
تعداد نشریات | 26 |
تعداد شمارهها | 407 |
تعداد مقالات | 3,566 |
تعداد مشاهده مقاله | 5,545,484 |
تعداد دریافت فایل اصل مقاله | 3,790,715 |
Assessing the Impact of Global Meteorological signals on Drought occurrence in Iran | ||
مدل سازی و مدیریت آب و خاک | ||
مقاله 5، دوره 5، ویژه نامه: تغییر اقلیم و تاثیر آن بر آب و خاک، 1404، صفحه 62-87 اصل مقاله (1.65 M) | ||
نوع مقاله: Special issue on "Climate Change and Effects on Water and Soil" | ||
شناسه دیجیتال (DOI): 10.22098/mmws.2025.17690.1616 | ||
نویسندگان | ||
جواد مومنی دمنه1؛ سیدمحمد تاج بخش* 2؛ احسان تمسکی3 | ||
1گروه مهندسی منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان، هرمزگان، ایران | ||
2گروه آبخیزداری، دانشکده منابع طبیعی، دانشگاه بیرجند، بیرجند، ایران. | ||
3دکترای علوم و مهندسی آبخیزداری- زمین، دانشگاه هرمزگان، بندرعباس، ایران. | ||
چکیده | ||
This study investigated the measurable impact of global climate variability, specifically the Southern Oscillation Index and the North Atlantic Oscillation, on regional drought patterns and their potential impacts across Iran. Global climatic fluctuations were major disruptive factors of regional hydrological cycles, often leading to severe consequences such as crop failures, food shortages, malnutrition, and mass migration, with prolonged droughts further exacerbating land degradation and desertification. To understand these complex relationships, monthly rainfall data from 79 synoptic stations in Iran, collected between 1988 and 2017, were analyzed. The Standardized Precipitation Index was calculated for 3, 5, and 8-month periods to comprehensively assess drought severity and duration across different timescales. The research then examined the correlations between Standardized Precipitation Index (SPI), Southern Oscillation Index (SOI), and North Atlantic Oscillation (NAO), revealing a significant influence of the NAO on Iran's annual precipitation. Variations in pressure systems, particularly the Azores High and the Icelandic Low, were found to impact rainfall patterns nationwide; a 5-month analysis indicated that 66% of the studied stations were affected by these systems. Spatially varying correlations were observed at shorter timescales (5 and 8 months), with some stations like Shahre-Babak showing a positive correlation with NAO, while others like Qazvin exhibited a negative one. Findings indicate that Iran experienced widespread mild to moderate droughts during the study period, excluding the Lake Urmia basin, with minimum SPI values showing a clear trend of change across most of the country. Notably, the eastern border region and the Qarah-Qom area demonstrated particular susceptibility to drought, potentially leading to significant ecological consequences such as changes in vegetation cover and increased soil erosion. Temporally, the second decade (1998-2007) was identified as highly drought-prone with moderate droughts affecting much of the country, while the third decade (2008-2017) showed a trend towards milder conditions. These findings are vital for developing effective water resource management strategies, implementing targeted drought mitigation measures, and building resilience to climate variability, ultimately ensuring water security and sustainable development in the region.Targeted interventions in Eastern Iran and Qarah-Qom, NAO-informed regional early-warning systems, and decadal-scale water allocation strategies are critical for drought mitigation. | ||
کلیدواژهها | ||
Drought؛ NAO Signals؛ Climatic Controlled Index؛ Standardized Precipitation Index | ||
مراجع | ||
