
تعداد نشریات | 26 |
تعداد شمارهها | 404 |
تعداد مقالات | 3,549 |
تعداد مشاهده مقاله | 5,503,607 |
تعداد دریافت فایل اصل مقاله | 3,765,116 |
On the distance-based indices of Mobius function graph of finite groups | ||
Journal of Hyperstructures | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 18 تیر 1404 اصل مقاله (1.54 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22098/jhs.2025.16816.1075 | ||
نویسندگان | ||
Rani Jose* 1؛ SUSHA D2 | ||
1Department of Mathematics, St. Dominics College, Kanjirapally, Kottayam, India | ||
22Department of Mathematics, Catholicate College, Pathanamthitta - 689645, Kerala, India | ||
چکیده | ||
In the domain of mathematical chemistry and graph theory, topological indices have emerged as vital tools for quantifying the structural properties of molecular graphs. Recently, the Mobius function graph of a finite group has earned significant attention due to its connections with algebraic and topological structures. However, determination of the topological indices of these graphs remain largely unexplored. In this paper we compute and investigate the relationships between several distance-based topological indices, including the Mostar index, weighted Mostar index, Szeged index, weighted Szeged index, PI index and weighted PI index, for the Mobius function graphs of finite groups. | ||
کلیدواژهها | ||
Mostar index؛ weighted Mostar index؛ Szeged index؛ weighted Szeged index؛ PI index؛ weighted PI index؛ Mobius function graphs | ||
مراجع | ||
[1] M. R. Ahmadi and R. Jahani-Nezhad, Energy and Wiener index of zero-divisor graphs, Iranian J. Math. Chem., 2(1) (2011), 45-51. (Special Issue on the Occasion of Mircea V. Diudea’s Sixtieth Birthday). [2] S. Akhter, Z. Iqbal, I. A. Aslam andW. Gao, Computation of Mostar Index for some graph operations, Int. J. Quantum Chem., 121(15) (2021), e26674. [3] L. Alex, K. C. Hridya and A. Varghese, Computing some bond additive indices of certain class of nanostructures, J. Hyperstructures, 13(2) (2024), 204-221. [4] L. Alex and G. Indulal, On a conjecture on edge Mostar index of bicyclic graphs, Iranian J. Math. Chem., 14(2) (2023), 97-108. [5] L. Alex and G. Indulal, Zagreb indices of a new sum of graphs, Ural Math. J., 9(1) (2023), 4-17. [6] L. Alex and G. Indulal, Zagreb indices of some chemical structures using new products of graphs, J. Hyperstructures, 12(2) (2023), 257-275. [7] L. Alex and G. Indulal, Inverse problem for Mostar index of chemical trees and unicyclic graphs, Palest. J. Math., 13(4) (2024), 56-64. [8] A. Ali and T. Dosli´c, Mostar index results and perspectives, Appl. Math. Comput., 404 (2021), 126245. [9] N. I. Alimon, N. H. Sarmin and A. Erfanian, The Szeged and Wiener indices for coprime graph of dihedral groups, AIP Conf. Proc., 2266 (2020), 060006. [10] S. Banerjee, Spectra and topological indices of comaximal graph of Zn, Results Math., 77(3) (2022), 1-23. [11] P. J. Cameron and S. Ghosh, The Power Graph of a Finite Group, Discrete Math., 311 (2011), 1220-1222. [12] P. J. Cameron, The Power Graph of a Finite Group, II, J. Group Theory, 13 (2010), 779-783. [13] M. S. Chithrabhanu and K. S. Somasundaram, PI index of bicyclic graphs, Commun. Comb. Optim., 9 (2024), 425-436. [14] T. Dosli´c, I. Martinjak, R. ˇSkrekovski, S. T. Spuˇzevi´c and I. Zubac, Mostar index, J. Math. Chem., 56(10) (2018), 2995-3013. [15] C. Gopika, J. Geetha and K. Somasundaram, Weighted PI index of tensor product and strong product of graphs, Discrete Math. Algorithms Appl., 21 (2021), 2150019. [16] I. Gutman and A. Dobrynin, The Szeged index - a success story, Graph Theory Notes N. Y., 34 (1998), 37-44. [17] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes N. Y., 27 (1994), 9-15. [18] R. Jose and D. Susha, Chromatic M-polynomial of M¨obius Function Graphs of Product Groups, Indian J. Sci. Technol., 17(41) (2024), 4332-4337. [19] R. Jose and D. Susha, Topological indices and Laplacian spectrum of M¨obius function graph of dihedral groups, Eur. Chem. Bull., 12(10) (2023), 4027-4039. [20] R. Jose, J. Kottarathil and D. Susha, Spectrum and Energy of the M¨obius function graph of finite cyclic groups, Data Sci. Sec., Lect. Notes Netw. Syst. 922 (2023), 165-176. [21] P. Kandan, S. Subramanian and P. Rajesh, Weighted Mostar indices of certain graphs, Adv. Math. Sci. J., 10(9) (2021), 3093-3111. [22] P. V. Khadikar, On a novel structural descriptor PI, Natl. Acad. Sci. Lett., 23 (2000), 113-118. [23] M. H. Khalifeh, H. Yousefi and A. R. Ashrafi, Vertex and edge PI-indices of cartesian product graphs, Discrete Appl. Math., 156 (2008), 1780-1789. [24] S. Klavˇzar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett., 9 (1996), 45-49. [25] A. Kumar, L. Selvaganesh, P. J. Cameron and T. T. Chelvam, Recent developments on the power graph of finite groups - a survey, AKCE Int. J. Graph Comb., 18(2) (2021). [26] A. Ilic and N. Milosavljevi´c, The weighted vertex PI index, Math. Comput. Modelling, 57 (2013), 623-631. [27] X. L. Ma, H. Q. Wei and L. Y. Yang, The Coprime Graph of a Group, Int. J. Group Theory, 3(3) (2014), 13-23. [28] T. Mansour and M. Schork, The PI index of bridge and chain graphs, Match Communications in Mathematical and in Computer Chemistry., 61(2009), 723-734. [29] N. Tratnik, Computing weighted Szeged and PI indices from quotient graphs, Int. J. Quantum Chem., 119 (2019), e26006. [30] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69(1) (1947), 17-20. [31] H. Yousefi-Azari, B. Manoochehrian and A. R. Ashrafi, The PI index of product graphs, Appl. Math. Lett., 21 (2008), 624-627. [32] S. Zahidah, D. M. Mahanani and K. L. Oktaviana, Connectivity indices of Coprime graph of generalized quaternion group, J. Indones. Math. Soc., 27(3) (2021), 285-296. | ||
آمار تعداد مشاهده مقاله: 2 تعداد دریافت فایل اصل مقاله: 7 |