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Abstract— This paper proposes a Model Predictive Control-based strategy for secondary load frequency control to enhance the dynamic
performance of such systems. The proposed controller generates optimal control signals for dispatchable units to minimize frequency
deviations induced by load and generation variability. A comprehensive microgrid model is developed, incorporating photovoltaic arrays,
wind turbines, fuel cells, battery and flywheel energy storage systems, diesel generators, and electrolyzers. The dynamic behavior of each
component is formulated using small-signal transfer functions, and the MPC is designed based on a constrained quadratic optimization
problem that predicts and mitigates frequency deviations. Simulation results in MATLAB/Simulink demonstrate the superiority of the
proposed MPC approach compared to conventional and intelligent controllers, including Ziegler–Nichols tuned PI, Fuzzy-PI, CPSO-PID,
and CPSO-FOPID. The proposed controller achieved a maximum frequency deviation of 0.0052 pu, a settling time of 5.1 seconds, and an
ITAE of 0.00024—outperforming all benchmarks in both steady-state and transient scenarios. Robustness under system parameter variations
and load disturbances was also validated through five distinct case studies. The controller exhibits improved reliability, reduced stress on
primary controllers, and better resilience to uncertainties. Future work will focus on implementing adaptive MPC algorithms, integrating
machine learning-based disturbance predictors, and validating the control scheme using real-time hardware-in-the-loop platforms for
enhanced applicability in hybrid AC/DC microgrids.

Keywords—Model predictive control, secondary control, renewable energy integration, frequency oscillations, system stability, robust
control, hardware in the loop validation.

1. INTRODUCTION

The increasing penetration of renewable energy sources into
modern power systems has transformed the operational dynamics
of electrical networks, particularly at the distribution level.
Microgrids, as localized clusters of distributed generation units
and controllable loads, are key enablers of this transformation
due to their ability to operate independently from the main
grid during disturbances. However, this operational autonomy
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introduces new technical challenges—most notably in maintaining
system frequency stability under variable load and generation
conditions. Traditional Load Frequency Control (LFC) strategies
often fall short in addressing the nonlinearities and uncertainties
inherent in microgrids powered by intermittent resources like
wind and solar. As such, there is a growing need for advanced,
model-based control frameworks capable of ensuring robust and
adaptive frequency regulation. This paper addresses this need by
developing a predictive control strategy tailored for frequency
regulation in islanded microgrids with high renewable energy
integration.

1.1. Research motivation
The escalating global demand for electrical energy poses

significant challenges for the power industry. Among these
challenges are the high capital investments required for constructing
new power plants, expanding transmission and distribution
networks, and addressing increasing environmental concerns due to
climate change. To tackle these issues while enhancing reliability,
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reducing power losses, and alleviating congestion in transmission
lines, the integration of Distributed Generation (DG) [1] and
renewable energy sources [2] has become an effective and evolving
solution over the past two decades [3]. The notable benefits
of these technologies have accelerated the development and
deployment of microgrids in many regions around the world [4].
Microgrids small-scale power networks that incorporate various
renewable energy sources and serve localized loads offer resilience
and flexibility. Under typical operating conditions, microgrids are
connected to the main grid, but during major disturbances or
emergencies, they can operate in islanded mode to support critical
loads. This operational flexibility, however, brings forth substantial
technical challenges, particularly due to power variability from
sources like wind and solar, and the dynamic behavior of
connected loads. Among these challenges, the issue of frequency
and power oscillations stands out, necessitating advanced control
strategies to maintain system stability and performance [5]. Recent
research has also explored the use of reinforcement learning (RL)
for adaptive control in microgrids. A notable study presented a
model-free, Q-learning-based supervisory controller designed to
mitigate frequency and voltage oscillations in microgrids with high
wind power penetration. By modeling the control environment
as a Markov Decision Process (MDP), the proposed RL strategy
demonstrated superior adaptability and dynamic performance
compared to classical PID and fuzzy-PID controllers, particularly
under uncertain and nonlinear conditions [6].

1.2. Literature review
The field of Load Frequency Control (LFC) in microgrids

has attracted significant research attention due to the increasing
integration of renewable energy sources and the resulting
operational challenges. Numerous control strategies ranging
from conventional methods to advanced predictive and heuristic
techniques have been developed to address issues of frequency
stability, power imbalance, and dynamic response in islanded
microgrids. This subsection reviews recent and relevant
contributions, highlighting their scope, limitations, and relevance
to the development of the proposed Model Predictive Control
(MPC) approach. Numerous studies have explored Load Frequency
Control (LFC) in microgrids, which is critical to mitigating power
imbalances and maintaining frequency within acceptable ranges. A
comprehensive overview of such efforts is given in [7]. Generally,
these studies fall into two categories: conventional control methods
and metaheuristic-based techniques. In [8], a learning-based Tube-
Based Robust Model Predictive Control (RMPC) approach is
proposed for voltage regulation in islanded AC microgrids. By
integrating Gaussian Process regression, the method adaptively
adjusts the control tube to reduce conservatism under uncertainty.
However, this work focuses solely on voltage control at the primary
level and does not address frequency dynamics or system-level
coordination. In contrast, our MPC-based Load Frequency Control
(LFC) strategy operates at the secondary level, targeting system-
wide frequency deviations by accounting for the interactions among
diverse DERs and nonlinear loads under uncertainty. The study in
[9] develops a Model Predictive Control framework integrated with
a Two-Layer Moving Horizon Estimation (TL-MHE) observer for
frequency regulation in PV-dominated microgrids. While effective
for improving disturbance estimation and frequency recovery, the
method is closely tied to VSG-based PV systems and lacks
generalizability across mixed-source microgrids. Our work, by
comparison, presents a generalized and RES-agnostic MPC-based
frequency control scheme validated on a microgrid with PV, wind,
fuel cells, and batteries, ensuring robust performance across diverse
configurations.

