

Research Paper

ALMOST δ -PRIMARY IDEALS IN A COMMUTATIVE RING

JAYA Y. NEHETE¹ D AND YOGITA S. PATIL^{2,*} D

¹Department of Engineering Science And Humanities, JSPM's Rajarshi Shahu College of Engineering Tathawade, Pune, India, jaya.nehete88@gmail.com

 2 Department of Engineering science, Shreeyash college of engineering and technology, Chhatrapati Sambhajinagar, India saharshyog. 143@rediffmail.com

ARTICLE INFO

Article history: Received: 31 August 2024 Accepted: 25 May 2025

Communicated by Ahmad Yousefian Darani

Keywords: δ -primary ideal weakly δ -primary ideal almost δ -primary ideal 2-potent δ -primary ideal ϕ - δ -primary ideal

MSC: 13A15; 13F05; 13G05

ABSRTACT

In this paper, our research sheds new light on generalized ideals, significantly advancing the state of knowledge in ring theory. We introduce an almost δ -primary ideal which unifies an almost prime ideal and an almost primary ideal. We also define and study the concept of a ϕ - δ -primary ideal in a commutative ring. Some characterizations of almost δ -primary ideal and *n*-almost δ -primary ideal are proved.

1. INTRODUCTION

Anderson and Bataineh [1], studied generalizations of prime ideals in a commutative ring. Anderson and Smith [2], defined weakly prime ideals. Bataineh and S. Kuhail [4], studied generalizations of primary ideals and submodules. Generalizations of primary ideals in commutative rings are done by Darani and Yousefian [5]. Zhao Dongsheng [9] studied expansion of ideals and δ -primary ideals in a commutative ring where δ is a mapping with some

^{*}Address correspondence to Y. S. Patil; Department of Engineering science, Shreeyash college of engineering and technology, Chhatrapati Sambhajinagar, saharshyog.143@rediffmail.com.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Copyright © 2025 The Author(s). Published by University of Mohaghegh Ardabili.

additional properties. Zhao and Fahid [6], defined 2-absorbing δ -primary ideals in a commutative ring. Badawi and Fahid [3], defined weakly δ -primary ideals and weakly 2-absorbing δ -primary ideals in a commutative ring. They defined expansion of ideals in the product of rings. Also, they defined δ -twin zero and δ -triple zero. Anderson and M. Bataineh [1], generalized prime ideals in a commutative ring. Darani and Yousefian [5], have generalized primary ideals in commutative rings. Manjrekar and Bingi [7] introduced almost prime, almost primary, 2-potent prime and 2-potent primary elements in a compactly generated multiplicative lattice. Also, they introduced the concept of ϕ -prime and ϕ -primary, 2-potent δ -primary elements in a compactly generated multiplicative lattices. Nimbhorkar and Nehete [8] introduced almost δ -primary, 2-potent the concept of ϕ - δ -primary elements in multiplicative lattice. Also, they introduced the concept of ϕ - δ -primary elements in multiplicative lattices.

This motivates us to define these concepts using expansion of ideals. In this paper we use expansion of ideals to define an almost δ -primary ideal which unifies the concept of an almost prime ideal and an almost primary ideal in one frame. Some results on an almost δ -primary ideal and *n*-almost δ -primary ideal are proved. Also, we define a 2-potent δ -primary ideal.

Also, we introduced a ϕ - δ -primary ideal in a commutative ring. Also, we study some results on studied δ -primary ideal. We prove some results using expansion of ideals of the product of rings.

In this paper, R denotes a commutative ring. We shall use Id(R) to denote the set of all ideals of R.

An ideal P is called a proper ideal of R if $P \neq R$.

Definition 1.1. A proper ideal P of R is called a prime ideal if for $a, b \in R$, $ab \in P$ implies that either $a \in P$ or $b \in P$.

Definition 1.2. The radical of an ideal I is defined as, $\sqrt{I} = \{x \in R | x^n \in I, n \in \mathbb{N}\}.$

Definition 1.3. A proper ideal P of R is called a primary ideal if for $a, b \in R$, $ab \in P$ implies that either $a \in P$ or $b \in \sqrt{P}$.

The following definitions are from Zhao Dongsheng [9].

Definition 1.4. An expansion of ideals, or an ideal expansion, is a function $\delta: Id(R) \to Id(R)$, satisfying the conditions

(i) $I \subseteq \delta(I)$ and (ii) $J \subseteq K$ implies $\delta(J) \subseteq \delta(K)$, for all $I, J, K \in I'd(R)$.

- Example 1.5. (1) The identity function $\delta_0 : Id(R) \to Id(R)$, where $\delta_0(I) = I$ for every $I \in Id(R)$, is an expansion of ideals.
 - (2) The function \mathbf{B} that assigns the biggest ideal R to each ideal is an expansion of ideals.
 - (3) For each proper ideal P, the mapping $\mathbf{M} : Id(R) \to Id(R)$, defined by $\mathbf{M}(P) = \bigcap \{I \in Id(R) | P \subseteq I, I \text{ is a maximal ideal other than } R\}$, and $\mathbf{M}(R) = R$. Then \mathbf{M} is an expansion of ideals.
 - (4) For each ideal I define $\delta_1(I) = \sqrt{I}$, the radical of I. Then $\delta_1(I)$ is an expansion of ideals.

