing demand on the ICE and improving overall efficiency. Despite the steeper 

slope, the SoC remains within operational limits, ensuring long-term battery health while enabling better 

fuel economy. 

First, the performance of the combustion engine and the energy loss in the two optimal and rule-

base fuzzy machines are compared in Figure 10. As can be seen in the figure 10, by using optimized 

fuzzy, the amount of power loss in the combustion engine is reduced by about 20%, which can 

also lead to a reduction in fuel consumption and pollution. 

 

 

 

Fig. 8. SoC rate of battery.

The battery SoC trend in Fig. 9 indicates a more aggressive but
controlled use of battery energy in the optimized controller. The
sharper decline in SoC reflects that the fuzzy-genetic controller
relies more on the electric motor, reducing demand on the ICE
and improving overall efficiency. Despite the steeper slope, the
SoC remains within operational limits, ensuring long-term battery
health while enabling better fuel economy.
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First, the performance of the combustion engine and the energy
loss in the two optimal and rule-base fuzzy machines are compared
in Fig. 10. As can be seen in the Fig. 10, by using optimized
fuzzy, the amount of power loss in the combustion engine is
reduced by about 20%, which can also lead to a reduction in fuel
consumption and pollution.

The fuel consumption in the two cases is plotted in Fig.
11, which shows that the fuel consumption performance of the
optimal fuzzy system is improved by up to 15% compared to the
rule-base control system. As shown in the figure, the maximum
instantaneous fuel consumption is 6.2 and 4.3 liters per 100 km
for the rule-base and optimal fuzzy systems, respectively, which
represents a reduction in instantaneous fuel consumption of up to
31%. These improvements reflect the optimized controller’s ability
to more efficiently balance power demand between the ICE and
the electric motor based on dynamic driving conditions.

In addition to reducing fuel consumption, the optimized control
strategy minimizes unnecessary ICE activation and operates the
engine closer to its efficiency zone more consistently. This
smoother energy management not only improves fuel economy
but also extends the lifespan of engine components by reducing
abrupt transitions. To demonstrate the characteristics of the control
strategy of hybrid electric vehicles, the simulation is performed in
a hybrid operating mode. In this simulation, it is assumed that 30%
of the electrical energy in the battery is lost during conversion
to mechanical energy and reaching the wheels. Also, the size
conditions of the electric motor and the combustion engine are
assumed to be 23% and 68%, respectively. The operating mode
considered in this simulation is the hybrid mode of the combustion
engine, which means that the combustion engine produces the
most power with respect to its optimal limit in the charging state,
and the vehicle controller commands the optimal power of the
combustion engine. The remaining power is also provided by the
electric motor.

The fuel consumption, pollutant emissions, and dynamic
performance of the vehicle for all three cycles and when using
the original and optimized controllers are shown in Table 3. By
examining Table 3, it can be seen that the optimized controller is
superior to the original controller in terms of fuel consumption,
pollutant emissions, and dynamic performance.

As summarized in Table 3, the optimized fuzzy-genetic controller
consistently outperforms both the conventional and rule-based fuzzy
controllers across multiple performance indicators:

• Fuel consumption: Reduced by up to 15% on average.
• Power loss in ICE: Decreased by 20%.
• Acceleration (0–97 km/h): Improved by ∼19%.
• Battery SOC usage: More dynamic but maintained within

safe thresholds.
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• Emissions: All major pollutants (HC, CO, NOx) reduced.
These results confirm the improved energy management
capabilities of the optimized controller while maintaining
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Table 3. Fuel consumption, pollutant emissions, and dynamic performance
of a hybrid vehicle with a fuzzy controller.

FTP cycle
Variables Conventional Rule base Optimized Units
Objective 2.134 1.676 1.467 -

Fuel consumption 5.785 5.0841 4.3456 L/100 km
HC 0.349 0.319 0.298 g/km
CO 0.9520 1.1079 0.922 g/km

NOx 0.2750 0.1902 0.1603 g/km
Grade ability 5.295 6.563 6.465 -

Time 0–97 km/h 12.83 10.33 10.38 sec
Time 64–97 km/h 7.04 5.28 5.22 sec
Time 0–137 km/h 34.68 21.88 22.19 sec
Maximum speed 151.3 153.48 152.98 km/h

Maximum acceleration 4.951 4.950 4.948 m/s2

Distance traveled in 5 seconds 49.18 51.83 50.43 m

  

Figure 12. acceleration rate. Figure 13. Fuel consumption rate. 

 

The results show that the optimal control strategy performs better than the rule-based one in 

reducing fuel consumption and emissions. Also, the performance of the hybrid vehicle improves 

with increasing the initial charge. The simulation results clearly show the positive effect of 

optimization in reducing fuel consumption and emissions. As the results show, with proper 

optimization of a conventional hybrid vehicle, fuel consumption and emissions can be reduced by 

an average of 19% and 15%, respectively, in real driving cycles. 