Work [10] applies a Finite Control Set MPC (FCS-MPC) for
voltage stabilization in grid-forming inverters of standalone AC
microgrids. This inverter-level control enhances voltage quality
and meets harmonic standards, but it does not address frequency

regulation or system-wide coordination. Our approach extends
beyond converter-level control by focusing on frequency stability
at the microgrid level, achieving resilient operation under dynamic
disturbances and load variations. While [11] presents a broad
review of LFC strategies across various systems, our work
focuses specifically on islanded microgrids, offering a predictive
control solution that directly addresses their unique stability and
uncertainty challenges. [12] presents a FOPI–FPOD controller
optimized with multi-objective particle swarm optimization (PSO)
to stabilize frequency in islanded microgrids, focusing on handling
uncertainties like load changes and renewable energy fluctuations.
While highlights improved stability through a multi-objective
optimization process, our method emphasizes a real-time, model-
based control strategy for more efficient frequency regulation
in uncertain environments. [13] proposes a TIDA+1 controller
optimized via a modified PSO for improving LFC in interconnected
microgrids, focusing on offline parameter tuning and parallel signal
correction. In contrast, our MPC-based method leverages a
predictive model and real-time optimization to ensure dynamic,
scenario-adaptive frequency regulation, offering greater flexibility
and robustness under uncertainty. [14] presents a two-stage fuzzy
controller optimized via PSO for enhancing LFC in renewable
microgrids, focusing on fast dynamic responses and reduced
energy storage dependence. In contrast, our MPC-based method
uses predictive modeling and real-time optimization for scenario-
adaptive frequency control, offering superior robustness against
uncertainties. Voltage oscillation damping in DC microgrids is
addressed by enhancing FCS-MPC with an active damping term
tailored for constant power load stabilization [15]. Unlike our
approach, which applies MPC in the AC domain for real-time
frequency regulation under uncertainty, this work focuses on
local converter-level voltage dynamics. Another study optimizes
MPC parameters using a genetic algorithm to enhance frequency
control in isolated microgrids, focusing on mitigating fluctuations
from renewable intermittency and load disturbances [16]. While
both approaches leverage MPC, our method integrates real-time
adaptability without relying on offline GA tuning, offering
faster responsiveness to dynamic uncertainties. Additionally, our
controller ensures robustness across varying scenarios through
predictive modeling rather than static parameter optimization.
Conventional methods often rely on Proportional-Integral (PI)
and Proportional-Integral-Derivative (PID) controllers, with tuning
based on classical Ziegler-Nichols methods [17] and fractional-
order techniques [18]. These approaches are utilized for microgrid
LFC in studies such as [19]. Additionally, robust control strategies
including H∞ methods [20], advanced evolutionary algorithms
[21], and D-K iteration-based designs [22] have been proposed.
Droop control techniques have also been explored, ranging
from linear [23] to nonlinear variations and those incorporating
controllable loads. Sliding Mode Control (SMC) methods have
been implemented using observers to further improve dynamic
response [24]. Metaheuristic approaches for LFC have shown
promise in addressing the nonlinear and uncertain nature of
microgrid dynamics. Genetic Algorithms (GA) [18], Particle
Swarm Optimization (PSO) [25], Social Spider Optimization
(SSO) [26], Biogeography-Based Optimization (BBO) for PID
tuning [27], and Harmony Search Algorithms [28] have been
applied with success. Fuzzy logic systems, especially those
enhanced with PSO or Type-2 logic, are also reported to be
effective [29]. Furthermore, the secondary control of power
converters in renewable energy sources has been considered for
frequency regulation [30], and flexible scheduling of electric
vehicles has been explored to enhance system resilience and
operational flexibility [31]. Among advanced control methods,
Model Predictive Control (MPC) stands out due to its ability to
predict system behavior and optimize control actions accordingly
[32]. Classical MPC [33], two-level MPC architectures [34], and
coordinated MPC strategies integrating Electric Vehicles (EVs)
[35] have all been explored to manage microgrid power and
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frequency fluctuations.
In summary, the reviewed literature underscores the diversity

of existing LFC strategies and the growing emphasis on
predictive and intelligent control frameworks. However, many
approaches remain limited in adaptability, real-time optimization,
or generalizability across heterogeneous microgrid configurations.
These gaps motivate the development of the robust, scenario-
adaptive MPC-based frequency control method proposed in this
paper.

1.3. Challenge gap
Despite the progress in both classical and intelligent control

methods, maintaining frequency stability in islanded microgrids
under dynamic and uncertain conditions remains a major technical
obstacle. Renewable energy sources are inherently intermittent,
and the non-linear, time-varying nature of microgrid parameters
further complicates controller design. Many conventional and
heuristic approaches suffer from performance degradation in the
face of such uncertainties, particularly when operating conditions
deviate significantly from nominal values. Moreover, while MPC
has shown significant potential, few studies have implemented it
within a unified framework that integrates accurate modeling of
various renewable sources, disturbance rejection, and performance
benchmarking against well-established control schemes under both
normal and uncertain conditions.

1.4. Novelty and main contributions
This paper presents a novel Load Frequency Control (LFC)

strategy based on Model Predictive Control (MPC) for islanded
microgrids incorporating diverse renewable energy sources such as
photovoltaic panels, wind turbines, fuel cells, and energy storage
systems. The proposed controller operates within the secondary
control layer, where it applies optimized control signals to the
renewable generation units to regulate frequency in the presence of
load disturbances and system uncertainties. The proposed strategy
is grounded in a small-signal state-space modeling framework,
where the nonlinear dynamics of microgrid components are
linearized around a steady-state operating point. This modeling
approach allows accurate predictive control design, incorporating
system constraints and enabling real-time optimization of control
actions. The key contributions of this work are as follows:

• Development of a robust MPC-based control strategy tailored
specifically to mitigate frequency oscillations in islanded
microgrids. The predictive controller is designed with
appropriate control and prediction horizons and is capable of
operating under physical constraints on both control inputs
and system responses.