- (5) Let J be a proper ideal of R. If $\delta(I) = I + J$ for every ideal I of R, then δ is an expansion function of ideals of R, such a function is denoted by δ^+ .
- (6) Assume that δ_1, δ_2 are expansion functions of ideals of R. Let $\delta : I(R) \to I(R)$ such that $\delta(I) = \delta_1(I) + \delta_2(I)$. Then δ is an expansion function of ideals of R, such a function is denoted by δ_{\oplus} .
- (7) Assume that δ_1, δ_2 are expansion functions of ideals of R. Let $\delta : I(R) \to I(R)$ such that $\delta(I) = \delta_1(I) \cap \delta_2(I)$. Then δ is an expansion function of ideals of R, such a function is denoted by δ_{\cap} .
- (8) Assume that δ_1, δ_2 are expansion functions of ideals of R. Let $\delta : I(R) \to I(R)$ such that $\delta(I) = (\delta_1 \circ \delta_2)(I) = \delta_1(\delta_2(I))$. Then δ is an expansion function of ideals of R, such a function is denoted by δ_0 .

Definition 1.6. Let δ be an expansion of ideals of L. A proper ideal I of R is called δ -primary if $ab \in I$, then either $a \in I$ or $b \in \delta(I)$ for all $a, b \in R$.

Definition 1.7. An expansion is said to be global if, for any ring homomorphism, $f : R \to K$, $\delta(f^{-1}(I)) = f^{-1}(\delta(I))$ for all $I \in Id(K)$.

The following definitions are from Badawi and Fahid [3]

Definition 1.8. Let δ be an expansion of ideals, an ideal W of R is called weakly δ -primary if for all $x, y \in R, 0 \neq xy \in W$, then either $x \in W$ or $y \in \delta(W)$.

Remark 1.9. Every δ -primary ideal of R is a weakly δ -primary ideal.

Definition 1.10. Let W be a weakly δ -primary ideal of R. Then (x, y) is called a δ -twin-zero of W, if $xy = 0, x \notin W$ and $y \notin \delta(W)$.

Lemma 1.11. Let W be a weakly δ -primary ideal of R and suppose that for some $x, y \in R$, (x, y) is a δ -twin-zero of W. Then $xW = yW = \{0\}$.

Lemma 1.12. Let W be a weakly δ -primary ideal of R. If W is not a δ -primary ideal of R, then $W^2 = \{0\}$.

2. Weakly δ -primary ideals

In this section, we prove some properties of the weakly δ -primary ideal in a commutative ring.

Example 2.1. Consider the ideal $\langle 2 \rangle \in \mathbb{Z}_8$. Then $\langle 2 \rangle$ is a weakly δ_1 -primary, weakly δ_0 -primary and weakly **M**-primary ideal of \mathbb{Z}_8 ,

where $\delta_0(\langle 2 \rangle) = \delta_1(\langle 2 \rangle) = \mathbf{M}(\langle 2 \rangle) = \langle 2 \rangle$.

However, consider the ideal $< 10 > \in \mathbb{Z}_{20}$. Then < 10 > is not a weakly δ_1 -primary, not a weakly δ_0 -primary and not a **M**-primary ideal of \mathbb{Z}_{20} , we have

 $\delta_0(<10>) = \delta_1(<10>) = \mathbf{M}(<10>) = <10>$. Since for $2.5 \in \mathbb{Z}_{20}$,

 $2\bigotimes_{20} 5 = 10 \in <10 >$ but neither $2 \in <10 >$ nor

 $5 \in \delta_1(<10>) = \delta_0(<10>) = \mathbf{M}(<10>).$

Remark 2.2. The converse of the Remark 1.9, is not true.

By definition, $I = \{0\}$ is a weakly δ -primary ideal of \mathbb{Z}_{20} that is not a δ -primary ideal of \mathbb{Z}_{20} , since for $4.5 \in \mathbb{Z}_{20}$, $4 \bigotimes_{20} 5 = 0 \in \{0\}$ but neither $4 \in \{0\}$ nor $5 \in \delta_0(\{0\}) = \{0\}$ nor $5 \in \delta_1(\{0\}) = \mathbf{M}(\{0\}) = < 10 >$.

Theorem 2.3. Let W be a weakly δ -primary ideal of R and suppose that (p,q) is a δ -twin-zero of W. If $pr \in W$ for some $r \in R$, then pr = 0

Proof. Suppose $0 \neq pr \in W$ for some $r \in R$. Consider $pq + pr \neq 0$ implies that $0 \neq [p(q+r)] \in W$ and $p \not inW$. As W is a weakly δ -primary ideal of R, we get $q+r \in \delta(W)$. So we conclude that $q \in \delta(W)$, which is a contradiction to (p,q), is a δ -twin-zero of W. Thus, pr = 0.

