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ABSTRACT

Every Riemannian metric is R-quadratic while many
Finsler metrics have not this property. A Finsler met-
ric is called R-quadratic if its Riemannian curvature is
quadratic in all direction at any points of the underly-
ing manifold. A Finsler metric on a manifold is called
a generalized Berwald metric if there exists a covariant
derivative such that the parallel translations induced
by it preserve the Finsler function. In this paper, we
study the class of generalized Berwald (α, β)-manifolds
with R-quadratic properties and prove a rigidity result.
We show that such manifolds satisfy S = 0 if and only
if B = 0.
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1. Introduction

For a Finsler metric F an a manifold M , the second variation of geodesics gives rise to

a family of linear maps Ry : TxM → TxM , at any point y ∈ TxM which is called the

Riemann curvature in the direction y. One can see that it is not only a function of position

but also depends on direction, while in Riemann geometry it only depends on position. If

F is Riemannian, i.e., F (y) =
√
g(y, y) for some Riemannian metric g, then Ry := R(·, y)y,

where R(u, v)z denotes the Riemannian curvature tensor of g. In this case, Ry is quadratic

in y ∈ TxM . There are many Finsler metrics whose Riemann curvature in every direction

is quadratic. A Finsler space is said to be R-quadratic if its Riemann curvature Ry is
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quadratic in y ∈ TxM . Indeed a Finsler metric is R-quadratic if and only if the h-curvature

of Berwald connection depends on position only in the sense of Bácsó-Matsumoto [1]. The

notion of R-quadratic Finsler metrics was introduced by Shen, which can be considered as a

generalization of R-flat metrics.

Every Berwald metric is a trivially R-quadratic. A Finsler metric F is called a Berwald

metric if Gi = 1
2Γ

i
jk(x)y

jyk are quadratic in y ∈ TxM for any x ∈ M . Also, Berwald metrics

belongs to the class of generalized Berwald metrics. A Finsler metric F on a manifold M is

called a generalized Berwald metric if there exists a covariant derivative ∇ on M such that

the parallel translations induced by ∇ preserve the Finsler function F [11][16]. In this case,

(M,F ) is called a generalized Berwald manifold. If ∇ is also torsion-free, then F reduces to

a Berwald metric. Thus, we get the following

{Berwald metrics} ⊆ {R-quadratic metrics} ∩ {generalized Berwald metrics}.

There is another quantity that is close to the Berwald metrics, namely, S-curvature. The

S-curvature is constructed by Shen for given comparison theorems on Finsler manifolds [9].

A natural problem is to study and characterize Finsler metrics of vanishing S-curvature. It

is known that some of Randers metrics are of vanishing S-curvature [7][14]. This is one of

our motivations to consider Finsler metrics with vanishing S-curvature. Shen proved the

following:

Theorem A. ([9] Shen Theorem) Every Berwald metric satisfies S = 0.

Very soon, Tayebi-Rafie Rad generalized Shen theorem and proved that every isotropic

Berwald metric has isotropic S-curvature [14]. However, in [3], Bao-Shen found a class of

non-Berwaldian Randers metrics with vanishing S-curvature. Thus the converse of Shen’s

theorem is not true, generally. A natural question arises:

Question. Under which conditions the converse of Shen’s Theorem holds?

To find some solutions for the above question, one can consider the class of (α, β)-metrics.

An (α, β)-metric is a Finsler metric on M defined by F := αϕ(s), where s = β/α, ϕ = ϕ(s)

is a C∞ function on the (−b0, b0) with certain regularity, α =
√

aij(x)yiyj is a positive-

definite Riemannian metric and β = bi(x)y
i is a 1-form on M . The simplest (α, β)-metrics

are the Randers metrics F = α + β which were discovered by G. Randers when he stud-

ied 4-dimensional general relativity. In [12], Tayebi-Eslami characterized the class of two-

dimensional generalized Berwald (α, β)-metrics with vanishing S-curvature and prove the

following.

Theorem B. Let F = αϕ(s), s = β/α, be a two-dimensional generalized Berwald (α, β)-

metric on a connected and orientable manifold M . Suppose that F has vanishing S-curvature

and ϕ′(0) ̸= 0. Then one of the following holds:

: (i) If F is a regular metric, then it reduces to a locally Minkowskian metric;

: (ii) If F is an almost regular metric that is not locally Minkowskian, then ϕ is given

by

ϕ = c exp

[∫ s

0

kt+ q
√
b2 − t2

1 + kt2 + qt
√
b2 − t2

dt

]
,(1.1)
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where c > 0, q > 0, and k are real constants, and β satisfies

rij = 0, si = 0.(1.2)

In this case, F is neither a Berwald nor Landsberg nor a Douglas metric.