• Integration of detailed state-space models derived from the
linearization of dynamic behavior of renewable sources,
enabling accurate representation of system dynamics for the
control algorithm.

• Simulation-based validation using MATLAB/Simulink under
five diverse operational scenarios. These scenarios evaluate
the controller’s performance under:
o Sudden variations in renewable power generation (PV and
wind)
o Step and severe load disturbances
o System parameter uncertainties introduced via the H(2)
robustness metric

• Comparative analysis with classical and intelligent controllers,
including ZN-PI, Fuzzy-PI, FOPID, PSOPID, CPSO-PID,
and CPSO-FOPID. Results across all test cases demonstrate
that the proposed MPC controller offers:
o Faster damping of frequency oscillations
o Lower overshoot and steady-state error
o Enhanced robustness against disturbances and parametric
variations

• Improved real-world applicability by addressing both dynamic
frequency regulation and robustness needs, thus making the
proposed method a strong candidate for practical deployment
in next-generation microgrids with high renewable penetration.

In conclusion, this work contributes a systematically validated
and practically oriented MPC-based LFC approach, advancing the
reliability and stability of islanded microgrids under complex and
variable operating conditions. Furthermore, unlike many traditional
and heuristic LFC approaches that require offline parameter
tuning and lack real-time adaptability, the proposed MPC strategy
enables real-time optimization through an efficient quadratic
programming formulation with modest computational overhead. By
leveraging linearized state-space models, the controller maintains
tractable computation suitable for implementation on practical
digital controllers and embedded systems. This balance between
predictive accuracy, adaptability, and computational feasibility
makes the proposed method a strong candidate for real-world
deployment in next-generation microgrids with high renewable
penetration.

1.5. Organization of the paper
The remainder of this paper is structured as follows: Section

2 introduces the general structure of the microgrid and describes
the existing control strategies, along with the dynamic modeling
of each microgrid component. Section 3 details the design
and mathematical formulation of the proposed Model Predictive
Controller (MPC), including its cost function, constraints, and state-
space implementation tailored for microgrid applications. Section
4 presents the simulation results, implementation outcomes, and
comparative performance analysis of the MPC against traditional
controllers. Section 5 concludes the paper by summarizing the key
findings and outlining potential directions for future research.

2. GENERAL MICROGRID STRUCTURE AND EXISTING
CONTROL STRATEGY

This section presents the structure and design methodology
of the proposed model predictive controller (MPC) used for
secondary frequency control in the islanded microgrid. The general
principles of MPC are first introduced, including its cost function
formulation and constraint handling. Subsequently, the MPC is
customized for the microgrid context by incorporating system
dynamics, disturbance modeling, and optimization logic tailored to
manage predictable and unpredictable power fluctuations.

2.1. Microgrid configuration
Fig. 1 shows the graphic diagram of studied microgrid, operating

in islanded mode. The microgrid incorporates a PV array, a DEG,
a WTG, a FC, and two energy storing causes, namely a battery
energy storage system (BESS) and a flywheel energy storage
system (FESS), along with an electrolyzer (AE). The energy
bases within the microgrid are associated to key AC bus via
power electronic converters, which also serve to control the power
injected by these sources into the bus. The small-signal model of
each microgrid component is described as follows:

A) Wind turbine generator
Eq. (1) represents the wind turbine generator (WTG) dynamic

model for small-signal analysis, while Eq. (2) provides its
characteristic function. These equations are specifically designed
to describe the dynamic behavior of the WTG in response to
small-signal variations, such as changes in wind speed and network
load [36].

∆PWTG(s) =
kWTG

TWTGs+ 1
·∆PW(s) (1)
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Figure 1: Simple diagram of energy sources in the microgrid [5] 
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Fig. 1. Simple diagram of energy sources in the microgrid [5].

ka =
PWTG

PW
(2)

In Eqs. (1) and (2), kWTG and TWTG represent the gain and
time constant of the wind turbine generator, respectively, ka stands
a constant indicating the ratio of the wind turbine power delivered
to the microgrid, ∆PWTG represents the variations in the WTG’s
output electrical power, and ∆PW represents the variations in
wind influence. The mined wind power (PW ) is achieved as:

PW = 0.5 · ρ ·Ar · CP · V 3
w (3)

In Eq. (3), CP stands turbine power constant, ρ stays air density
(kg/m3), Ar stands swept zone of blades (m2), and Vw stands
wind velocity (m/s).

B) Photovoltaic (PV) array
The active typical of the PV array in small-signal examination

is presented using Eqs. (4) and (5). In these equations, kPV

represents the gain of the photovoltaic array, and TPV is its time
constant. Variations in the PV array’s output electrical power are
denoted by ∆PPV, and variations in solar irradiance are denoted
by ∆ϕ. The electrical power generated by the PV array, PPV , is
obtained using Eq. (6), which considers solar irradiance and the
structural characteristics of the PV array [37].

∆PPV = kPV ·∆φ ·
1

TPV
PPV = CPV · π ·Ar · Vw (4)

∆PPV (t) =
kPV

TPV

∫ t

0

(∆φ(τ)−∆PPV (τ))dτ (5)

PPV = η · S · φ · (1− β(Ta − 25)) (6)

In this equation, η is the efficiency of the PV array, S is the area
of the PV array (m2), ϕ is the solar irradiance (kW/m2), Ta is
the ambient temperature (◦C), and β is the temperature coefficient.
For a more accurate analysis of this model, careful attention
should be paid to the influence of environmental and operational
variables on the output power of the PV arrays, as well as the
impact of changes in solar irradiance and operational variations on
electrical power. This model can be effectively used for dynamic
simulations of microgrids and optimization of renewable energy
system performance.