Theorem 2.4. Let W and $\delta(W)$ be weakly δ -primary ideal of R and suppose that $PQ \subseteq W$ for some ideals P, Q of R. If (p,q) is a δ -twin-zero of $\delta(W)$ for some $p \in P$ and $q \in Q$, then PQ = 0.

Proof. Suppose (p,q) is a δ -twin-zero of $\delta(W)$ for some $p \in P$ and $q \in Q$. Assume $rs \neq 0$ for some $r \in P$ and $s \in Q$. Then $rs \in PQ \subseteq W$ implies that $0 \neq rs \in W$, as W is weakly δ -primary we get $r \in W$ or $s \in \delta(W)$. Without loss of generality, we assume that $r \in W$, then $r \in W \subseteq \delta(W)$. If $s \in \delta(W)$ and $r \in \delta(W)$, it implies that $rs \in \delta(W)^2 = 0$. Hence, rs = 0, which is a contradiction. Thus, $s \notin \delta(W)$. Since $ps \in W$, then ps = 0, by Theorem 2.3. Now $0 \neq (p+r)s = rs \in W$, as W is weakly δ - the primary ideal of R and $s \notin \delta(W)$, we get $p + r \in W$. Hence, $p \in W$, a contradiction. Thus, PQ = 0.

The following lemma is from Anderson and Bataineh [1]

Lemma 2.5. Let A, B and P be arbitrary ideals of a commutative ring R. If $P \subseteq A \cup B$, then either $P \subseteq A$ or $P \subseteq B$. In particular, if $P = A \cup B$, then P = A or P = B.

Definition 2.6. (Zhao Dongsheng [9])

Let J and K be ideals of a ring R, the residual division of J and K is defined as the set $(J:K) = \{x \in R | xy \in J \text{ for all } y \in K\}.$

Similarly, we can define $(J : a) = \{x \in R | ax \in J\}.$

Theorem 2.7. Let W be a proper ideal of R. Then W is a weakly δ -primary ideal of R if and only if either (W:p) = W or $(W:p) = (\{0\}:p)$, for every $p \notin \delta(W)$.

Proof. First suppose that W is a weakly δ -primary ideal of R. Let $q \in R$ be such that $q \in (W : p)$ for some $p \notin \delta(W)$. Then $pq \in W$. If pq =0, then $q \in (\{0\} : p)$. If $pq \neq 0$, $p \notin \delta(W)$, then $q \in W$, as W is weakly δ -primary. Hence, we conclude that $(W : p) \subseteq W \cup (\{0\} : p)$.

Now let $b \in R$ be such that $b \in W$ or $b \in (\{0\} : p)$. If $b \in (\{0\} : p)$, then $bp \in \{0\} \subseteq W$ implies that $b \in (W : p)$, so we get $(\{0\} : p) \subseteq (W : p)$. If $b \in W$, then $bp \in pW \subseteq W$ implies that $b \in (W : p)$, so we get $W \subseteq (W : p)$. Hence, $W \cup (\{0\} : p) \subseteq (W : p)$. Thus, $(W : p) = W \cup (\{0\} : p)$ for every $p \notin \delta(W)$. Since W, (W : p) and $(\{0\} : p)$ are ideals of R, so by Lemma 2.5, either (W : p) = W or $(W : p) = (\{0\} : p)$.

Conversely, suppose that the condition holds. Let $x, y \in R$ be such that $0 \neq xy \in W$. Suppose $x \notin \delta(W)$. Since $xy \in W$, we have $y \in (W : x)$. Hence, (W : x) = W and so $y \in W$. If $(W:x) = (\{0\}:x)$, then xy = 0, a contradiction. Thus, W is a weakly δ -primary ideal of R.

Lemma 2.8. Let W be a weakly δ -primary ideal of R. Suppose $0 \neq IJ \subseteq W$ for some ideals I, J of R, then $I \subseteq W$ or $J \subseteq \delta(W)$.

Proof. Let W be a weakly δ -primary ideal. Suppose that $0 \neq IJ \subseteq W$ and $I \nsubseteq W$, now suppose, on the contrary, $J \nsubseteq \delta(W)$, then we can choose $i \in I - W$ and $j \in J - \delta(W)$, then we get $0 \neq ij \in IJ \subseteq W$ but $i \notin W$ and $j \notin \delta(W)$, which contradicts W is a weakly δ -primary. Thus, $J \subseteq \delta(W)$.

3. Almost δ -primary and 2-potent δ -primary ideals

In this section, we introduce and study an almost δ -primary ideal and a 2-ideal δ -primary ideal in a commutative ring.

Definition 3.1. A proper ideal I of R is called an n-almost δ -primary ideal if $xy \in I$ and $xy \notin I^n$ implies either $x \in I$ or $y \in \delta(I)$, for $x, y \in R$ and $n \ge 2$. If n = 2, then I is called an almost δ -primary ideal of R.

Definition 3.2. An ideal I of R is said to be 2-potent δ -primary if $xy \in I^2$ implies $x \in I$ or $y \in \delta(I)$.