References Abdelkader, M., & Yerdelen, C. (2022). Hydrological drought variability and its teleconnections with climate indices. Journal of hydrology, 605, 127290.doi: 10.1016/j.jhydrol.2021.127290 Abdelkader, M., & Yerdelen, C. (2022). Hydrological drought variability and its teleconnections with climate indices. Journal of hydrology, 605, 127290. doi: 10.1016/j.jhydrol.2021.127290 Abhilash, S., Krishnakumar, E. K., Vijaykumar, P., Sahai, A. K., Chakrapani, B., & Gopinath, G. (2019). Changing characteristics of droughts over Kerala, India: inter-annual variability and trend. Asia-Pacific Journal of Atmospheric Sciences, 55(1), 1-17. doi:10.1007/s13143-018-0060-9. AghaKouchak, A., Mirchi, A., Madani, K., Di Baldassarre, G., Nazemi, A., Alborzi, A., Anjileli, H., Azarderakhsh, M., Chiang, F., Hassanzadeh, E. and Huning, L.S. (2021). Anthropogenic drought: Definition, chal- lenges, and opportunities. Reviews of Geophysics, 59(2). doi: 10.1029/2019rg000683 Apurv, T., Sivapalan, M., & Cai, X. (2017). Understanding the role of climate characteristics in drought propagation. Water Resources Research, 53(11), 9304–9329. doi: 10.1002/2017wr021445 Brasil Neto, R.M., Santos, C.A.G., Nascimento, T.V.M., Silva, R.M., Santos, C.A.C. (2020). Evaluation of the TRMM product for monitoring drought over Paraíba State, northeastern Brazil: a statistical analysis. Remote Sensing, 12(14), 2184. doi: 10.3390/rs12142184 Brasil Neto, R.M., Santos, C.A.G., Silva, J.F.C.B.d.C., Silva, R.M., Santos, C.A.C., Mishra, M. (2021). Evaluation of the TRMM product for monitoring drought over Paraíba State, northeastern Brazil: a trend analysis. Scientific Reports, 11(1), 1097. doi: 10.1038/s41598-020-80026-5 Brasil Neto, R.M., Santos, C.A.G., Silva, R.M., Dos Santos, C.A.C. (2022). Evaluation of TRMM satellite dataset for monitoring meteorological drought in northeastern Brazil. Hydrological Sciences Journal, 67(14), 2100-2120. doi:10.1080/ 02626667.2022.2130333 Burn, D. H., & Whitfield, P. H. (2016). Changes in floods and flood regimes in Canada. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 41(1-2), 139-150. doi:10.1080/07011784.2015.1026844 Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M.J., Wu, L. and England, M.H. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature climate change, 4(2), 111-116. doi: 10.1038/nclimate2100 Caloiero, T., & Veltri, S. (2019). Drought assessment in the Sardinia Region (Italy) during 1922–2011 using the standardized precipitation index. Pure and Applied Geophysics, 176(2), 925-935. doi: 10.1007/s00024-018-2008-5 Caloiero, T., Coscarelli, R., Ferrari, E., Mancini, M. (2011). Precipitation changes in Southern Italy linked to global scale oscillation indexes. Natural Hazards and Earth System Sciences, 11(6), 1683-1694. doi.org/10.5194/nhess-11-1683-2011 Chen, L., Brun, P., Buri, P., Fatichi, S., Gessler, A., McCarthy, M. J., Pellicciotti, F., Stocker, B. & Karger, D. N. (2025). Global increase in the occurrence and impact of multiyear droughts. Science, 387(6731), 278-284. doi:10.1126/science. ado4245 Collins, M., An, S.I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F.F., Jochum, M., Lengaigne, M., Power, S., Timmermann, A. and Vecchi, G. (2010). The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geoscience, 3(6), 391-397. doi:10.1038/ngeo868 Dai, A. (2011). Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45-65. doi:10.1002/wcc.81 Dai, A., Zhao, T., & Chen, J. (2018). Climate change and drought: a precipitation and evaporation perspective. Current Climate Change Reports, 4, 301-312. doi:10.1007/s40641-018-0101-6 Du, J., Kimball, J.S., Sheffield, J., Velicogna, I., Zhao, M., Pan, M., Fisher, C.K., Beck, H.E., Watts, J.D. and Wood, E.F. (2021). Synergistic satellite assessment of global vegetation health in relation to ENSO‐induced droughts and pluvials. Journal of Geophysical Research: Biogeosciences, 126(5), e2020JG006006. doi:10.1029/2020JG006006 Dutta, D., & Herath, S. (2004, July). Trend of floods in Asia and flood risk management with integrated river basin approach. In Proceedings of the 2nd international conference of Asia-Pacific hydrology and water resources Association, Singapore (Vol. 1, pp. 55-63). Ganguli, P., Majhi, A., & Kumar, R. (2022). Observational evidence for multivariate drought hazard amplifications across disparate climate regimes. Earth's Future, 10(9), e2022EF002809. doi: 10.1029/2022EF002809 Ghazaryan, G., König, S., Rezaei, E. E., Siebert, S., & Dubovyk, O. (2020). Analysis