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ABSTRACT

The Seidel energy of a graph is the sum of the absolute
values of the eigenvalues of its Seidel matrix. In this
paper, we introduce the concept of edge Seidel energy
E(Ls(G)) and edge covering Seidel energy E(Lsec(G))
for the K1,n and K2,n Graphs, and we have obtained
some results.
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1. Introduction

Another well-known matrix corresponding to a graph is the Seidel matrix S(G) introduced

by van Lint and Seidel in 1966 [?]. It is defined as S(G) = Jn − I − 2A(G), where Jn is the

matrix with all its entries equal to 1 and I is an identity matrix both of the same order n×n.
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Seidel energy in graphs has various applications, especially in network analysis, clustering,

and studying the resilience features of networks. Seidel energy serves as a measure to assess

the resilience of a graph against removal or failure of edges and vertices. This metric helps

identify critical points in communication, power, or transportation networks. Seidel energy

can be used for detecting clusters and independent components within a graph through

spectral analysis. It plays an effective role in identifying important regions and central data

points in clustering algorithms. In designing and improving distribution networks, Seidel

energy functions as an indicator of network robustness and resistance to interference or

failures. It helps evaluate efficiency and security structures in wireless and IoT networks

[?, ?, ?, ?]. The one of important spectral properties of the Seidel matrix is that the

multiplicity of the least Seidel eigenvalue has a connection with equiangular lines in Euclidean

space [?]. The energy of a graph G is the sum of absolute values of the eigenvalues of G.

Haemers introduced the Seidel energy of a graph G, defined as the sum of absolute values of

the Seidel eigenvalues of G and showed a connection with the energy of G [?, ?]. The study

on Seidel energy of a graph can be found in [?, ?, ?, ?, ?, ?]. The concept of energy in a

graph was introduced by I. Gutman in the year 1978 [?]. Let G be a simple graph and let its

vertex set be V (G) = {v1, v2, . . . , vn}. The adjacency matrix A(G) of the graph G is a square

matrix of order n, A = A(G), where entries aij are given by aij = 1 if vi and vj are adjacent,

aij = 0 otherwise. The eigenvalues λ1, λ2, . . . , λn of A(G), assumed in non-increasing order,

are the eigenvalues of the graph G. The energy E(G) of a graph G is the sum of the absolute

values of A(G) eigenvalues. In this paper, all graphs are assumed to be simple, finite, and

connected. A graph G = (V,E) is a simple graph with no loops, no multiple and directed

edges. As usual, we denote by n = |V | and m = |E| to the number of vertices and edges in

a graph G, respectively.

2. SEIDEL AND EDGE SEIDEL ENERGY

In this section, we first define Seidel energy and then introduce an edge Seidel energy of a

graph. Subsequently, we examine an edge Seidel energy of K1,n and K2,n graphs and prove

some of properties.

Definition 2.1. Let G be a simple graph of order n with vertex set V = {v1, v2, v3, . . . , vn}
and edge set E. The Seidel matrix of G is the n× n matrix defined by S(G) = sij , where

sij =


−1 if vivj ∈ E,

1 if vivj /∈ E,

0 if vi = vj .

The characteristic polynomial of S(G) is denoted by fn(G,λ) = det(λI − S(G)). The

Seidel eigenvalues of a graph G are the eigenvalues of S(G). The Seidel energy of G is

defined as SE(G) =
n∑

i=1
|λi| [?].

Definition 2.2. Let G be a simple graph and let its vertex set be V (G) = {v1, v2, . . . , vn}
and edge set E(G) = {e1, e2, . . . , em}. The edge Seidel matrix of G is defined as Se(G) = seij ,

where
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seij =


−1 if ei and ej are adjacent,

1 if ei and ej are not adjacent,

0 if ei = ej .

The characteristic polynomial of Se(G) is denoted by fm(G,λ) = det(λI − Se(G)). The

edge Seidel eigenvalues of a graph G are the eigenvalues of Se(G). The edge Seidel energy

of G is defined as Se(E(G)) =
m∑
i=1

|λi|.

2.1. Edge Seidel Energy of K1,n.

Theorem 2.3. If G be K1,n graph of order m, then

(i) fm(G,λ) = (λ− 1)m−1(λ+ (m− 1)); m = 2, 3, ...

(ii) detSe(G) = 1−m

Proof. Let Se(G) be an edge Seidel matrix of G. Then

(i)

Se =


0 −1 −1 · · · −1

−1 0 −1 · · · −1
...