Example 3.3. (i) Consider the ideal $\langle 2 \rangle \in \mathbb{Z}_8$. Then $\langle 2 \rangle$ is an almost δ_1 -primary, an almost δ_0 -primary and an almost **M**-primary ideal of \mathbb{Z}_8 , where $\delta_0(\langle 2 \rangle) = \delta_1(\langle 2 \rangle) = \mathbf{M}(\langle 2 \rangle) = \langle 2 \rangle$.

(ii) The ideal $< 6 > \in \mathbb{Z}_{30}$ is not an almost δ_1 -primary, not an almost δ_0 -primary and not an almost **M**-primary ideal of \mathbb{Z}_{30} .

(iii) In \mathbb{Z}_{20} , the ideal < 5 > is a 2-potent δ_1 -primary, 2-potent δ_0 -primary and 2-potent **M**-primary ideal of \mathbb{Z}_{20} .

(iv) Here $\delta_0(<6>) = \delta_1(<6>) = \mathbf{M}(<6>) = < 6>$. For $2.3 \in \mathbb{Z}_{30}$, $2\bigotimes_{30} 3 = 6 \in <6>, 2\bigotimes_{30} 3 = 6 \notin <6>^2 = \{0\}$ but neither $2 \in <6>$ nor $3 \in \delta_1(<6>) = \delta_0(<6>) = \mathbf{M}(<6>)$. Also, <6> is not a 2-potent δ_1 -primary, not a 2-potent δ_0 -primary and not a 2-potent **M**-primary ideal of \mathbb{Z}_{30} . We note that $15\bigotimes_{30} 2 = 0 \in <6>^2 = 0$ but neither $15 \in <6>$ nor $2 \in \delta_1(<6>) = \delta_0(<6>) = \mathbf{M}(<6>)$.

We provide the following characterization.

Proposition 3.4. Let D be a 2-potent δ -primary ideal of R. Then D is an almost δ -primary ideal of R if and only if it is a δ -primary ideal.

Proof. Suppose that D is an almost δ -primary ideal of R. Let $x, y \in R$ be such that $xy \in D$ but $x \not inD$. If $xy \in D^2$, then as D is 2-potent δ -primary, we get $y \in \delta(D)$. If $xy \not inD^2$, then as D is an almost δ - the primary ideal of R, we get $y \in \delta(D)$. Thus, D is a δ -primary ideal

of R.

Conversely, suppose that D is a δ -primary ideal of R. Let $a, b \in R$ be such that $ab \in D$ and $ab \notin D^2$. As D is δ -primary and $a \notin D$, we get $b \in \delta(D)$. Hence, D is an almost δ -primary ideal of R.

The following theorem gives a characterization of an *n*-almost δ -primary ideal of *R*.

Theorem 3.5. Let D be a proper ideal of R. The following statements are equivalent: (i) D is an n-almost δ -primary ideal of R. (ii) $(D:x) = D \cup (D^n:x)$, for every $x \in R - \delta(D)$. (iii) Either (D:x) = D or $(D:x) = (D^n:x)$, for every $x \in R - \delta(D)$.

Proof. (i) \Rightarrow (ii): First suppose that D is an n-almost δ -primary ideal of R. Let $y \in R$ be such that $y \in (D:x)$ for some $x \in R - \delta(D)$. Then $xy \in D$. If $xy \in D^n$, then $y \in (D^n:x)$. If $xy \notin D^n$ and $x \notin \delta(D)$, then $y \in D$, as D is n-almost δ -primary. Hence, we conclude that $(D:x) \subseteq D \cup (D^n:x)$.

Now, let $z \in D \cup (D^n : x)$. Then $z \in D$ or $z \in (D^n : x)$. If $z \in (D^n : x)$, then $xz \in D^n \subseteq D$ implies that $z \in (D : x)$, so we get $(D^n : x) \subseteq (D : x)$. If $z \in D$, then $xz \in xD \subseteq D$ implies that $z \in (D : x)$, so we get $D \subseteq (D : x)$. Hence, $D \cup (D^n : x) \subseteq (D : x)$. Thus, $(D : x) = D \cup (D^n : x)$.

(ii) \Rightarrow (iii): Suppose that $(D:x) = D \cup (D^n:x)$, for every $x \in R - \delta(D)$. Since D, (D:x) and $(D^n:x)$ all are ideals of R. So, by Lemma 2.5, (D:x) = D or $(D:x) = (D^n:x)$.

(iii) \Rightarrow (i): Let $x, y \in R$ be such that $xy \in D - D^n$. Suppose $x \notin \delta(D)$. Since $xy \in D$, we have $y \in (D : x)$. If (D : x) = D, then $y \in D$. If $(D : x) = (D^n : x)$, then $xy \in D^n$, a contradiction. Thus, D is an *n*-almost δ -primary ideal of R.

We characterize an *n*-almost δ -primary ideal.

Theorem 3.6. A proper ideal D is an n-almost δ -primary ideal of R if and only if either $(D:a) = (D^n:a)$ or $(D:a) \subseteq \delta(D)$, for every $a \in R - D$.