C) Diesel generator
The diesel generator serves as a key component in islanded

hybrid microgrids. It assumes a serving of the power source
responsibility needed to achieve power equilibrium when load
demand increases. The model of the diesel generator [38] using
Eqs. (7) and (8). These equations are a function of the diesel
generator’s output power and its dynamic characteristics, which
can be used to simulate the system’s behavior under various load
and network conditions. These dynamic models play an important
role in designing control and energy management strategies in
microgrids.

∆PDEG = kDEG ·∆P − kDEG · F · PDEGPDEG(s) =
kDEG

CDEG·GDEG(s)+sTDEG·U(s)+F (s)·U(s)·PDEG(s)

(7)

GDEG(s) =
kDEG

TDEGs+ 1
(8)

In these equations, ∆PDEG represents variation in diesel
generator output power. kDEG is a constant related to the diesel
generator. F is the characteristic function of the generator. PDEG

is the power generated by the diesel generator. TDEG is the time
constant of the diesel generator. GDEG(s) represents the dynamic
performance of the system. U(s) is the input function of the
system. CDEG is a constant associated with the diesel generator.

D) Electrolyzer (AE)
A portion of power produced by the wind turbine generator

is used to power the electrolyzer. Eq. (9), which is used in the
dynamic model of the electrolyzer for small-signal examination,
has a characteristic function found in Eq. (10) [39]. These models
are used to analyze the behavior of electrolyzer systems under
various load conditions and variations in the input power to the
system.

∆PAE = kAE ·∆PWTG (9)

PAE(s) =
kAE

CAE ·GAE(s)+sTAE ·U(s)+F (s)·U(s)·PAE(s)

(10)

In the equations above, ∆PAE represents the change in the
electrolyzer power, which is supplied from a portion of the
power generated by the wind turbine generator. The constant kAE

specifies the dynamic coefficients associated with the electrolyzer.
∆PWTG represents the change in the wind turbine generator’s
output power, which affects the input of the electrolyzer. PAE(s) is
the electrolyzer output power as a function of time. The parameter
TAE is the time constant of the electrolyzer, which indicates the
time required for the system to reach a steady state. GAE(s) is
a function that models the dynamic response of the electrolyzer.
Also, U(s) and F (s) are the inputs and characteristics of the
characteristic function of the electrolyzer system, respectively,
which are used in modeling its behavior under various load
and power input conditions. The constant CAE is also a system
parameter that considers the effects of other components of the
system on the performance of the AE.

E) Fuel cell
In dynamic model of FC, variations in output electrical power

∆PFC are modeled as a small signal using Eqs. (11) and (12).
The parameters kFC and TFC are gain and time continuous of the
FC, respectively, and their impact on the dynamic response of the
system is considered. These models are designed to analyze the
performance of the fuel cell under various load and power input
conditions.

∆PFC = kFC ·∆PAE −
TFC

s
·∆PFC (11)
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PFC(s) =
kFC

1 + TFCs
·∆PFC (12)

F) BESS and FESS
Energy storage systems, such as batteries and flywheels, are

used as key components in microgrids for load management
and energy storage. Batteries and flywheels store excess power
generated by renewable energy sources and effectively use it to
supply energy during peak load times and power shortages. In
this section, the dynamic models of these systems in small-signal
analysis are examined in detail. The battery system model is
described using Eqs. (13) and (14), and the flywheel system model
is described using Eqs. (15) and (16) [40]. In these equations, the
parameters kBESS and TBESS are the increase and time constant
of battery organization, respectively, and kFESS and TFESS are
the gain and time constant of FESS, respectively. Also, the changes
in power generated or engaged from the battery and flywheel, and
the control signals applied to these systems are also included in
the models.

∆PBESS =

KBESS ·∆UBESS − TBESS
s
·∆PBESS

(13)

PBESS(s) =
KBESS

1 + TBESSs
·∆PBESS (14)

∆PFESS = KFESS ·∆UFESS −
TFESS

s
·∆PFESS (15)

PFESS(s) =
KFESS

1 + TFESSs
·∆PFESS (16)

G) Microgrid frequency and power variations
Power variations in the microgrid directly affect frequency

variations. An increase or decrease in power within the system
causes changes in the microgrid’s frequency, which is particularly
noticeable during load changes or variations in energy inputs from
renewable sources. The model of the microgrid for small-signal
examination and simulation of these variations is expressed using
Eq. (17). This model shows how power variations affect the
microgrid’s frequency and its response to these variations, which
is of great importance in analyzing the performance and stability
of hybrid microgrids.

∆F (s) =
SY (s)

SY (s)+SY (s)·(1−K(s)T (s))+M(s)D(s)·∆P (s)

(17)

In this equation, ∆F (s) represents the frequency variations in
the microgrid, S, Y (s), K(s), T (s), M(s), and D(s) are various
parameters of the microgrid system, and ∆P (s) is the power
variation injected into the microgrid. This equation shows how
power variations affect the microgrid frequency and is used for
dynamic analysis of power systems.