of drought impact on croplands from global to regional scale: a remote sensing approach. Remote Sensing, 12(24), 4030. doi: 10.3390/rs12244030 Grimm, A. M., & Tedeschi, R. G. (2009). ENSO and extreme rainfall events in South America. Journal of Climate, 22(7), 1589-1609. doi:10.1175/2008JCLI2429.1 Herrera‐Estrada, J. E., Satoh, Y., & Sheffield, J. (2017). Spatiotemporal dynamics of global drought. Geophysical Research Letters, 44(5), 2254-2263. doi:10.1002/2016GL071768 Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X., Zhang, T., Pegion, P. (2012). On the increased frequency of Mediterranean drought. Journal of climate, 25(6), 2146-2161. Holgate, C.M., Falster, G.M., Gillett, Z.E., Goswami, P., Grant, M.O., Hobeichi, S., Hoffmann, D., Jiang, X., Jin, C., Lu, X. and Mu, M. (2025). Physical mechanisms of meteorological drought development, intensification and termination: an Australian review. Communications earth & environment, 6(1), 220. doi: 10.1038/s43247-025-02179-3 Hosseinzadehtalaei, P., Van Schaeybroeck, B., Termonia, P., & Tabari, H. (2023). Identical hierarchy of physical drought types for climate change signals and uncertainty. Weather and Climate Extremes, 41, 100573. doi: 10.1016/j.wace.2023.100573 Huning, L., & AghaKouchak, A. (2020). Global snow drought hot spots and characteristics. Proceedings of the National Academy of Sciences, 117(33), 19753–19759. Doi: 10.1073/pnas.1915921117 Karamouz, M., Araghinejad, S., & Dezfuli, A. K. (2004). Climate regionalizing for the assessment of ENSO, NAO and SST effect on regional meteorological drought: Application of fuzzy clustering. In Critical Transitions in Water and Environmental Resources Management (pp. 1-10). doi:10.1061/40737 Kelley, C., Ting, M., Seager, R., Kushnir, Y. (2012). Mediterranean precipitation climatology, seasonal cycle, and trend as simulated by CMIP5. Geophysical Research Letters, 39(21). Kenawy, A. E., Al-Awadhi, T., Abdullah, M., Ostermann, F. O., & Abulibdeh, A. (2025). A Multidecadal Assessment of Drought Intensification in the Middle East and North Africa: The Role of Global Warming and Rainfall Deficit. Earth Systems and Environment, 1-20. doi: 10.1007/s41748-025-00576-4 Li, Z., Huang, S., Zhou, S., Leng, G., Liu, D., Huang, Q., et al. (2021). Clarifying the propagation dynamics from meteorological to hydrological drought induced by climate change and direct human activities. Journal of Hydrometeorology, 22(9), 2359–2378. doi:10.1175/ jhm-d-21-0033.1 Limones, N., Molina, J. V., & Paneque, P. (2022). Spatiotemporal characterization of meteorological drought: a global approach using the Drought Exceedance Probability Index (DEPI). Climate Research, 88, 137-154. doi: 10.3354/cr01703 Lin, J., Qian, T., & Schubert, S. (2022). Droughts and Mega-droughts. Atmosphere-Ocean, 60(3-4), 245-306. doi: 10.1080/07055900.2022.2086848 Lloyd-Hughes, B., & Saunders, M. A. (2002). A drought climatology for Europe. International journal of climatology, 22(13), 1571-1592. Masih, I., Maskey, S., Mussá, F. E. F., & Trambauer, P. (2014). A review of droughts on the African continent: a geospatial and long-term perspective. Hydrology and earth system sciences, 18(9), 3635-3649. doi:10.5194/hess-18-3635-2014 Mathbout, S., Lopez-Bustins, J. A., Royé, D., & Martin-Vide, J. (2021). Mediterranean-scale drought: Regional datasets for exceptional meteorological drought events during 1975–2019. Atmosphere, 12(8), 941. Mirza, M. M. Q. (2003). Climate change and extreme weather events: can developing countries adapt? Climate policy, 3(3), 233-248. doi:10.3763/cpol.2003.0330 Momeny damaneh J, Tajbakhsh fakhrabadi M, Chezgy J, Tamasoki E. (2024). Spatial correlation of extreme temperatures and vegetation changes in the watersheds of Iran. Iranian Journal of Rainwater Catchment Systems, 12(2), 39-58. http://jircsa.ir/article-1-532-en.html Nieves, A., Contreras, J., Pacheco, J., Urgilés, J., García, F., & Avilés, A. (2022). Assessment of drought time-frequency relationships with local