Proof. Suppose that D is an n-almost δ -primary ideal of R.

Let $b \in (D:a)$ for some $a \in R - D$. Then $ab \in D$. If $ab \in D^n$, then $b \in (D^n:a)$.

Thus, $(D:a) \subseteq (D^n:a)$. Now, let $c \in (D^n:a)$, then $ac \in D^n \subseteq D$ implies that $c \in (D:a)$. So we get $(D^n:a) \subseteq (D:a)$. Hence, $(D:a) = (D^n:a)$.

If $ab \notin D^n$, $a \notin D$, then $b \in \delta(D)$, as D is *n*-almost δ -primary. Hence, we conclude that either $(D:a) = (D^n:a)$ or $(D:a) \subseteq \delta(D)$.

Conversely, suppose that the given condition holds. Let $ab \in D - D^n$ for every $a \in R - D$, then we get $b \in (D:a)$. But the given condition, so $b \in (D:a) = (D^n:a)$ or $b \in (D:a) \subseteq \delta(D)$.

If $b \in (D:a) = (D^n:a)$, then, $ab \in D^n$, a contradiction.

If $b \in (D:a) \subseteq \delta(D)$, then $b \in \delta(D)$. Hence, D is an n-almost δ -primary ideal of R.

The proof of the following two results is similar to that of Theorem 3.5 and Theorem 3.6.

Theorem 3.7. If D is an almost δ -primary ideal of R if and only if either $(D:a) = (D^2:a)$ or $(D:a) \subseteq \delta(D)$, for every $a \in R - D$.

Theorem 3.8. Let D be a proper ideal of R. The following statements are equivalent:

(i) D is an almost δ -primary ideal of R; (ii)(D:x) = D \cup (D²:x), for every $x \in R - \delta(D)$. (iii) Either (D:x) = D or (D:x) = (D²:x), for every $x \in R - \delta(D)$.

Theorem 3.9. Let δ be a global expansion of ideals. Let f be a surjective ring homomorphism from R_1 into the ring R_2 . If D is an almost δ -primary ideal of R_1 with $ker f \subseteq D$, then f(D) is an almost δ -primary ideal of R_2 .

Proof. Clearly, f(D) is a proper ideal of R_2 , as D is a proper ideal of R_1 . Now let $a, b \in R_2$ such that $ab \in f(D) - (f(D))^2$, then there exists a = f(x) and b = f(y) for some $x, y \in R_1$. So that $f(xy) = f(x)f(y) = ab \in f(D) - (f(D))^2$, which gives $xy \in D$. If $xy \in D^2$, then $ab = f(xy) \in f(D^2) = (f(D))^2$, which is a contradiction so that $xy \notin D^2$. Hence, $x \in D$ or $y \in \delta(D)$. It implies that $a = f(x) \in f(D)$ or $b = f(y) \in f(\delta(D))$. Now $\delta(D) = \delta(f^{-1}(f(D))) = f^{-1}(\delta(f(D)))$, which implies $f(\delta(D)) = \delta(f(D))$.

Therefore, f(D) is an almost δ -primary ideal of R_2 .

Proposition 3.10. An ideal D is an almost δ -primary ideal of R if and only if $AB \subseteq D - D^2$, then $A \subseteq D$ or $B \subseteq \delta(D)$, where A, B are ideals of R.

Proof. Let D be an almost δ -primary ideal of R. Let $AB \subseteq D - D^2$ and $B \notin \delta(D)$. Let $b \in B$ be such that $b \notin \delta(D)$. If $a \in A$ is arbitrary, then $ab \in D - D^2$ and $b \notin \delta(D)$. As D is almost δ -primary ideal of R, we get $a \in D$. So $A \subseteq D$.

Conversely, let $ab \in D - D^2$. Then $\langle a \rangle \langle b \rangle \subseteq D - D^2$. Hence, $\langle a \rangle \subseteq D$ or $\langle b \rangle \subseteq \delta(D)$, which means $a \in D$ or $b \in \delta(D)$.

Proposition 3.11. Let δ be an expansion of ideals such that $\delta(I)/P = \delta(I/P)$, for every ideal I of R satisfying $P \subseteq I$. If D is an almost δ -primary ideal of R and $Q \subseteq D$, for any proper ideal Q of R, then D/Q is an almost δ -primary ideal of R/Q.

Proof. Let $(x+Q)(y+Q) \in D/Q - (D/Q)^2$ and $x+Q \notin D/Q$. Then we get $xy \in D$ and $xy \notin D^2$ and $x \notin D$. As D is an almost δ -primary ideal of R, we get $y \in \delta(D)$ and so $y+Q \in \delta(D)/Q = \delta(D/Q)$. Hence, D/Q is an almost δ -primary ideal of R/Q.

We prove a characterization for almost δ -primary ideals.

Theorem 3.12. Let δ be an expansion of ideals such that $\delta(I)/P = \delta(I/P)$, for every ideal I of R satisfying $P \subseteq I$.

A proper ideal D of R is almost δ -primary if and only if D/D^2 is a weakly δ -primary ideal of R/D^2 .