∆F (s) =
G(s)

(1 + sTM +D)
∆P (s) (18)

In this equation, G(s) is the system transfer function, TM is the
equivalent time constant of the entire system, D is the damping
coefficient, and ∆P (s) is the power variation of the system in
per-unit (pu). The value of ∆P (s) is determined using Eqs. (19)
and (20) [41]:

∆P (s) = ∆PWTG(s) + ∆PPV(s) + ∆PDEG(s)+
∆PFC(s) + ∆PBESS(s) + ∆PFESS(s) + ∆PAE(s)

(19)

∆P (s) = −R ·∆F (s) (20)

As observed in Fig. 2, the occurrence of a disturbance in the
microgrid and the disruption of power balance lead to frequency
variations. In order to restore the frequency to its nominal value,
control is performed at two distinct levels: primary frequency
control and secondary frequency control [42].
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Fig. 2. Dynamic model of the microgrid.

1) Primary frequency control
As observed in Fig. 2, in micro grid under study, main

frequency controller is completed through the droop loop of
the diesel generator. This control is are defined as follows this
Equation, where R is the droop coefficient in per-unit (pu) [41].

∆PDEG = −R ·∆F

2) Secondary frequency control
The frequency drop is limited by primary frequency control,

but it cannot be brought back to its nominal value. Consequently,
a second control loop known as secondary frequency control is
employed for accurate frequency regulation and to return it to its
nominal value. This paper uses a model-based predictive controller
in secondary controller loop to stabilize and regulate the frequency
to its nominal value, as shown in Fig. 2.

To provide a comprehensive view of the implementation
process of the Model Predictive Controller (MPC), the algorithm’s
operational structure is depicted in Fig. 3. This flowchart
systematically illustrates the MPC algorithm used for secondary
frequency control in the islanded microgrid. As shown, the process
begins by measuring the current system state, including frequency,
voltage, and power. These measurements are used to update the
internal prediction model, typically based on system dynamics
derived from small-signal state-space equations of the microgrid
components.

Next, prediction and control horizons are set, and a cost function
is formulated to penalize deviations from reference outputs and
excessive control efforts. This cost function is minimized under the
constraints of system inputs (e.g., actuator limits), input rate limits,
and—if applicable output constraints. The resulting optimization
problem is solved at each time step using quadratic programming
(QP) or other appropriate solvers to obtain the optimal control
signal sequence. However, only the first value of this sequence
is applied to the system—a core feature of the receding horizon
approach. This process repeats at every time instant, thereby
continuously updating the control inputs in real time.

The structured sequence shown in Fig. 3 effectively supports
secondary frequency control by reacting promptly to both
predictable and unpredictable disturbances in power flow, thus
helping restore frequency to its nominal value after deviations.
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Figure 3: Flowchart of the MPC algorithm implementation for secondary frequency 

control. 
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Fig. 3. Flowchart of the MPC algorithm implementation for secondary
frequency control.

3. MODEL PREDICTIVE CONTROLLER (MPC)
This section presents the structure and design methodology

of the proposed model predictive controller (MPC) utilized for
secondary frequency control in the islanded microgrid. The general
principles of MPC are initially introduced, including its cost
function formulation and constraint handling. Following this, the
MPC is customized for the microgrid context by integrating system
dynamics, disturbance modeling, and optimization logic specifically
designed for predictable and unpredictable power fluctuations.

3.1. General structure
MPC has been widely adopted in a broad spectrum of industrial

applications, including chemical procedures, the oil industry, and
electromechanical organizations. The general structure of this
controller is depicted in Fig. 4. In this approach, a mathematical
model of the system is used to predict and control its future
behavior. The controller operation is based on minimizing a cost
function, which enables the optimization of the control signal. The
control signal is determined over a control horizon such that the
system output follows a desired reference trajectory during the
predicted time frame.

To achieve this goal, the cost function must be minimized. In
this control method, a mathematical model of the system is used to
predict its future behavior, and control is applied accordingly. The
control signal is determined in such a way that a cost function is
minimized. Optimizing this cost function ensures that the system
follows the desired trajectory in the prediction horizon. The cost
function used is defined in Eq. (21), while Eqs. (22) and (23)
express the constraints imposed on the control signals and the
system output. Eq. (21) expresses the cost function as follows [43]:

J =
Np∑
j=1

βj [yref(k + j)− y(k + j)]2+

Nc∑
j=1

λj [u(k + j − 1)]2
(21)

The constraints on the control signal and system output are
defined as follows:

umin < u(k) < umax (22)

ymin ≤ y(k) ≤ ymax (23)

In which u(k) is the control signal value at time k, y(k) is
the system output value at time k, umin and umax are the lower
and upper bounds of the control signal, respectively, and ymin

and ymax are the lower and upper bounds of the system output,
respectively.
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Figure 4: General structure of the model predictive controller [44] 
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Fig. 4. General structure of the model predictive controller [44].

The weighting factor (βj) serves as weighting coefficients
for the error, and (λj) serves as weighting coefficients for the
control signal in the cost function of the predictive controller.
These coefficients production and significant role in determining
the importance of each of the controlled variables and control
signals in the optimization process. Fig. 5 shows the timing of the
calculation of the control signals and how they are obtained.
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Fig. 5. Timing of signals in the predictive controller.

3.2. MPC design
Frequency fluctuations are caused by changes in the power

produced by the microgrid’s sources and load. There are two types
of microgrid power sources:

a) The flywheel, battery storage system, and diesel generator
are examples of controllable sources.

b) Uncontrollable sources: such as solar cells, wind turbines,
and fuel cells. Variations in load are viewed as unpredictable
disturbances in the predictive controller design, while variations
in uncontrollable power sources are regarded as predictable
disturbances. The structure and input/output signals of the
suggested microgrid predictive controller are depicted in Fig. 6.

The state-space equations of the predictive controller are as:

X(k + 1) = A ·X(k) +B · U(k) +D ·W (k) (24)

In Eq. (24), X and A are state variable vector and state-space
matrix, U stands controller output, B stands constant matrix, W
stands disturbance input, and D stands disturbance matrix.
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Figure 6: Structure of the suggested predictive microgrid controller [45] 
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Fig. 6. Structure of the suggested predictive microgrid controller [45].