Here, we consider generalized Berwald (α, β)-metric which are R-quadratic, and prove the

following.

Theorem 1.1. Let F = αϕ(s), s = β/α, be a regular generalized Berwald (α, β)-metric on

a manifold M such that ϕ′(0) ̸= 0. Suppose that F is a R-quadratic. Then, F has vanishing

S-curvature S = 0 if and only if it is a Berwald metric B = 0.

In this paper, we use the Berwald connection and the h- and v- covariant derivatives of a

Finsler tensor field are denoted by “ | ” and “, ” respectively [13].

2. Preliminary

A Finsler metric on a manifold M is a nonnegative function F on TM having the following

properties

(a) F is C∞ on TM0 := TM \ {0};
(b) F (λy) = λF (y), ∀λ > 0, y ∈ TM ;

(c) for each y ∈ TxM , the following quadratic form gy on TxM is positive definite,

gy(u, v) :=
1

2

[
F 2(y + su+ tv)

]∣∣∣
s,t=0

, u, v ∈ TxM.

Given a Finsler manifold (M,F ), then a global vector field G is induced by F on TM0,

which in a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where Gi(x, y) are local functions on TM0 satisfying

Gi(x, λy) = λ2Gi(x, y) λ > 0.

G is called the associated spray to (M,F ). The projection of an integral curve of G is called

a geodesic in M . In local coordinates, a curve c(t) is a geodesic if and only if its coordinates

(ci(t)) satisfy c̈i + 2Gi(ċ) = 0. A Finsler metric F is called a Berwald metric if Gi are

quadratic in y ∈ TxM for any x ∈ M or equivalently the following Berwald curvature is

vanishing.

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
.

For a non-zero vector y ∈ TxM0, the Riemann curvature Ry : TxM → TxM is defined by

Ry(u) := Ri
k(y)u

k ∂
∂xi , where

Ri
k(y) = 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

The family R := {Ry}y∈TM0 is called the Riemann curvature.
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There are many Finsler metrics whose Riemann curvature in every direction is quadratic.

A Finsler metric F is said to be R-quadratic if Ry is quadratic in y ∈ TxM at each point

x ∈ M . Put

R i
j kl(y) :=

1

3

∂

∂yj

[∂Ri
k

∂yl
−

∂Ri
l

∂yk

]
.

R i
j kl are the coefficients of the h-curvature of the Berwald connection, which are also denoted

by H i
j kl in literatures. We have

Ri
k(y) = yjR i

j kl(y)y
l.

Thus Ri
k(y) is quadratic in y ∈ TxM if and only if R i

j kl(y) are functions of x only.

For a Finsler metric F on an n-dimensional manifold M , the Busemann-Hausdorff volume

form dVF = σF (x)dx
1 · · · dxn is defined by

σF (x) :=
Vol

(
Bn(1)

)
Vol

{
(yi) ∈ Rn

∣∣∣ F(
yi ∂

∂xi |x
)
< 1

} .

In general, the local scalar function σF (x) can not be expressed in terms of elementary

functions, even F is locally expressed by elementary functions.

Let Gi(x, y) denote the geodesic coefficients of F in the same local coordinate system. The

S-curvature is defined by

S(y) :=
∂Gi

∂yi
(x, y)− yi

∂

∂xi

[
lnσF (x)

]
.

where y = yi ∂
∂xi |x ∈ TxM . It is proved that S = 0 if F is a Berwald metric [7]. There are

many non-Berwald metrics satisfying S = 0 [3].

Given a Riemannian metric α, a 1-form β on a manifold M , and a C∞ function ϕ = ϕ(s)

on [−bo, bo], where bo := supx∈M ∥β∥x, one can define a function on TM by

F := αϕ(s), s =
β

α
.

If ϕ and bo satisfy (2.1) and (2.2) below, then F is a Finsler metric on M . Finsler metrics in

this form are called (α, β)-metrics. Randers metrics are special (α, β)-metrics.

Now we consider (α, β)-metrics. Let α =
√

aijyiyj be a Riemannian metric and β = biy
i

a 1-form on a manifod M . Let

∥β∥x :=
√

aij(x)bi(x)bj(x).