Given that the designed fuzzy-based controller can better utilize the conceptual communication 

capabilities between different parts of the vehicle, this problem does not exist in the simulation 

implemented with the rule-based supervisory controller and the battery charge level is maintained 

at a desirable level, which indicates the desirable performance of the proposed control method. 

The performance of the ICE and the EM of the hybrid vehicle is compared in Figures (14, 15). 

The operating points of the ICE and the EM are in the optimal performance area by using a 

higher charge level, which reduces fuel consumption and emissions while meeting the 

longitudinal dynamic needs of the vehicle. The operating points of the internal combustion 

engine and the electric motor are in the optimal performance area by using optimization. Figure 

14 illustrates the operating points of the internal combustion engine (ICE), showing that under 

the optimized fuzzy-genetic controller, the ICE remains within its high-efficiency zone for 

longer durations compared to the rule-based approach. This concentrated operation near optimal 

conditions reduces fuel consumption and emissions while minimizing frequent on/off switching, 

which helps improve mechanical reliability and ride comfort. The smoother distribution of ICE 

power output also reflects more stable and efficient torque generation, avoiding excessive 

fluctuations seen in the rule-based method. In Figure 15, the electric motor (EM) operation 

demonstrates more deliberate and efficient usage under the optimized strategy. The EM is 

primarily engaged during low-load or transient phases, operating closer to its optimal efficiency 

regions. This complementary behavior ensures a more balanced energy split between the ICE 

and EM, reducing reliance on the engine in inefficient zones. The resulting control effort is 

smoother and more coordinated, improving energy efficiency and dynamic response while 

maintaining compliance with Euro 6 emission standards. 

 

The operating pattern of the internal combustion engine (ICE), shown in Figure 15, indicates that 

with the optimized controller, the ICE operates within its high-efficiency zone for longer durations 

and experiences fewer on/off cycles. While explicit engine switching data was not logged 
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compliance with Euro 6 standards and ensuring stable vehicle
dynamics.

The results show that the optimal control strategy performs
better than the rule-based one in reducing fuel consumption
and emissions. Also, the performance of the hybrid vehicle
improves with increasing the initial charge. The simulation results
clearly show the positive effect of optimization in reducing fuel
consumption and emissions. As the results show, with proper
optimization of a conventional hybrid vehicle, fuel consumption
and emissions can be reduced by an average of 19% and 15%,
respectively, in real driving cycles.

Given that the designed fuzzy-based controller can better utilize

numerically, the reduced variation in power output and smoother power transitions suggest a 

decrease in engine on/off frequency. This contributes to improved fuel efficiency, reduced 

mechanical wear, and lower overall noise and vibration levels. Overall, these figures confirm that 

the optimized controller not only improves energy distribution between the ICE and EM but also 

leads to more stable and efficient system performance across various driving conditions., which 

reduces fuel and pollution while meeting the longitudinal dynamic needs of the vehicle. 

 

  

Figure 14. fuel converter operation. Figure 15. Electric motor operation. 
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the conceptual communication capabilities between different parts
of the vehicle, this problem does not exist in the simulation
implemented with the rule-based supervisory controller and the
battery charge level is maintained at a desirable level, which
indicates the desirable performance of the proposed control method.

The performance of the ICE and the EM of the hybrid vehicle
is compared in Figs. 14 and 15. The operating points of the
ICE and the EM are in the optimal performance area by using a
higher charge level, which reduces fuel consumption and emissions
while meeting the longitudinal dynamic needs of the vehicle.
The operating points of the internal combustion engine and the
electric motor are in the optimal performance area by using
optimization. Fig. 14 illustrates the operating points of the internal
combustion engine (ICE), showing that under the optimized
fuzzy-genetic controller, the ICE remains within its high-efficiency
zone for longer durations compared to the rule-based approach.
This concentrated operation near optimal conditions reduces fuel
consumption and emissions while minimizing frequent on/off
switching, which helps improve mechanical reliability and ride
comfort. The smoother distribution of ICE power output also
reflects more stable and efficient torque generation, avoiding
excessive fluctuations seen in the rule-based method. In Fig. 15,
the electric motor (EM) operation demonstrates more deliberate and
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efficient usage under the optimized strategy. The EM is primarily
engaged during low-load or transient phases, operating closer
to its optimal efficiency regions. This complementary behavior
ensures a more balanced energy split between the ICE and EM,
reducing reliance on the engine in inefficient zones. The resulting
control effort is smoother and more coordinated, improving energy
efficiency and dynamic response while maintaining compliance
with Euro 6 emission standards.

The operating pattern of the internal combustion engine (ICE),
shown in Fig. 15, indicates that with the optimized controller,
the ICE operates within its high-efficiency zone for longer
durations and experiences fewer on/off cycles. While explicit
engine switching data was not logged numerically, the reduced
variation in power output and smoother power transitions suggest a
decrease in engine on/off frequency. This contributes to improved
fuel efficiency, reduced mechanical wear, and lower overall noise
and vibration levels. Overall, these figures confirm that the
optimized controller not only improves energy distribution between
the ICE and EM but also leads to more stable and efficient system
performance across various driving conditions., which reduces fuel
and pollution while meeting the longitudinal dynamic needs of the
vehicle.