First, changes in power bases, load, and microgrid frequency
are assessed and measured in the suggested controller (as shown
in Fig. 6). The next step involves predicting the system output
(variations in frequency) and applying the proper controller
signals in accordance with predetermined guidelines. Eqs. (25)
through (32) provide the following description of the relationships
controlling the controller’s behavior [45]:

J =
∑
i

(δi · ui)
2 (25)

u(k + 1) = u(k) +
∑
i

δi (26)

umin ≤ u(k + 1) ≤ umax (27)

0 ≤ βj ≤ 1 (28)

0 ≤ λj ≤ 1 (29)

U = [u1, u2, ..., uNc ]T (30)

Js =
N∑

k=0

(
βk · (y(k)− yref(k))2 + λk · (u(k))2) (31)

U = f(∆PBESS,∆PFESS,∆PDEG) (32)

The set of control signals (Eq. (30)) is obtained by minimizing
the objective function, which is Eq. (25) and is modified as a
quadratic program. The signals at each time step are calculated
using Eq. (26). Numerical coefficients denoted as δi are derived
from the problem’s solution (by minimizing J). The least and
extreme ranges of the applied controller signal at every time stage
are displayed in Eq. (27). The variety of the chosen constants in
objective function are displayed in Eqs. (28) and (29) respectively.
The state variables at each time step are calculated using Eq. (31)
and the control signals taken into account for the energy storage
sources are displayed in Eq. (32). Also, in the calculations, the
following index is obtained:

IAE =

N∑
k=1

|y(k)− yref(k)| (33)

In this equation, y(k) represents the system output and yref (k)
represents the reference output value. The control strategies in
the simulation section are compared using the index shown in
Eq. (33). In addition to controlling the microgrid frequency, the
predictive controller must also use the power source converters
and the diesel generator excitation system to control and regulate
the microgrid voltage level. A different subject that is outside the
purview of this work is how to regulate the microgrid’s voltage.

4. SIMULATION RESULTS

Before presenting the detailed simulation results, it is important
to clarify that the equations and transfer functions used in
Sections 2 and 3 are derived from established models and
validated references, primarily based on sources [46] and [47].
These references provide standard parameter values, dynamic
models, and transfer function definitions commonly used in power
system control studies. The diagrams and figures introduced in
those sections were either adapted from these references or
developed using MATLAB/Simulink based on the referenced
system configurations. This foundation ensures that the simulation
results presented in the following subsections are built upon
well-established and scientifically supported modeling approaches.

4.1. Microgrid model setup and controller parameters
As detailed in Section 3, the microgrid simulation incorporates

various types of renewable energy sources. These sources
include photovoltaic systems, wind turbines, fuel cells, and other
renewable energy technologies, which are used to supply energy
to the microgrid. Each of these energy sources has its own
specific characteristics and parameters, which significantly affect
the system performance in the simulation. The precise values of
these parameters, including energy production capacity, efficiency,
charge and discharge rates of energy storage systems, and other
technical specifications, are listed in Table 1. These parameters
have been accurately adjusted based on experimental data and
standard values from reputable sources [46].

This simulation is performed to evaluate the behavior of the
microgrid under various load conditions and energy disturbances.
In this model, renewable energy sources are continuously capable
of supplying the system’s energy needs under varying load
conditions and different environmental conditions. On the other
hand, changes in the frequency and voltage of the microgrid
are also precisely controlled to ensure the necessary coordination
between energy sources and consumers in the microgrid.

Table 1. Microgrid system parameters and transfer functions [46].

Constraint Rate Constraint Rate
D (pu/Hz) 0.013 TWTG 1.25
H (pu·s) 0.1657 TAE 0.25
TFES 0.1 KWTG 1
TBES 0.1 R (Hz/pu) 5
TFC 4 Kt 0.6
KFC 1.200 KDEG 1.5
KAE 1.300 KFESS -0.01
KBESS -0.0433 KPV 1
TDEG 2 TPV 1.8

The Model Predictive Control parameters are set as follows:
• Np = 1 (Prediction horizon)
• Nc = 2 (Control horizon)
• Nu = 2

In these parameters, the weight values on the manipulated
variables are set as follows:

• Weight on manipulated variables: 0
• Weight on rate of change of manipulated variables: 0.1
• Weight on output signal: 0 to 2
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• Sampling time: 0.0002 seconds
The maximum and minimum values of the control signal

(umin ≤ u (k) ≤ umax) are set as follows:
• umax = 1 pu
• umin = 0.1 pu
• Maximum frequency deviation: 1 pu
• Minimum frequency deviation: -1 pu

Table 2. Pseudo code for shuffled bat optimization algorithm.

GFC(s)
KFC

TFCs+1

GPV (s)
KPV

TPV s+1

GAE(s)
KAE

TAEs+1

GBESS(s)
KBESS

TBESs+1

GFESS(s)
KFESS

TFESs+1

GDEG(s)
KDEG

TDEGs+1

GWTG(s)
KWTG

TWTGs+1

CPV
CPV = η ·A ·G
(Efficiency × Area × Irradiance)

To ensure that the selected Model Predictive Control (MPC)
parameters are optimal, a sensitivity analysis was performed
by testing multiple combinations of prediction horizon (Np)
and control horizon (Nc). The configurations evaluated included
(Np = 1, Nc = 2), (Np = 2, Nc = 2), (Np = 3, Nc = 3),
and (Np = 1, Nc = 1). The evaluation criteria included the
Integral of Time-weighted Absolute Error (ITAE), maximum
frequency deviation, and settling time under identical disturbance
conditions. The configuration with Np = 1 and Nc = 2
demonstrated the best overall performance, achieving minimal
frequency deviation (0.0052 pu), shortest settling time (5.1
s), and lowest ITAE (0.00024). Increasing the prediction and
control horizons did not significantly improve performance but
did increase computational complexity. Conversely, reducing them
degraded frequency regulation quality. Therefore, the selected MPC
parameters (Np = 1, Nc = 2) strike an effective balance between
dynamic performance and computational efficiency in microgrid
control.