For a C∞ function ϕ = ϕ(s) on [−bo, bo], where bo = supx∈M ∥β∥x, define

F := αϕ(s), s =
β

α
.

By a direct computation, we obtain

gij = ρaij + ρ0bibj − ρ1(biαj + bjαi) + sρ1αiαj ,
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where αi := aijy
j/α, and

ρ := ϕ(ϕ− sϕ′),

ρ0 := ϕϕ′′ + ϕ′ϕ′,

ρ1 := s(ϕϕ′′ + ϕ′ϕ′)− ϕϕ′.

By further computation, one obtains

det (gij) = ϕn+1
(
ϕ− sϕ′)n−2

[
(ϕ− sϕ′) + (∥β∥2x − s2)ϕ′′

]
det (aij) .

Using the continuity, one can easily show that

Lemma 2.1. Let bo > 0. F = αϕ(β/α) is a Finsler metric on M for any pair {α, β} with

supx∈M ∥β∥x ≤ bo if and only if ϕ = ϕ(s) satisfies the following conditions:

ϕ(s) > 0, (|s| ≤ bo)(2.1)

ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0, (|s| ≤ b ≤ bo).(2.2)

Let

rij :=
1

2

(
bi|j + bj|i

)
, sij :=

1

2

(
bi|j − bj|i

)
.

rj := birij , sj := bisij .

Let ri0 := rijy
j , si0 := sijy

j , r0 := rjy
j and s0 := sjy

j . Suppose that Gi = Gi(x, y) and

Ḡi = Ḡi(x, y) denote the coefficients of F and α respectively in the same coordinate system.

By definition, we obtain the following identity

Gi = Ḡi + Pyi +Qi,

where

P = α−1Θ
[
r00 − 2Qαs0

]
,

Qi = αQsi0 +Ψ
[
r00 − 2Qαs0

]
bi,

Q =
ϕ′

ϕ− sϕ′ ,

Θ =
ϕϕ′ − s(ϕϕ′′ + ϕ′ϕ′)

2ϕ
(
(ϕ− sϕ′) + (b2 − s2)ϕ′′

) ,
Ψ =

1

2

ϕ′′

(ϕ− sϕ′) + (b2 − s2)ϕ′′ .

Clearly, if β is parallel with respect to α (rij = 0 and sij = 0), then P = 0 and Qi = 0. In

this case, Gi = Ḡi are quadratic in y, and F is a Berwald metric.

3. Proof of Theorem 1.1

In this section, we will prove a generalized version of Theorem 1.1. Indeed, we study

Theorem 3.1. Let F = αϕ(s), s = β/α, be a regular generalized Berwald (α, β)-metric on

an n-dimensional manifold M such that ϕ′(0) ̸= 0. Then F is a R-quadratic metric with

isotropic S-curvature S = (n+ 1)cF if and only if it is a Berwald metric, where c = c(x) is

a scalar function on M .
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To prove Theorem 3.1, we need the following key lemma.

Lemma 3.2. ([15]) An (α, β)-metric satisfying ϕ′(0) ̸= 0 is a generalized Berwald manifold

if and only if β has constant length with respect to α.

A Finsler metric F on an n-dimensional manifold M is called of isotropic S-curvature, if

S = (n+ 1)cF , where c = c(x) is a scalar function on M . In [5], Cheng-Shen characterized

(α, β)-metrics with isotropic S-curvature on a manifold M of dimension n ≥ 3. Soon, they

found that their result holds for the class of (α, β)-metrics with constant length one-forms,

only. In [12], we give a new characterization of the class of generalized Berwald metrics with

vanishing S-curvature and prove the following.

Lemma 3.3. ([12]) Let F = αϕ(s), s = β/α, be a generalized Berwald (α, β)-metric on an

n-dimensional manifold M . Suppose that ϕ′(0) ̸= 0. Then S = 0 if and only if β is a Killing

form with constant length, namely

rij = 0, sj = 0.(3.1)

First, we remark the following well-known Bianchi identities.

Lemma 3.4. ([8]) For the Berwald connection, the following Bianchi identities hold:

Ri
jkl|m +Ri

jlm|k +Ri
jmk|l = Bi

jkuR
u
lm +Bi

jluR
u
km +Bi

kluR
u
jm(3.2)

Bi
jml|k −Bi

jkm|l = Ri
jkl,m(3.3)

Bi
jkl,m = Bi

jkm,l.(3.4)

Now, we study the Berwald curvature of generalized Berwald (α, β)-metrics and prove the

following.