Proof. First suppose that D is an almost δ -primary ideal of R.

Let $0 + D^2 \neq (x + D^2)(y + D^2) \in D/D^2$ and $(y + D^2) \notin \delta(D/D^2) = \delta(D)/D^2$, where $(x + D^2), (y + D^2) \in R/D^2$. Then $xy \in D - D^2$ but D is an almost δ - the primary ideal of R and $y \notin \delta(D)$, so $x \in D$. Then $(x + D^2) \in D/D^2$. Thus, D/D^2 is a weakly δ -primary ideal of R/D^2 .

Conversely, suppose that D/D^2 is a weakly δ -primary ideal of R/D^2 . Let $p, q \in R$ be such that $pq \in D - D^2$. Then $pq + D^2 \in D/D^2$ and so $pq + D^2 \neq D^2$, it follows that $(p+D^2)(q+D^2) \in D/D^2$. So either $(p+D^2) \in D/D^2$ or $(q+D^2) \in \delta(D/D^2)$, which implies that either $p \in D$ or $q \in \delta(D)$. Therefore, D is an almost δ -primary ideal of R.

Badawi and B. Fahid [3], introduced expansion of ideals δ_{\times} in a commutative ring.

Let R_1, R_2, \ldots, R_n , where $n \ge 2$, be commutative rings with $1 \ne 0$. Assume that $\delta_1, \delta_2, \ldots, \delta_n$ are expansion of ideals of R_1, R_2, \ldots, R_n respectively.

Let $R = R_1 \times R_2 \times \ldots \times R_n$. Define a function $\delta_{\times} : Id(R) \to Id(R)$ such that $\delta_{\times}(I_1 \times I_2 \times \ldots \times I_n) = \delta_1(I_1) \times \delta_2(I_2) \times \ldots \times \delta_n(I_n)$

For every $I_i \in Id(R_i)$, are $1 \leq i \leq n$. Clearly, δ_{\times} is an expansion of ideals of R. Note that every ideal of R is of the form $I_1 \times I_2 \times \ldots \times I_n$,

where each I_i is an ideal of R_i , for $1 \le i \le n$.

Now we have two results on almost δ -primary ideals in the product of commutative rings.

Theorem 3.13. Let R_1 and R_2 be commutative rings with identity. Let $R = R_1 \times R_2$ and δ_1 , δ_2 and δ_{\times} be expansion of ideals of R_1, R_2 and R respectively. Then

(i) A proper ideal I of R_1 is an almost δ_1 -primary ideal if and only if $I \times R_2$ is an almost δ_{\times} -primary ideal of $R_1 \times R_2$.

(ii) A proper ideal J of R_2 is an almost δ_2 -primary ideal if and only if $R_1 \times J$ is an almost δ_{\times} -primary ideal of $R_1 \times R_2$.

Proof. (i)

Suppose that I is an almost δ_1 -primary ideal at R_1 . As I is a proper ideal in R_1 , we get $I \times R_2$ is a proper ideal at $R_1 \times R_2$. Now let $(a, x), (b, y) \in R_1 \times R_2$ be such that $(a, x)(b, y) \in I \times R_2$ and $(a, x)(b, y) \notin (I \times R_2)^2$, where $a, b \in R_1$ and $x, y \in R_2$. Since $(a, x)(b, y) \in (I \times R_2) - (I \times R_2)^2$ and suppose that $(a, x) \notin I \times R_2$. Then we get $(ab, xy) \in (I \times R_2) - (I \times R_2)^2 = (I - I^2) \times R_2$ it implies that $ab \in I - I^2$. As I is an almost δ_1 -primary ideal in R_1 , we get $b \in \delta_1(I)$. Hence, $(b, y) \in \delta_1(I) \times \delta_2(R_2) = \delta_{\times}(I \times R_2)$. Therefore, $I \times R_2$ is an almost δ_{\times} -primary ideal of $R_1 \times R_2$.

Conversely, let $I \times R_2$ be an almost δ_{\times} -primary ideal of $R_1 \times R_2$.

Let $xy \in I - I^2$ and $x \notin I$. So $(xy, 1_{R_2}) \in (I - I^2) \times R_2 = (I \times R_2) - (I \times R_2)^2$ and $(x, 1_{R_2}) \notin I \times R_2$, where $x, y \in R_1$. As $I \times R_2$ is an almost δ_{\times} -primary ideal in $R_1 \times R_2$, then we get $(y, 1_{R_2}) \in \delta_{\times}(I \times R_2) = \delta_1(I) \times \delta_2(R_2)$. Hence, $y \in \delta_1(I)$. Therefore, I is an almost

 δ_1 -primary ideal in R_1 .

(ii) can be proved by using techniques, as in (i).

4. ϕ - δ -primary ideals

In this section we introduce and study ϕ - δ -primary ideals. Id(R) denotes the set of ideals of R.