4.2. Controller performance evaluation under disturbances
To evaluate the performance of the proposed control

method, simulations were conducted using MATLAB/Simulink.
Disturbances applied to the microgrid (sudden load changes and
variations in distributed generation sources) are shown in Figs. 7-9.
The disturbance in Fig. 7 corresponds to a change in photovoltaic
power, Fig. 8 corresponds to a change in wind turbine influence,
and Fig. 9 corresponds to a variation in the micro grid load [46].
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Figure 7: Change in photovoltaic power [46] 
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Fig. 7. Change in photovoltaic power [46].

The simulation results were analyzed in detail across five
different scenarios to evaluate the performance of the various
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Fig. 8. Change in wind turbine power [46].

Figure 8: Change in wind turbine power [46] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Microgrid load variations [46] 

The simulation results were analyzed in detail across five different scenarios to evaluate 

the performance of the various control methods under different microgrid conditions. In each 

scenario, the performance of the different controllers was evaluated based on their ability to 

damp frequency oscillations and respond to various disturbances. 

Scenario 1: In this scenario, the performance of three controllers (CPSO-FOPID, CPSO-

PID, and the proposed controller) was investigated. Simultaneous disturbances, such as changes 

in the power of distributed generation sources (including photovoltaic, wind turbine, and 

microgrid load), were applied to the system. The results showed that the proposed controller 

performed better than the two controllers CPSO-FOPID and CPSO-PID in damping frequency 

oscillations in the microgrid. This was particularly evident in reducing the amplitude of 

frequency overshoots and undershoots, as well as reducing the number of oscillations. The 

proposed controller was able to effectively maintain the microgrid frequency within the desired 

range and prevent excessive oscillations. These results indicate the higher efficiency of this 
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Fig. 9. Microgrid load variations [46].

Fig. 10. Controller performance for damping frequency variations in
scenario 1.

control methods under different microgrid conditions. In each
scenario, the performance of the different controllers was evaluated
based on their ability to damp frequency oscillations and respond
to various disturbances.

Scenario 1: In this scenario, the performance of three controllers
(CPSO-FOPID, CPSO-PID, and the proposed controller) was
investigated. Simultaneous disturbances, such as changes in the
power of distributed generation sources (including photovoltaic,
wind turbine, and microgrid load), were applied to the system.
The results showed that the proposed controller performed better
than the two controllers CPSO-FOPID and CPSO-PID in damping
frequency oscillations in the microgrid. This was particularly
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Table 3. Controller performance based on index in scenarios 4 and 5.

Scenario ZN-PI [47] Fuzzy-PI [47] MPC controller
4 0.000137 0.0002 0.00024
5 0.00109 0.00272 0.00426

 

Figure 12: Controller performance for damping frequency variations in scenario 3 
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Fig. 11. Controller performance for damping frequency variations in
scenario 2.
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Fig. 12. Controller performance for damping frequency variations in
scenario 3.

 

Figure 13: Step load disturbance. 
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Fig. 13. Step load disturbance.

evident in reducing the amplitude of frequency overshoots and
undershoots, as well as reducing the number of oscillations.
The proposed controller was able to effectively maintain the
microgrid frequency within the desired range and prevent excessive
oscillations. These results indicate the higher efficiency of this
controller against disturbances, which can improve the stability
and reliability of the microgrid system in real-world operating
environments.

 

 
Figure 14: Performance of different controllers for damping frequency in scenario 4. 
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Fig. 14. Performance of different controllers for damping frequency in
scenario 4.
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Fig. 15. Relatively severe step load disturbance. 

 

 

Figure 16: Performance of different controllers for damping frequency in scenario 5 

 

4.3. Economic analysis of controller implementation  

In addition to technical performance, the economic feasibility of implementing the proposed MPC-

based controller is a critical consideration. Table 4 compares the MPC controller with traditional 

control strategies in terms of implementation cost, maintenance, tuning complexity, and system 

benefits. While the MPC strategy involves a higher initial setup and computational demand, the 

long-term benefits, such as improved stability, fewer operational losses, and lower maintenance 

costs, justify the investment, especially in complex microgrid environments that experience 

frequent disturbances. 

Table 4: Comparative economic analysis of control strategies. 

Criterion ZN-PI Controller 
[47] 

Fuzzy-PI 
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Proposed MPC 
Controller 

Initial Setup Cost Low Moderate High 
Maintenance Cost Moderate High Low 
Tuning Complexity Low Moderate High 
Computational 
Load 

Low Moderate High 
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Fig. 16. Performance of different controllers for damping frequency in
scenario 5.

Scenario 2: In this scenario, similar to the first scenario, but
with the addition of a new robustness parameter (H(2)) to the
controllers in order to examine performance under conditions of
system parameter variations. In this scenario, the parameter H(2)
was varied in the range [1.5 × 10−3, 5.1]. These changes in
the parameter allowed the evaluation of controller results under
conditions resistant to disturbances. The results of this scenario
also showed that the proposed controller performed better than the
two controllers CPSO-FOPID and CPSO-PID in the face of these
parametric changes and frequency oscillations. In this scenario,
even with changes in the parameters, the proposed controller was
able to maintain the microgrid frequency accurately and with
minimal oscillations, which demonstrates its robust and adaptable
characteristics.
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Table 4. Comparative economic analysis of control strategies.