atmospheric-land conditions and large-scale climatic factors in a tropical Andean basin. Remote Sensing Applications: Society and Environment, 26, 100760. doi: 10.1016/j.rsase.2022.100760 Nikraftar, Z., Mostafaie, A., Sadegh, M., Afkueieh, J.H. and Pradhan, B. (2021). Multi-type assessment of global droughts and teleconnections. Weather and Climate Extremes, 34, 100402. doi: 10.1016/j.wace.2021.100402 Niu, Q., She, D., Xia, J., Zhang, Q., Zhang, Y., & Wang, T. (2025). Uncertainty analysis of global meteorological drought in CMIP6 projections. Climatic Change, 178(4), 1-23. doi: 10.1007/s10584-025-03919-2 Paredes-Trejo, F., Olivares, B. O., Movil-Fuentes, Y., Arevalo-Groening, J., & Gil, A. (2023). Assessing the spatiotemporal patterns and impacts of droughts in the Orinoco River basin using earth observations data and surface observations. Hydrology, 10(10), 195. doi:10.3390/hydrology10100195 Rasmusson, E. M. (2019). Global prospects for the prediction of drought: A meteorological perspective. In Planning for Drought (pp. 31-43). Routledge. doi: 10.4324/9780429301735-3 Rodríguez., JV, Molina., PP, Salgado. (2022). Spatiotemporal characterization of meteorological drought: a global approach using the Drought Exceedance Probablity Index. Climate Research, 88:137-154. doi: 10.3354/cr01703 Santos, C.A.G., Brasil Neto, R.M., Nascimento, T.V.M., Silva, R.M., Mishra, M., Frade, T. G.(2020). Geospatial drought severity analysis based on PERSIANN-CDR-estimated rainfall data for Odisha state in India (1983–2018). Science of the Total Environment, 750, 141258. doi: 10.1016/j.scitotenv.2020.141258. Sattari, M.T., Falsafian, K., Irvem, A., Qasem, S.N. (2020). Potential of kernel and tree-based machine-learning models for estimating missing data of rainfall. Engineering Applications of Computational Fluid Mechanics, 14(1), 1078-1094. doi: 10.1080/19942060.2020.1803971 Schubert, S.D., Stewart, R.E., Wang, H., Barlow, M., Berbery, E.H., Cai, W., Hoerling, M.P., Kanikicharla, K.K., Koster, R.D., Lyon, B. and Mariotti, A. (2016). Global meteorological drought: a synthesis of current understanding with a focus on SST drivers of precipitation deficits. Journal of Climate, 29(11), 3989-4019. doi:10.1175/JCLI-D-15-0452.1. Schubert, S.D., Stewart, R.E., Wang, H., Barlow, M., Berbery, E.H., Cai, W., Hoerling, M.P., Kanikicharla, K.K., Koster, R.D., Lyon, B. and Mariotti, A. (2016). Global meteorological drought: a synthesis of current understanding with a focus on SST drivers of precipitation deficits. Journal of Climate, 29(11), 3989-4019. doi:10.1175/JCLI-D-15-0452.1 Spinoni, J., Naumann, G.Vogt, J.V. Barbosa, P. (2015). The biggest drought events in Europe from 1950 to 2012. Journal of Hydrology: Regional Studies, 3, 509-524. doi: 10.1016/j.ejrh.2015.01.001 Tabari, H., Hosseinzadehtalaei, P., Thiery, W., Willems, P. (2021). Amplified drought and flood risk under future socioeconomic and climatic change. Earth’s Future 9 (10), e2021EF002295. Tajbakhsh Fakhrabadi, S. M. and Momeny, J. (2023). Analysis and Zonation of Drought and the Impact of SOI and NAO on the Six Watersheds of Iran. Water and Soil Science, 33(1), 161-179. doi: 10.22034/ws.2021.44983.2407 Taylor, C.M., Lambin, E.F., Stephenne, N., Harding, R.J., Essery, R.L., 2002. The influence of land use change on climate in the Sahel. Journal of Climate, 15(24), 3615-3629. Tijdeman, E., Barker, L. J., Svoboda, M. D., & Stahl, K. (2018). Natural and human influences on the link between meteorological and hydrological drought indices for a large set of catchments in the contiguous United States. Water Resources Research, 54(9), 6005–6023. doi:10.1029/2017wr022412 Tokinaga, H., Xie, S. P., Deser, C., Kosaka, Y., & Okumura, Y. M. (2012). Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491(7424), 439-443. doi:10.1038/nature11576. Van Loon, A. F. (2015). Hydrological drought explained. Wiley Interdisciplinary Reviews: Water, 2(4), 359-392., doi:10.1002/wat2.1085. Van Loon, A. F., & Van Lanen, H. A. J. (2012). A process-based typology of hydrological drought. Hydrology and Earth System Sciences, 16(7), 1915–1946. doi: 10.5194/hess-16-1915-2012 Van Loon, A. F., Gleeson, T., Clark, J., Van Dijk, A. I. J. M., Stahl, K., Hannaford, J., et al. (2016). Drought in the anthropocene. Nature Geoscience, 9(2), 89–91. doi:10.1038/ngeo2646 Van Loon, A. F., Tijdeman, E., Wanders, N., Van Lanen, H. A. J., Teuling, A. J., & Uijlenhoet, R. (2014). How climate seasonality modifies drought duration and deficit. Journal of Geophysical Research: Atmospheres, 119(8), 4640–4656. doi: 10.1002/2013jd020383 Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J. J., López-Moreno, J. I., Azorin-Molina, C., et al. (2012). Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16(10), 1–27. doi: 10.1175/2012ei000434.1 Vicente-Serrano, S.M., López-Moreno, J.I., Lorenzo-Lacruz, J., El Kenawy, A., Azorin-Molina, C.,Morán-Tejeda, E., Pasho, E., Zabalza, J., Begueria, S., Angulo-Martinez, M. (2011). The NAO impact on droughts in the Mediterranean region. Hydrological, socioeconomic and ecological impacts of the north Atlantic oscillation in the mediterranean region, 23-40. Vieira, M.J. and Stadnyk, T.A. (2023). Leveraging global climate models to assess multi-year hydrologic drought. npj Climate and Atmospheric Science, 6(1), 179. doi: 10.1038/s41612-023-00496-y VijayaVenkataRaman, S., Iniyan, S., & Goic, R. (2012). A review of climate change, mitigation and adaptation. Renewable and Sustainable Energy Reviews, 16(1), 878-897. doi: 10.1016/j.rser.2011.09.009. Wang, G.C., Zhang, Q., Band, S.S., Dehghani, M., Chau, K.W., Tho, Q.T., Zhu, S., Samadianfard, S., Mosavi, A. (2022). Monthly and seasonal hydrological drought forecasting using multiple extreme learning machine models. Engineering Applications of Computational Fluid Mechanics, 16(1), 1364-1381. doi: 10.1080/19942060.2022.2089732 Wu, G., Chen, J., Kim, J. S., Gu, L., Lee, J. H., & Zhang, L. (2022). Impacts of climate change on global meteorological multi-year droughts using the last millennium simulation as a baseline. Journal of Hydrology, 610, 127937. doi: 10.1016/j.jhydrol.2022.127937 Wu, J., & Dirmeyer, P. A. (2020). Drought demise attribution over conus. Journal of Geophysical esearch: Atmospheres, 125(4), e2019JD031255. doi: 10.1029/2019jd031255 Xu, Y., Yang, Z., Zhang, L., & Zhang, J. (2025). An Evaluation of the Capability of Global Meteorological Datasets to Capture Drought Events in Xinjiang. Land, 14(2), 219. doi:10.3390/land14020219 Yang, R., & Xing, B. (2022). Teleconnections of large-scale climate patterns to regional drought in mid-latitudes: A case study in Xinjiang, China. Atmosphere, 13(2), 230. doi: 10.3390/atmos13020230 Yuce, M. I., Aytek, A., Esit, M., Deger, I. H., Yasa, I., Simsek, A., & Ugur, F. (2025). Investigation of the meteorological and hydrological drought characteristics in yeşilirmak basin, Türkiye. Theoretical and Applied Climatology, 156(4), 1-16. doi: 10.1007/s00704-025-05437-8 Zeng, J., Li, J., Lu, X., Wei, Z., Shangguan, W., Zhang, S., Dai, Y. and Zhang, S. (2022). Assessment of global meteorological, hydrological and agricultural drought under future warming based on CMIP6. Atmospheric and Oceanic Science Letters, 15(1), 100143. doi: 10.1016/j.aosl.2021.100143 Zhao, C., Huang, Y., Li, Z., Chen, M. (2018). Drought monitoring of Southwestern China using insufficient GRACE data for the long-term mean reference frame under global change. Journal of Climate. 31, 6897–6911. doi: 10.1175/JCLI-D-17-0869.1 Zhao, T., Dai, A. (2022). CMIP6 model-projected hydroclimatic and drought changes and their causes in the twenty-first century. Journal of Climate. 35 (3), 897–921. doi: 10.1175/JCLI-D-21-0442.1 Zhu, Z., Duan, W., Zou, S., Zeng, Z., Chen, Y., Feng, M., Qin, J. and Liu, Y. (2024). Spatiotemporal characteristics of meteorological drought events in 34 major global river basins during 1901–2021. Science of The Total Environment, 921, 170913. doi: 10.1016/j.scitotenv.2024.170913 | ||
آمار تعداد مشاهده مقاله: 67 تعداد دریافت فایل اصل مقاله: 21 |