Definition 4.1. Let δ be an expansion of ideals of R. Let $\phi : Id(R) \to Id(R) \cup \{\emptyset\}$ be a function such that $\phi(I) \subseteq I$, for every I of R. A proper ideal D of R is called ϕ - δ -primary if for $a, b \in R$, $ab \in D - \phi(D)$ implies either $a \in D$ or $b \in \delta(D)$.

Definition 4.2. Let δ be an expansion of ideals of R. Let $\phi : Id(R) \to Id(R) \cup \{\emptyset\}$ be a function such that $\phi(I) \subseteq I$, for every I of R. A proper ideal D of R is called ϕ_{ω} - δ -primary $(\omega$ - δ -primary) if for $a, b \in R$, $ab \in D$ and $ab \notin \bigcap_{n=1}^{\infty} D^n$, then either $a \in D$ or $b \in \delta(D)$.

Theorem 4.3. Let D be a proper ideal of R. Consider the following statements:
(i) If D is δ-primary, then D is weakly δ-primary.
(ii) If D is weakly δ-primary, then D is ω-δ-primary.
(iii) If D is ω-δ-primary, then D is n-almost δ-primary.
(iv) If D is n-almost δ-primary, then D is almost δ-primary.

Proof. (i) Follows from Remark 1.9.

(ii) Suppose that D is not a ω - δ -primary ideal of R. Then there exist $a, b \in R$ such that $ab \in D - \bigcap_{n=1}^{\infty} D^n$ and $a \notin D$ or $b \notin \delta(D)$. Since D is weakly δ -primary, it follows that $a \in D$ or $b \in \delta(D)$, a contradiction. Hence, ab = 0, this contradicts to $ab \notin \bigcap_{n=1}^{\infty} D^n$. Hence, D is a ω - δ -primary ideal of R.

(iii) Suppose that D is ω - δ -primary and $(n \ge 2)$. Let $pq \in D - D^n$ for some $p, q \in R$. Then $pq \in D - \bigcap_{n=1}^{\infty} D^n$. Since D is ω - δ -primary, it follows that either $p \in D$ or $q \in \delta(D)$. Hence, D is n-almost δ -primary $(n \ge 2)$.

(iv) The last implication is obvious for n = 2.

The following theorem gives a characterization of a ω - δ -primary ideal at R.

Corollary 4.4. Let D be a proper ideal of R. Then D is ω - δ -primary if and only if D is n-almost δ -primary for every $n \geq 2$.

Proof. Let D be an n-almost δ -primary for every $n \geq 2$. Suppose that $ab \in D - \bigcap_{n=1}^{\infty} D^n$ for some $a, b \in R$, then $ab \in D - D^m$ for some $m \geq 2$ but for every $n \geq 2$, D is n-almost δ -primary, we get either $a \in D$ or $b \in \delta(D)$. Hence, D is ω - δ -primary. The converse follows from the Theorem 4.3(iii).

Next we show that the radical of a ϕ - δ -primary ideal of L is again a ϕ - δ -primary ideal.

Proposition 4.5. Let D be a ϕ - δ -primary ideal of R such that $\sqrt{\phi(D)} = \phi(\sqrt{D})$ and δ be an expansion of ideals of R such that $\sqrt{\delta(D)} = \delta(\sqrt{D})$. Then \sqrt{D} is a ϕ - δ -primary ideal in R.

Proof. Assume that for some $x, y \in R$, $xy \in \sqrt{D} - \phi(\sqrt{D})$ but $x \notin \sqrt{D}$. Then there exists a positive integer n such that $(xy)^n \in D$. If $(xy)^n \in \phi(D)$, then by hypothesis $xy \in \sqrt{\phi(D)} = \phi(\sqrt{D})$, a contradiction. So assume that $(xy)^n \notin \phi(D)$ and $x^n \notin D$. Then we get $y^n \in \delta(D)$, as D is ϕ - δ -primary. Hence, $y \in \sqrt{\delta(D)} = \delta(\sqrt{D})$. Therefore, \sqrt{D} is a ϕ - δ -primary ideal in R.

Proposition 4.6. Let $\phi_1, \phi_2 : Id(R) \to Id(R) \cup \{\emptyset\}$ are functions with $\phi_1(I) \subseteq \phi_2(I)$ for every I of R. If D is ϕ_1 - δ -primary, then D is also ϕ_2 - δ -primary.

Proof. Let $p, q \in R$ be such that $pq \in D - \phi_2(D)$. Then $pq \notin \phi_1(D)$. Since D is ϕ_1 - δ -primary, we get $p \in D$ or $q \in \delta(D)$. Thus, D is ϕ_2 - δ -primary. \Box

The following theorem gives a characterization of a ϕ - δ -primary ideal of R.

Theorem 4.7. Let D be a proper ideal of R. The following statements are equivalent: (i) D is a ϕ - δ -primary ideal of R; (ii)For every $p \in R - \delta(D)$, $(D : p) = D \cup (\phi(D) : p)$. (iii) For every $p \in R - \delta(D)$, either (D : p) = D or $(D : p) = (\phi(D) : p)$.