Criterion ZN-PI controller [47] Fuzzy-PI controller [47] Proposed MPC controller
Initial setup cost Low Moderate High
Maintenance cost Moderate High Low

Tuning complexity Low Moderate High
Computational load Low Moderate High

Disturbance handling ability Low Moderate High
Frequency stability achieved Moderate Moderate High

Operational efficiency Moderate Moderate High
Long-Term cost efficiency Moderate Low High

The simulation results clearly demonstrate the high efficiency
of the proposed controller in improving the frequency stability of
the microgrid under various disturbance conditions. This controller
not only provided a desirable response to frequency oscillations
but also remained robust and reliable against changes in system
parameters. This can be useful in the design and implementation of
control systems for future microgrids, especially in environments
with complex and unpredictable disturbances.

Scenario 3: Similar to Scenario 1, but to estimate robust
enactment of controllers, it is supposed that H(2) can vary in
range [1.5 × 10−3, 5.1]. In this scenario, the response of the
controllers to simultaneous disturbances is shown in Fig. 12.
The results show that the proposed controller performs better
than the other controllers in this case as well. This is especially
observed in conditions where system parameter variations occur.
The proposed controller in this scenario is able to maintain the
stability of the microgrid frequency with better performance in
damping oscillations.

Scenario 4: In this scenario, a disturbance of the type of step
load changes according to Fig. 13 is applied to the microgrid.
To compare the response of different controllers, the renewable
energy source parameters presented in [47] are used in scenarios
4 and 5. Fig. 14 shows the performance of the ZN-PI, Fuzzy-PI,
and proposed controllers. In this scenario, the results show that the
performance of the proposed controller is significantly better than
the other controllers. In particular, the proposed controller was able
to damp frequency oscillations better than the other controllers and
ultimately create better stability in the microgrid.

Scenario 5: The conditions are similar to Scenario 4, but
the disturbance applied to the microgrid is a relatively severe
step load disturbance, as shown in Fig. 15. In this scenario,
the performance of the proposed controller and the ZN-PI and
Fuzzy-PI controllers for damping frequency variations is shown in
Fig. 16. The results show that the performance of the proposed
controller in this scenario is also significantly more desirable than
the other controllers. This demonstrates the better capability of the
proposed controller in the face of severe disturbances and rapid
load changes.

To better evaluate the proposed controller and compare it with
the ZN-PI and Fuzzy-PI controllers, an index is defined according
to Eq. (33). The evaluation results of the various controllers in
Scenarios 4 and 5 are shown in Table 2. As can be seen in
this table, the enactment of suggested controller is enhanced than
the additional controllers. These results emphasize the advantages
of using the proposed controller in microgrids, especially in
conditions where there are severe disturbances and rapid dynamic
changes.

4.3. Economic analysis of controller implementation
In addition to technical performance, the economic feasibility

of implementing the proposed MPC-based controller is a critical
consideration. Table 4 compares the MPC controller with traditional
control strategies in terms of implementation cost, maintenance,
tuning complexity, and system benefits. While the MPC strategy
involves a higher initial setup and computational demand, the

long-term benefits, such as improved stability, fewer operational
losses, and lower maintenance costs, justify the investment,
especially in complex microgrid environments that experience
frequent disturbances.

Table 4 supports the conclusion that although the MPC controller
may incur higher upfront costs and tuning efforts, it provides
superior economic value in the long run through robust control,
reduced instability-related losses, and improved energy balance.

5. CONCLUSION AND FUTURE WORK

Frequency control is a fundamental requirement in maintaining
the stability and performance of islanded microgrids, especially
those with high penetration of renewable energy sources. In
this study, a robust Model Predictive Control (MPC)-based Load
Frequency Control (LFC) strategy was proposed and evaluated for
a diverse microgrid system composed of photovoltaic (PV), wind
turbine generator (WTG), fuel cell (FC), battery energy storage
system (BESS), flywheel energy storage system (FESS), diesel
engine generator (DEG), and aqua electrolyzer (AE) units.Extensive
simulations using MATLAB/Simulink demonstrated the superior
performance of the proposed controller in mitigating frequency
oscillations compared to classical and intelligent controllers such
as PI-ZN, Fuzzy-PI, CPSO-PID, and CPSO-FOPID. Quantitatively,
the proposed MPC controller achieved a maximum frequency
deviation of only 0.0052 pu, a settling time of 5.1 seconds,
and an ITAE of 0.00024, significantly outperforming other
methods in terms of stability and responsiveness. Five distinct
disturbance scenarios were examined, including step load changes
and parameter uncertainties. For example, in Scenarios 4 and 5,
which involved moderate to severe step disturbances, the proposed
controller achieved performance indices of 0.00024 and 0.00426,
respectively, while outperforming the benchmark ZN-PI and Fuzzy-
PI controllers. Furthermore, a sensitivity analysis on the controller
parameters confirmed that the selected values (Np = 1, Nc = 2)
provide an effective trade-off between control performance and
computational demand. Economically, although the MPC-based
controller requires a higher initial setup and tuning complexity, it
offers substantial long-term benefits such as improved operational
efficiency, better disturbance rejection, and reduced maintenance
costs. These characteristics make it a compelling solution for
real-world microgrid applications, especially in systems subject to
high levels of dynamic uncertainty.

Future research can focus on extending the proposed control
framework to hybrid AC/DC microgrids and incorporating adaptive
MPC algorithms that can self-tune under varying system conditions.
In addition, integrating machine learning techniques for disturbance
prediction and multi-objective optimization can further improve
control precision and economic performance. Hardware-in-the-loop
(HIL) testing and experimental validation on a real-time digital
simulator (RTDS) platform are also recommended to assess
practical feasibility and deployment readiness.
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