Lemma 3.5. Let F = αϕ(s), s = β/α, be a generalized Berwald (α, β)-metric on manifold

M such that ϕ′(0) ̸= 0. Suppose that F has vanishing S-curvature. Then, the following hold

bmBm
jkl = 0,(3.5)

where bm := bm(x) are the components of 1-form β = bi(x)y
i.

Proof. The spray coefficients of an (α, β)-metric F = αϕ(s), s = β/α, are given by

Gi = Ḡi + αQsi0 +
1

α

(
r00 − 2Qαs0

)(
Θyi + αΨbi

)
,(3.6)

where sij := aihshj , s
i
0 := siy

i, r00 = rijy
iyj and

Θ =
Q− sQ′

2∆
, Ψ =

Q′

2∆
.

According to the assumption, F has vanishing S curvature. Putting (3.1) in (3.6) gives us

Gi = Ḡi + αQsi0.(3.7)

Multiplying (3.7) with bi yields

biG
i = biḠ

i.(3.8)
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The following hold

∂3Ḡi

∂yj∂yk∂yl
= 0,

∂bi
∂yj

= 0.(3.9)

Then, taking three vertical derivation of (3.8) and using (3.9) gives us (3.5). □

In [4], Cheng consider regular (α, β)-metrics with isotropic S-curvature and prove the

following.

Theorem C. ([4]) A regular (α, β)-metric F := αϕ(β/α), of non-Randers type on an n-

dimensional manifold M is of isotropic S-curvature, S = (n+1)σF , if and only if β satisfies

rij = 0 and sj = 0. In this case, S = 0, regardless of the choice of a particular ϕ = ϕ(s).

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1: By assumption, F is a regular (α, β)-metric. Then, by Theorem

3, the relations (3.1) hold. Taking a horizontal derivation of (3.5) implies that

bmBm
jkl|s = −bm|sB

m
jkl.(3.10)

By assumption F is R-quadratic metric. Thus

Ri
jkl,m = 0.(3.11)

Then, by (3.3) and (3.11) we get

Bi
jkl|m −Bi

jkm|l = 0.(3.12)

Multiplying (3.12) with bi yields

biB
i
jkl|m = biB

i
jkm|l.(3.13)

Comparing (3.10) and (3.13) gives us

bi|mBi
jkl = bi|lB

i
jkm.(3.14)

The following holds

bi|m = rim + sim,(3.15)

which by considering rij = 0, it reduces to following

bi|m = sim.(3.16)

Multiplying (3.14) with yl and considering (3.16) we obtain

si0B
i
jkm = 0.(3.17)

Taking three times vertical derivation of (3.7) gives us the following

Bi
jkl =

[
αQsi0

]
yjykyl

.(3.18)

By (3.17) and (3.18) we have

si0

[
αQsi0

]
yjykyl

= 0.(3.19)
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(3.19) is equal to[
α Q

]
yjykyl

si0s
i
0 +

[
α Q

]
yjyk

si0s
i
l +

[
α Q

]
yjyl

si0s
i
k +

[
α Q

]
ykyl

si0s
i
j = 0.(3.20)

According to (3.1), si = si = 0. Then, multiplying (3.20) with bjbkbl yields[
bjbkbl[αQ]yjykyl

]
si0s

i
0 = 0.(3.21)

By (3.21), we get

si0s
i
0 = 0.(3.22)

Since α is a positive-definite Riemannian metric, then by (3.22) it follows that

sij = 0.(3.23)

(3.23) means that β is a closed 1-form, and by considering (3.1), we conclude that β is a

parallel 1-form. In this case, F reduces to a Berwald metric. □

Finally, we conclude the following.

Corollary 3.6. Let F = αϕ(s), s = β/α, be a regular generalized Berwald (α, β)-metric on

a 2-dimensional manifold M such that ϕ′(0) ̸= 0. Suppose that F is a R-quadratic. Then,

F has vanishing S-curvature S = 0 if and only if it is a locally Minkowskian metric.

Proof. The well-known Szabó rigidity theorem says that every 2-dimensional Berwald surface

is either locally Minkowskian or Riemannian. On the other hand, every Riemannian metric

satisfies ϕ(s) = constant, and then ϕ′(0) = 0. By the assumption and using Theorem 1.1, it

follows that F must be a locally Minkowskian metric. □
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