...
. . .

...
...

−1 −1 −1 · · · 0

 .

The characteristic polynomial of Se(G) is fm(G,λ) = det(λI−Se). Using the elementary row

operations, we convert fm(G,λ) into an upper triangular matrix. Then the characteristic

polynomial is as follows:

fm(G,λ) = (λ− 1)m−1(λ+ (m− 1)); m = 2, 3, ...

(ii) The eigenvalues of the matrix J , which is an n × n matrix of all ones, are as follows:

there is one eigenvalue equal to n, and the remaining n − 1 eigenvalues are equal to zero.

Consequently, the eigenvalues of the matrix −J + I, where I is the identity matrix, are

1 − n(corresponding to the eigenvector associated with the eigenvalue n of J and 1(with

multiplicity n − 1)). Therefore, the determinant of the matrix −J + I is the product of its

eigenvalues. So det(−J + I) = (1− n)× 1n−1 = 1− n. Since the matrix Se(G) for the star

graph K1,n has this structure, it follows that detSe(G) = 1−m where m = n. □

Theorem 2.4. Let G be K1,n graph of order m. The edge Seidel energy of K1,n is

E(Ls(G)) = 2(m− 1); m = 2, 3, ...

Proof. Using Theorem ??, fm(G,λ) = (λ− 1)m−1(λ+ (m− 1)). So

(1× (m− 1)) + ((m− 1)× 1) = m− 1 +m− 1 = 2m− 2 = 2(m− 1). □

Proposition 2.5. If G be K1,n graph of order m, then

m∑
i=1

λ2
i = m(m− 1); m = 2, 3, ...

Proof. Using Theorem ??, fm(G,λ) = (λ− 1)m−1(λ+ (m− 1)). So
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(12 × (m− 1)) + ((m− 1)2 × 1) = m− 1 +m2 − 2m+ 1 = m2 −m = m(m− 1).

□

2.2. Edge Seidel Energy of K2,n.

Theorem 2.6. If G be K2,n graph of order m, then

fm(G,λ) = (λ− 3)

m

2
−1

(λ+ 1)

m

2 (λ+ (m− 3)); m = 2n, n = 1, 2, ...

Proof. Let Se(G) be an edge Seidel matrix of G. Then

n︷ ︸︸ ︷
e1 e2 . . . en

n−1︷ ︸︸ ︷
en+1 . . . en×m

n



e1

...

en

n− 1


en+1

...

en×m



0 −1 · · · −1 1 · · · 1

−1
. . .

...
...

. . .
...

−1
. . . −1

1 · · · . . . −1
...

. . .
...

1 · · · −1 · · · 0



The characteristic polynomial of Se(G) is fm(G,λ) = det(λI − Se). Using the elementary

row operations, we convert fm(G,λ) into an upper triangular matrix. Then the characteristic

polynomial is as follows:

fm(G,λ) = (λ− 3)

m

2
−1

(λ+ 1)

m

2 (λ+ (m− 3)); m = 2n, n = 1, 2, ...

□

Theorem 2.7. The edge Seidel energy of K2,n is

(i) E(Ls(G)) = 3(m− 2); m = 2n, n = 2, 3, ...

(ii) E(Ls(G)) = 2 for n = 1

Proof. Using Theorem ??,

(i) fm(G,λ) = (λ− 3)

m

2
−1

(λ+ 1)

m

2 (λ+ (m− 3)). So

(
m

2
− 1)× 3 + (

m

2
× 1) + (m− 3) =

3m

2
− 3 +

m

2
− 3 =

4m

2
+m− 6 = 3m− 6 = 3(m− 2).
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(ii) Let G be K2,1 graph of order 2. Then f2(G,λ) = (λ+ 1)(λ− 1). So λ1 = 1 and λ2 = −1

and E(Ls(G)) =
2∑

i=1
λ2
i = 2. □

Proposition 2.8. If G be K2,n graph of order m, then

m∑
i=1

λ2
i = m(m− 1); m = 2n, n = 1, 2, ...

Proof. Using Theorem ??, fm(G,λ) = (λ− 3)

m

2
−1

(λ+ 1)

m

2 (λ+ (m− 3)). So

(
m

2
− 1)× (32) + (

m

2
× (−12) + (m− 3)2) =

9m

2
− 9 +

m

2
+m2 − 6m+ 9

=
10m

2
+m2 − 6m = 5m+m2 − 6m = m2 −m = m(m− 1).