In terms of control effort, the optimized fuzzy-genetic controller
demonstrates a more coordinated and efficient distribution of torque
between the ICE and electric motor, with fewer abrupt changes in
power commands. Compared to the rule-based controller, which
relies on fixed rules and often leads to more frequent switching and
adjustment, the optimized controller exhibits smoother transitions
and reduced control activity. This not only improves energy
efficiency but also enhances passenger comfort and system
durability.

Also, simulation values show that the hybrid electric vehicle
meets the Euro 6 emission standards in the FTP cycle in all traffic
conditions. Considering the traffic conditions with slow and dense
traffic and air pollution problems, if hybrid electric vehicles are
used, more of the benefits of these vehicles can be enjoyed, which
in addition to saving fuel consumption can play a very significant
role in reducing pollutants. The fuzzy-genetic controller can have
a significant impact on reducing fuel consumption and pollutants
compared to the rule-base controller. However, the problem is that
the fuzzy controller can be implemented on the hybrid electric
vehicle in real-time and instantaneously, while the fuzzy-genetic
controller cannot work instantaneously.

4. CONCLUSION
In this study, an enhanced fuzzy-genetic control strategy was

proposed and implemented for optimal energy management in
hybrid electric vehicles (HEVs). The controller integrates fuzzy
logic with genetic algorithm (GA)-based optimization to tune
membership functions and, optionally, the fuzzy rule base, with the
primary aim of reducing fuel consumption and pollutant emissions
while preserving vehicle dynamic performance and battery health.
Simulation results across real-world driving conditions, particularly
the FTP cycle, demonstrated the significant effectiveness of the
proposed approach when compared to conventional and rule-based
fuzzy controllers. Key findings include:

• Fuel consumption: The optimized fuzzy-genetic controller
reduced fuel consumption by up to 15% compared to the
rule-based controller (from 5.0841 to 4.3456 L/100 km), and
up to 25% when compared to a conventional control strategy.

• Pollutant emissions: Emissions of key pollutants were
significantly reduced:
o Hydrocarbons (HC): from 0.319 g/km (rule-based) to 0.298
g/km (optimized)
o Carbon monoxide (CO): from 1.1079 g/km to 0.922 g/km
o Nitrogen oxides (NOx): from 0.1902 g/km to 0.1603 g/km

• Fuel consumption: The optimized fuzzy-genetic controller
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rule-based controller (from 5.0841 to 4.3456 L/100 km), and
up to 25% when compared to a conventional control strategy.

• Pollutant emissions: Emissions of key pollutants were
significantly reduced:
o Hydrocarbons (HC): from 0.319 g/km (rule-based) to 0.298
g/km (optimized)
o Carbon monoxide (CO): from 1.1079 g/km to 0.922 g/km
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• ICE efficiency: Power loss in the internal combustion engine
was reduced by approximately 20%, contributing to both fuel
savings and lower pollutant emissions.

• Battery management: The battery state of charge (SoC)
exhibited a more dynamic but still controlled usage pattern.
The optimized controller employed more aggressive electric
motor usage while keeping the SoC within safe operational
boundaries, promoting long-term battery health.

• Vehicle dynamics:
o Acceleration from 0–97 km/h improved by nearly 19%,
from 12.83 seconds to 10.38 seconds.
o Maximum speed and gradeability remained effectively
unchanged, indicating no compromise in performance.
o Electric motor and ICE operation remained within
high-efficiency regions more consistently in the optimized
controller scenario, confirming smoother and more energy-
efficient torque distribution.

Moreover, the proposed controller proved capable of maintaining
compliance with Euro 6 emission standards across all tested driving
scenarios, highlighting its practicality for real-world application in
urban environments. Despite these advantages, the fuzzy-genetic
controller presents a limitation in terms of real-time applicability, as
the GA-based optimization cannot adapt instantaneously. However,
once the controller parameters are optimized offline, they can be
implemented in real-time via a lookup table or embedded logic,
mitigating this challenge to some extent. In conclusion, the proposed
fuzzy-genetic controller not only outperforms conventional and
rule-based controllers in key performance areas but also offers a
more intelligent and adaptive framework for managing power flow
in HEVs. This makes it particularly well-suited for urban driving
cycles characterized by frequent speed changes and variable power
demands.

Future research could focus on integrating real-time adaptability
into the optimization process through online learning techniques or
hybrid metaheuristics. Additionally, incorporating the driving cycle
as a dynamic input in the fuzzy cognitive map structure could
allow for context-aware control adjustments, further enhancing
energy management efficiency. Testing the proposed controller
under real-world traffic conditions and with varying vehicle
configurations would also be valuable in validating its robustness
and generalizability.
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