
تعداد نشریات | 26 |
تعداد شمارهها | 395 |
تعداد مقالات | 3,479 |
تعداد مشاهده مقاله | 5,369,724 |
تعداد دریافت فایل اصل مقاله | 3,670,342 |
About the invariance of the Cartan connection relative to a h-Matsumoto change | ||
Journal of Finsler Geometry and its Applications | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 12 خرداد 1404 اصل مقاله (304.52 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2025.17203.1156 | ||
نویسندگان | ||
Abha Sahu* 1؛ Manish Kumar Gupta2؛ Suman Sharma2 | ||
1Department of Mathematics, Guru Ghasidas Vishwavidyalaya, Bilaspur, CG, India | ||
2Guru Ghasidas Vishwavidyalaya, Bilaspur, CG, India | ||
چکیده | ||
In the present paper, we have studied the Matsumoto change L with an h-vector bi(x,y). We have derived some fundamental tensors for this transformation. We have also obtained the necessary and sufficient condition for which the Cartan connection coefficients for both the spaces Fn=(Mn,L) and Fn=(Mn,L) are same. | ||
کلیدواژهها | ||
Finsler space؛ Cartan connection؛ Matsumoto change and h-vector | ||
مراجع | ||
1. M. K. Gupta and A. K. Gupta, Hypersurface of a Finsler space subjected to an hexponential change of metric. Int. J. Geom. Meth. Mod. Phys. 13(10) (2016), 1650129. 2. M. K. Gupta and P. N. Pandey, Hypersurfaces of conformally and h-conformally related Finsler spaces. Acta Mathematica Hungarica; 123(3) (2009), 257-264. 3. M. K. Gupta and A. K. Gupta, h-exponential change of Finsler metric. Facta Univ. Series: Math. Inform. 31(5) (2016), 1029-1039. 4. M. K. Gupta and P. N. Pandey, Finsler space subjected to a Kropina change with an h-vector. Facta Univ. Series: Math. Inform. 30(4) (2015), 513-525. 5. M. K. Gupta and A. Sahu, On Douglas Tensor of Generalized Matsumoto Finsler Space. Lobachevskii Journal of Mathematics 45(2) (2024), 685-692. 6. M. K. Gupta, A. Sahu, and C. Ozel, On Douglas tensor of infinite series Finsler space.Facta Univ. Series: Math. Inform. (2025), 049-055. 7. M. K. Gupta and A. Sahu, On Matsumoto-Randers change on m-th root Finsler metric, Palestine J. Math. 14(1) (2025), 262-268. 8. M. K. Gupta, A. Sahu, and A. Tayebi, On Conformal-Matsumoto change of mth root Finsler metrics. Facta Univ. Series: Math. Inform. 38(5) (2023), 895-903. 9. H. Izumi, Conformal transformations of Finsler spaces II. Tensor, N.S. 33(1980), 337-359. 10. M. Matsumoto, On C-reducible Finsler spaces, Tensor, N.S. 24(1972), 29-37. 11. M. Matsumoto, A slope of a mountain is a Finsler surface with respect to a time measure, J. Math. Kyoto. Univ. 29(1)(1989), 17-25. 12. Z. Shen Lectures on Finsler geometry. World Scientific, 2001. 13. C. Shibata, On invariant tensors of β-changes of Finsler metrics. J. Math. Kyoto. Univ. 24(1) (1984), 163-188. 14. H. S. Shukla, O. P. Pandey and K. Mandal, Matsumoto change of Finsler metric by h-vector. South Asian Journal of Mathematics, 5(3) (2015), 109-116. 15. A. Tayebi and M. Shahbazi Nia, On Matsumoto change of mth-root Finsler metrics. Publ. Ins. Mathematique, 101(115) (2017), 183-190. 16. A. Tayebi, T. Tabatabaeifar and E. Peyghan, On Kropina change for mth-root Finsler metrics. Ukrainian Mathematical Journal, 66(1) (2014), 160-164. 17. B. Tiwari and G. K. Prajapati, On generalized Kropina change of mth-root Finsler metric. Int. J. Geom. Meth. Mod. Phys. 14(05) (2017): 1750081. | ||
آمار تعداد مشاهده مقاله: 4 تعداد دریافت فایل اصل مقاله: 1 |