□

3. Minimum Edge Covering Seidel Energy

Let G be a simple graph and let its vertex set be V (G) = {v1, v2, . . . , vn} and edge set

E(G) = {e1, e2, . . . , em}. A subset C of V is called an edge covering set of G if every vertex

of G is incident to at least one edge in C. Any edge covering set with minimum cardinality

is called a minimum edge covering set [?]. Let Ce be the minimum edge covering set of a

graph G. The minimum edge covering Seidel matrix of G is the n × n matrix defined by

SCe(G) = S
′
eij , where

s
′
eij =


−1 if eiej ∈ E,

1 if eiej /∈ E,

1 if i = j and ei ∈ Ce,

0 if i = j and ei /∈ Ce.

The characteristic polynomial of SCe(G) is denoted by fm(G,λ) = det(λI − SCe(G)).

Since SCe(G) is real and symmetric, its eigenvalues are real numbers and we label them in

non-increasing order λ1 ≥ λ2 ≥ · · · ≥ λn. The edge covering Seidel energy of G is defined as

SCe(G) =
m∑
i=1

|λi|.

3.1. Minimum Edge Covering Seidel Energy of K1,n.

Theorem 3.1. If G be K1,n graph of order m, then

fm(G,λ) = (λ+ (m− 2))(λ− 2)m−1; m = 2, 3, ...

Proof. Let S
′
e(G) be an edge covering Seidel matrix of G. Then

S
′
e =


1 −1 −1 · · · −1

−1 1 −1 · · · −1
...

...
. . .

...
...

−1 −1 · · · 1 −1

−1 −1 −1 · · · 1

 .
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The characteristic polynomial of S
′
e(G) is fm(G,λ) = det(λI − S

′
e). Using the elementary

row operations, we convert fm(G,λ) into an upper triangular matrix. Then the characteristic

polynomial is as follows:

fm(G,λ) = (λ+ (m− 2))(λ− 2)m−1; m = 2, 3, ...

□

Theorem 3.2. The edge covering Seidel energy of K1,n is

E(Lsec(G)) = 3m− 4; m = 2, 3, ...

Proof. Using Theorem ??, fm(G,λ) = (λ+ (m− 2))(λ− 2)m−1. So

((m− 2)× 1) + (2× (m− 1)) = m− 2 + 2m− 2 = 3m− 4. □

Proposition 3.3. If G be K1,n graph of order m, then

m∑
i=1

λ2
i = m2; m = 2, 3, ...

Proof. Using Theorem ??, fm(G,λ) = (λ+ (m− 2))(λ− 2)m−1. So

(m− 2)2 + (m− 1)× (22) = m2 − 4m+ 4 + 4m− 4 = m2.

□

3.2. Edge Covering Seidel Energy of K2,n.

Theorem 3.4. If G be K2,n graph of order m, then

fm(G,λ) = (λ2 + (m− 3)λ+
m

2
− 2)(λ2 − 3λ− 2)

m

2
−1

; m>2

Proof. Let S
′
e(G) be an edge covering Seidel matrix of G. Then

S
′
e =



1 −1 −1 1 −1 · · · −1 1

−1 0 1 −1 1 · · · 1 −1

−1 1 0 −1 −1 · · · −1 1

1 −1 −1 1 1 · · · 1 −1
...

. . .
...

−1 1 −1 1 −1 · · · −1 1

1 −1 1 −1 1 · · · 1 −1

−1 1 −1 1 −1 · · · 0 −1

1 −1 1 −1 1 · · · −1 −1 1



The characteristic polynomial of Se(G) is fm(G,λ) = det(λI−S
′
e). Using the elementary

row operations, we convert fm(G,λ) into an upper triangular matrix. The characteristic
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polynomial is as follows:

fm(G,λ) = (λ2 + (m− 3)λ+
m

2
− 2)(λ2 − 3λ− 2)

m

2
−1

; m>2

□

Theorem 3.5. The edge covering Seidel energy of K2,n is

E(Lsec(G)) = (
2 +

√
17

2
)m− (3 +

√
17); m>2

Proof. Using Theorem ?? and ∆ method,

E(Lsec(G)) = ((m− 3)2 − 4(
m

2
− 2)) + (9− 4(−2× 1))(

m

2
− 1)

= (m2 − 6m+ 9− 2m+ 8) + 17(
m

2
− 1)

= (m2 − 8m+ 17) + 17(
m

2
− 1)

We form the ∆ for the (m2 − 8m+ 17). Then

m1 = 4− i , m2 = 4 + i and ∆ = (m− 4 + i)(m− 4− i). So

λ1 =
3−m−

√
(m− 4 + i)(m− 4− i)

2
and λ2 =

3−m+
√
(m− 4 + i)(m− 4− i)

2
.