Proof. (i) \Rightarrow (ii): Suppose that D is a ϕ - δ -primary ideal of R. Let $q \in R$ be such that $q \in (D : p)$ for some $p \in R - \delta(D)$. Then $pq \in D$. If $pq \in \phi(D)$, then $q \in (\phi(D) : p)$. If $pq \notin \phi(D)$ and $p \notin \delta(D)$, then $q \in D$, as D is ϕ - δ -primary. Hence, we conclude that $(D : p) \subseteq D \cup (\phi(D) : p)$.

Now let $r \in D \cup (\phi(D) : p)$. Then $r \in D$ or $r \in (\phi(D) : p)$. If $r \in (\phi(D) : p)$, then $pr \in \phi(D) \subseteq D$ implies that $r \in (D : p)$, so we get $(\phi(D) : p) \subseteq (D : p)$. If $r \in D$, then $pr \in Dr \subseteq D$ implies that $r \in (D : p)$, so we get $D \subseteq (D : p)$. Hence, $D \cup (\phi(D) : p) \subseteq (D : p)$. Thus, $(D : p) = D \cup (\phi(D) : x)$.

(ii) \Rightarrow (iii): Suppose $(D:p) = D \cup (\phi(D):p)$, for every $p \in R - \delta(D)$. Since D, (D:p) and $(\phi(D):p)$ are ideals of R, so by Lemma 2.5, (D:p) = D or $(D:p) = (\phi(D):p)$.

(iii) \Rightarrow (i): Suppose that (iii) holds. Let $ab \in R$ be such that $ab \in D - \phi(D)$ but suppose that $a \notin \delta(D)$. Since $ab \in D$, we have $b \in (D : a)$. Hence, (D : a) = D. Then $b \in D$. If $(D : a) = (\phi(D) : a)$, then $ab \in \phi(D)$, a contradiction. Thus, D is a ϕ - δ -primary ideal of R.

Theorem 4.8. Let $\phi : Id(R) \to Id(R) \cup \{\emptyset\}$ be a function such that $\phi(I) \subseteq I$, for every ideal I of R. Let D be a ϕ - δ -primary ideal of R. (i) If $D^2 \not\subset \phi(D)$, then D is δ -primary.

(ii) If D is not a δ -primary ideal of R and $\delta(D^2) = \delta(D)$, then $\delta(D) = \delta(\phi(D))$.

Proof. (i) Assume that $x, y \in R$ and $xy \in D$. If $xy \notin \phi(D)$, since D is a ϕ - δ -primary, then either $x \in D$ or $y \in \delta(D)$. Hence, we may assume that $xy \in \phi(D)$. If $xD \notin \phi(D)$, then there exists an element $d_1 \in D$ such that $xd_1 \notin \phi(D)$. Now $x(d_1 + y) = xd_1 + xy \in D$,

 $x(d_1+y) \notin \phi(D)$. As D is ϕ - δ -primary, we get either $x \in D$ or $(d_1+y) \in \delta(D)$. Similarly, if $yd_2 \notin \phi(D)$. So we assume that $xd_1 \in \phi(D)$ and $yd_2 \in \phi(D)$. Since $D^2 \notin \phi(D)$, there exists $p, q \in D$ with $pq \notin \phi(D)$. Now $(x+p)(y+q) = xy + xq + py + pq \in D$, $(x+p)(y+q) \notin \phi(D)$, implies that either $(x+p) \in D$ or $(y+q) \in \delta(D)$. Therefore, either $x \in D$ or $y \in \delta(D)$.

(ii) Since $\phi(D) \subseteq D$, we have $\delta(\phi(D)) \subseteq \delta(D)$. It follows that from part (1) $D^2 \subseteq \phi(D)$. Hence, $\delta(D) = \delta(D^2) \subseteq \delta(\phi(D))$, so $\delta(D) = \delta(\phi(D))$.

Acknowledgments I would like to thank the referees for helpful suggestions, which improved the paper.

References

- [1] D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra, 36(2)(2008), 686-696.
- [2] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29 (2003), 831-840.
- [3] A. Badawi and B. Fahid, On weakly 2-absorbing δ-primary idelas of commutative rings, Georgian Math. J., 27(4) (2018), 1–13.
- [4] M. Bataineh and S. Kuhail, Generalizations of primary ideals and submodules, Int. J. of Contemporary Math. Sci., 6 (2011), 811–824.
- [5] A. Darani and Yousefian, Generalizations of primary ideals in commutative rings, Novi Sad J. Math., 42(1) (2012),27-35.
- [6] B. Fahid and D. Zhao , 2-absorbing δ-primary idelas of commutative rings, Kyungpook Math. J., 57 (2017), 193-198.
- [7] C. S. Manjrekar and A.V. Bingi, φ-prime and φ-primary elements in multiplicative lattices, Hindawi Publishing Corporation Alg., (2014).
- [8] S. K. Nimbhorkar and J. Y. Nehete, Generalizations of δ-primary elements in multiplicative lattices. Palest. J. Math. 10(1) (2021), 78–85.
- [9] D. Zhao, δ -primary ideals of commutative rings, Kyungpook Math. J., 41 (2001), 17-22.