For (λ2 − 3λ− 2) we have ∆ = 17. So λ3 =
3 +

√
17

2
and λ4 =

3−
√
17

2
.

We put λ1, λ2, λ3, λ4 in the (m2 − 8m + 17) + 17(
m

2
− 1) and E(L(G)) is obtained as

follows:

E(L(G)) =
m− 3 +

√
(m− 4 + i)(m− 4− i)

2
+

m− 3−
√
(m− 9 + i)(m− 4− i)

2

+
3 +

√
17

12

(m
2

− 1
)
.

And E(Lsec(G)) is calculated as follows:

E(Lsec(G)) =
2m− 6

2
+

(
3 +

√
17

4

)
m−

(
3 +

√
17

2

)

+

(
3 +

√
17

4

)
m−

(
3 +

√
17

4

)
m−

(
3 +

√
17

2

)

= m− 3 +
3m

4
+

√
17

4
m− 3

2
−

√
17

2
− 3m

4
−

√
17

4
m+

3

2
−

√
17

2

= m− 2 +
2
√
17

4
m−

√
17 = m− 3 +

√
17

2
m−

√
17

=

(
1 +

√
17

2

)
m− (3 +

√
17).

□
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Proposition 3.6. If G be K2,n graph of order m, then

m∑
i=1

λ2
i = m2 − m

2
, m>2

Proof. Using Theorems ?? and ??,

fm(G,λ) = (λ2 + (m− 3)λ+
m

2
− 2)(λ2 − 3λ− 2)

m

2
−1

; m>2. So

m∑
i=1

λ2
i =

2(3−m)2 + 2(m− 4 + i)(m− 4− i)

4

+

(
26 + 6

√
17

4

)
(
m

2
− 1) +

(
26− 6

√
17

4

)
(
m

2
− 1)

=
(3−m)2 + (m− 4 + i)(m− 4− i)

2

+

(
13 + 3

√
17

2

)
(
m

2
− 1) +

(
13− 3

√
17

2

)
(
m

2
− 1)

=
9− 6m+m2 +m2 − 8m+ 17

2
+

13m

4
− 13

2

+
3
√
17m

4
− 3

√
17

2
+

13m

4
− 13

2
− 3

√
17m

4
+

3
√
17

2

=
2m2 − 14m+ 26

2
+

26m

4
− 26

2
= m2 − 7m+ 13 +

13

2
m− 13

= m2 − m

2

Consequently,
∑m

i=1 λ
2
i = m2 − m

2
for m > 2

□

4. Conclusions

The results of this study demonstrate that the edge Seidel energy can serve as an effec-

tive and valuable tool in analyzing the structural characteristics and internal relationships

of graphs. This tool enables the identification and differentiation of critical points and key

elements within various networks and, through spectral analysis, provides a deeper under-

standing of the structure and behavior of graphs. Furthermore, the findings of this research

offer new perspectives on the spectral behaviors of the graphs K1,n and K2,n as well as their

interactions, which can serve as a foundation for more advanced studies. These achievements

contribute to a better comprehension of the applications of Seidel energy within the fields of

graph theory and applied mathematics. For instance, they can be utilized in designing and

optimizing communication networks, transportation systems, power grids, and clustering al-

gorithms. Additionally, investigating and analyzing the relationships among different types

of graph energies such as Seidel energy, spectral energy, and other metrics can open pathways

for developing innovative methods for analyzing complex systems. Finally, it is recommended

that future research focus on more complex and diverse graphs and explore the relationships

and comparisons between various energies in graphs. This is of great importance because
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real-world networks are often highly intricate and multidimensional, requiring deeper and

broader studies to fully understand their interrelations. Developing analytical models and

robust quantitative tools in this area could not only enrich theoretical graph analysis but

also expand practical applications across various industries and technological fields.

Acknowledgments Authors are thankful to the Research Council of Semnan University.
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